Cross reference is made to the following applications: U.S. patent application Ser. No. 10/403,707, filed Mar. 31, 2003, now U.S. Pat. No. 7,527,631, which issued on May 5, 2009 entitled “ARTHROPLASTY SIZING GAGE”, U.S. patent application Ser. No. 10/403,750, filed Mar. 31, 2003, now abandoned, entitled “ARTICULATING SURFACE REPLACEMENT PROSTHESIS”, U.S. patent application Ser. No. 10/403,577, filed Mar. 31, 2003, now abandoned, entitled “MODULAR ARTICULATING SURFACE REPLACEMENT PROSTHESIS”, U.S. patent application Ser. No. 10/403,710, filed Mar. 31, 2003, now U.S. Pat. No. 8,366,713, which issued on Feb. 5, 2013, entitled “ARTHROPLASTY INSTRUMENT AND ASSOCIATED METHOD”, and U.S. patent application Ser. No. 10/403,364, filed Mar. 31, 2003, now U.S. Pat. No. 7,338,498, which issued on Mar. 4, 2008, entitled “PROSTHETIC IMPLANT, TRIAL AND ASSOCIATED METHOD” each of which are incorporated herein by reference.
The present invention relates generally to the field of orthopaedics, and more particularly, to an implant for use in arthroplasty.
The invention relates to implantable articles and methods for implanting such articles. More particularly, the invention relates to a bone prosthesis and a method for implanting the same.
There are known to exist many designs for and methods of implanting implantable articles, such as bone prostheses. Such bone prostheses include components of artificial joints, such as elbows, hips, knees and shoulders.
Early designs of implantable articles relied upon the use of cements to anchor the implant. However, the current trend is to use cements to a lesser extent because of their tendency to lose adhesive properties over time and the possibility that cement contributes to wear debris within a joint.
Recently, implantable bone prostheses have been designed such that they encourage the growth of hard bone tissue around the implant. Such implants are often implanted without cement and the bone grows around surface irregularities, for example, porous structures on the implant.
One such implantable prosthesis is a shoulder prosthesis. During the lifetime of a patient it may be necessary to perform a total shoulder replacement procedure on a patient as a result of, for example, disease or trauma, for example, disease from osteoarthritis or rheumatoid arthritis. Currently, most implantable shoulder prostheses are total shoulder prostheses. In a total shoulder replacement procedure, a humeral component having a head portion is utilized to replace the natural head portion of the upper arm bone or humerus. The humeral component typically has an elongated intramedullary stem, which is utilized to secure the humeral component to the patient's humerus. In such a total shoulder replacement procedure, the natural glenoid surface of the scapula is resurfaced or otherwise replaced with a glenoid component that provides a bearing surface for the head portion of the humeral component.
With the average age of patients requiring shoulder arthroplasty decreasing, device manufacturers are developing bone sparing implants for the initial treatment of degenerative arthritis. Surface replacement prostheses are being developed to replace the articulating surface of the proximal humerus with a minimal bone resection and minimal disruption of the metaphysis and diaphysis. Current designs utilize a semi-spherical articular dome with a small stem for rotational stability. The under surface of the articular head is also semi-spherical and mates with the spherically machined humeral head.
The need for a shoulder replacement procedure may be created by the presence of one of a number of conditions. One such condition is the deterioration of the patient's rotator cuff. Specifically, an intact rotator cuff stabilizes the humeral head in the glenoid fossa of a scapula during abduction of the arm. While it is stabilized in such a manner abduction of the arm causes the humeral head to translate only a short distance in the superior direction (e.g. a few millimeters), whereby a space is maintained between the humeral head and the acromion. However, for patients with rotator cuff arthropathy, significantly greater humeral excursion is observed.
Referring to
Referring now to
Referring now to
Referring now to
However, referring to
In particular, hyper-translation of the humeral head in the superior direction is observed in patients with massive rotator cuff deficiency, thereby resulting in articulation between the superior surface of the humeral head and both the inferior surface of the acromion and the acromioclavicular joint during abduction of the patient's arm. Such articulation between these components accelerates humeral articular destruction and the erosion of the acromion and acromioclavicular joint. Moreover, such bone-to-bone contact is extremely painful for the patient, thereby significantly limiting the patient's range of motion. In short, patients with massive rotator cuff tear and associated glenohumeral arthritis, as is seen in cuff tear arthropathy, may experience severe shoulder pain, as well as reduced function of the shoulder.
In order to treat patients suffering from cuff tear arthropathy, a number of prostheses and techniques utilizing existing prostheses have heretofore been designed. For example, surgeons heretofore utilized a relatively large humeral head prosthesis in an attempt to completely fill the shoulder joint space. It was believed that such use of a large prosthesis would increase the efficiency of the deltoid muscle, thereby improving motion of the shoulder. However, clinical experience has shown that such use of a large humeral head prosthesis (overstuffs) the shoulder joint thereby increasing soft tissue tension, reducing joint range of motion, and increasing shoulder pain. Moreover, such use of an oversized prosthetic head fails to resurface the area of the greater tubercle of the humerus, thereby allowing for bone-to-bone contact between the greater tubercle and the acromion during abduction of the patient's arm.
A number of humeral head bipolar prostheses have also been utilized in an attempt to address the problems associated with cuff tear arthropathy. It was believed that the relatively unstrained motion of the bipolar head would improve shoulder motion. However, heretofore designed bipolar prosthetic heads include relatively large offsets, thereby overstuffing the shoulder joint in a similar manner as described above. Moreover, scar tissue may form around the bipolar head thereby (freezing) the dual articulating motion of the prosthesis that has been known to create a large hemi arthroplasty that likewise overstuffs the shoulder joint. In addition, such bipolar prosthetic heads do not cover the articulating surface between the greater tubercle and the acromion, thereby creating painful bone-to-bone contact between them.
Yet further, a number of techniques have heretofore been designed in which the relatively rough surface of the greater tubercle is resurfaced with an osteotome or high speed burr. Although this approach results in a smoother tubercle contact surface, relatively painful bone-to-bone articulating contact still occurs, thereby reducing the patient's range of motion.
More recently, the assignee of the applicant of the present invention has invented a method and apparatus for performing a shoulder replacement procedure in a treatment of a cuff tear arthroplasty which has been filed in the U.S. Patent and Trademark Office under U.S. application Ser. No. 09/767,473 filed Jan. 23, 2001, hereby incorporated in its entireties by reference in this application. This application provides for a method and apparatus for treating cuff tear arthroplasty utilizing a total shoulder replacement prosthesis. This prosthesis includes an artificial head as well as a stem that extends into a rimmed medullary canal. Such a prosthesis is limited to use with a total shoulder prosthesis and is not suitable for use with bone sparing implants for the initial treatment of the degenerative arthritis.
What is needed, therefore, is a method and apparatus for performing bone sparing arthroplasty shoulder replacement surgery utilizing bone sparing implants for the initial treatment of degenerative arthritis, which will be useful in the treatment of cuff tear arthroplasty, which overcomes one or more of the aforementioned drawbacks. What is particularly-needed is a method and apparatus for performing a bone sparing implant shoulder procedure that eliminates painful articulation between the great tubercle of the humerus and the acromion.
The present invention provides for an extended articulation resurfacing shoulder that provides a low-friction prosthetic bearing surface for articulation between the greater tuberosity and the acromion. Such a prosthesis is utilized with a bone sparing minimal resection of a portion of the humeral head.
The present invention provides for an extended articulation resurfacing shoulder with superior/lateral flange for extended articulation into the coracoacromial arch.
According to one embodiment of the present invention, a prosthesis for use in performing joint arthroplasty is provided. The prosthesis is to be fitted to a long bone. The prosthesis includes a first body having a first body articulating surface defining a generally circular outer periphery of the first body articulating surface. The first body has a support surface opposed to first body articulating surface. The support surface is adapted to receive the head of the long bone. The prosthesis also includes a second body operably associated with the first body. The second body has a second body articulating surface extending from a portion of the circular outer periphery of the first body articulating surface.
According to another embodiment of the present invention, a tool kit for preparing a humerus to receive a prosthesis is provided. The prosthesis has a first body having a first articulating surface and an opposed first support surface and has a second body having a second articulating surface and an opposed second support surface. The kit is used to prepare the humerus to receive the prosthesis. The tool kit includes a reamer for preparing a first prepared surface on the humerus. The first prepared surface receives the first support surface. The tool kit also includes a bone cutting tool for preparing a second prepared surface on the humerus. The second prepared surface receives the second support surface.
According to a further embodiment of the present invention, a method for performing shoulder arthroplasty for an indication of rotator cuff tear arthropathy is provided. The method includes the step of providing a prosthesis with a first body having a first articulating surface and an opposed first support surface and with a second body having a second articulating surface and an opposed second support surface. The method also includes the step of providing a tool kit for preparing a humerus for receiving the prosthesis. The method includes the step of preparing a first prepared surface for cooperation with the first support surface with the tool kit. The method further includes the step of preparing a second prepared surface for cooperation with the second support surface with the tool kit. The method also includes the step of implanting the prosthesis onto the first prepared surface and the second prepared surface. The method also includes the step of providing an instrument for preparing a surface on a long bone, providing a plurality of trials, each of said trials being adapted to mate with the surface, selecting one of the plurality of trials, performing a trial reduction on said one of said plurality of trials, determining if said one of said plurality of trials is satisfactory, performing additional trial reductions as required, selecting one of a plurality of joint prostheses corresponding to one of said plurality of trials based upon the trial reductions, and implanting the selected one prosthesis onto the long bone.
The technical advantage of the present invention includes the ability to provide a low friction bearing surface between the greater tuberosity and the acromion. For example, according to one aspect of the present invention, a superior/lateral flange extends from a periphery of the hemispherical body of the prosthesis, which flange provides for extended articulation in the coracoacromial arch. Thus, the present invention provides a low friction bearing surface between the greater tuberosity and the acromion.
The technical advantages of the present invention further include the ability to provide for an effective remedy for rotator cuff tear arthropathy as part of a bone saving surgical procedure. For example, according to one aspect of the present invention, a prosthesis is provided which includes a generally hollow hemispherical body which mates with a slightly resected humeral head. Thus, the present invention provides for a surgical procedure with minimal bone loss.
Other technical advantages of the present invention will be readily apparent to one skilled in the art from the following figures, descriptions and claims.
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following description taken in connection with the accompanying drawings, in which:
Embodiments of the present invention and the advantages thereof are best understood by referring to the following descriptions and drawings, wherein like numerals are used for like and corresponding parts of the drawings.
Referring now to
The prosthesis 20 further includes a second body 30 operably associated with the first body 22. The second body 30 has a second body articulating surface 32 extending from a portion 34 of the circular periphery 26 of the first articulating surface 24. The second body articulating surface 32 is adapted to prevent impingement of the acromion 9 (see
While the prosthesis of the present invention may be secured to the humerus by securing of the second surface 28 to the humerus and bony ingrowth there between, preferably and as shown in
As shown in
To provide for smooth motion of the humerus 3 through the abduction of the humerus 3 with respect to glenoid cavity 14 (see
Referring now to
Referring now to
Referring now to
Referring now to
Applicants have found that since the diseased humerus may become flattened around the humeral head, to provide adequate support to the prosthesis 20 in a diseased humerus, the support surface opposed to the articulating surface 24 of the prosthesis 20 may include at least part of the second surface 28 to include a support surface 52 opposed to the first articulating surface 24. Preferably, for simplicity, the support surface may be generally planar.
To assist the prosthesis 20 in its strength and stability in the humerus 3 and to promote the bony ingrowth around the prosthesis 20, the prosthesis 20 may include a porous coating 53 secured to, for example, the second surface 28 of the first body 22, the second surface 38 of the second body, the planar portion 52 of the second surface 28, as well as on the periphery of the stem 36. Any commercially available porous coating will assist in the bony ingrowth of the prosthesis 20 to the humerus 3. One particular porous coating is provided by the assignee of the instant application under the trade name POROCOAT™. Porous coating may be more fully understood by reference to U.S. Pat. No. 3,855,638 to Pilliar, hereby incorporated in its entireties by reference.
As shown in
Referring now to
The planar portion 52 of the prosthesis 20 may have any reasonable location with respect to the articulating surface 24 of the prosthesis 20. The proper position of the planar portion 52 will depend on the flattening of the humeral head and how much corresponding amount of resection may be required to the humeral head. The position of the planar portion 52 with respect to the articulating surface 24 may be defined by a flat dimension FD.
The hemispherical body 22 and second body 30 of the prosthesis 20 may be defined with respect to a prosthetic center point 60. The articulating surface 24 may be defined by a radius R1 extending from center point 60 the articulating surface 24. The second surface 28 may be defined by a radius R2 extending from the prosthetic center point 60 to the second surface 28. Similarly, the second articulating surface 32 may be defined by radius R4 from the prosthetic center point 60 to the second articulating surface 32. Similarly, the second surface of the second body 38 may be defined by radius R3 from the prosthetic center point 60 to the second surface 28. For simplicity, the radii R1 and R4 may be identical and for simplicity the radii R2 and R3 may be identical.
Referring now to
The prosthesis 20 may have any size compatible with the humerus. Preferably, and as shown in
The prosthesis 20 may be made of any suitable durable material that is compatible with the human anatomy. For example, the prosthesis 20 may be made of a ceramic, a plastic or a metal. If made of a metal, the prosthesis 20 may be made, for example, of a cobalt chromium alloy, a titanium alloy, or a stainless steel alloy.
Referring now to
As shown in
Referring now to
Referring now to
As shown in
Referring again to
As shown in
Preferably and as shown in
Referring now to
It should be appreciated, however, as the angle αα moves from 180 degrees to something less, for example, 140 degrees the inner edge 90 of second body 30 of prosthesis 20 (see
It should be appreciated that the bone cutting tool necessary to prepare the humerus may include a drill, a reamer, a broach, a saw or an osteotome.
Referring now to
Referring now to
Referring to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions, and alterations can be made therein without departing from the spirit and scope of the present invention as defined by the appended claims.
This application is a divisional of application Ser. No. 12/421,335, filed on Apr, 9, 2009, now U.S. Pat. No. 8,444,646 which issued May 21, 2013, which is a divisional of application Ser. No. 10/403,708, filed on Mar. 31, 2003, now U.S. Pat. No. 7,517,364, which issued on Apr. 14, 2009. The disclosure of which are both hereby totally incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
788362 | Lavery | Apr 1905 | A |
1023542 | Winter | Apr 1912 | A |
1345443 | Hood | Jul 1920 | A |
1669701 | Estwing | May 1928 | A |
2200120 | Nauth | May 1940 | A |
2222517 | Price | Nov 1940 | A |
2243718 | Moreira | May 1941 | A |
2718228 | Van Steenbrugghe | Sep 1955 | A |
2725878 | Reiter | Dec 1955 | A |
2804895 | Clement | Sep 1957 | A |
2934065 | Townley | Apr 1960 | A |
3002514 | Deyerle | Oct 1961 | A |
3605527 | Gambale | Sep 1971 | A |
3702611 | Fishbein | Nov 1972 | A |
3840904 | Tronzo | Oct 1974 | A |
3855638 | Pilliar | Dec 1974 | A |
3979778 | Stroot | Sep 1976 | A |
4042980 | Swanson et al. | Aug 1977 | A |
4206517 | Pappas et al. | Jun 1980 | A |
4271849 | Rehder | Jun 1981 | A |
4274164 | Rehder et al. | Jun 1981 | A |
4328593 | Sutter et al. | May 1982 | A |
4332036 | Sutter et al. | Jun 1982 | A |
4335429 | Kawakatsu | Jun 1982 | A |
4355429 | Mittelmeier et al. | Oct 1982 | A |
4432358 | Fixel | Feb 1984 | A |
4441492 | Rydell et al. | Apr 1984 | A |
4502474 | Comparetto | Mar 1985 | A |
4550450 | Kinnett | Nov 1985 | A |
4601289 | Chiarizzio et al. | Jul 1986 | A |
4714471 | Grundei | Dec 1987 | A |
4722330 | Russell et al. | Feb 1988 | A |
4752296 | Buechel et al. | Jun 1988 | A |
4787378 | Sodhi | Nov 1988 | A |
4795473 | Grimes | Jan 1989 | A |
4801289 | Sugimoto et al. | Jan 1989 | A |
4805607 | Engelhardt et al. | Feb 1989 | A |
4846841 | Oh | Jul 1989 | A |
4865605 | Dines et al. | Sep 1989 | A |
4865609 | Roche | Sep 1989 | A |
4893619 | Dale et al. | Jan 1990 | A |
4919669 | Lannelongue | Apr 1990 | A |
4987904 | Wilson | Jan 1991 | A |
4995883 | Demane et al. | Feb 1991 | A |
5041117 | Engelhardt | Aug 1991 | A |
5064427 | Burkinshaw | Nov 1991 | A |
5070623 | Barnes | Dec 1991 | A |
5108396 | Lackey et al. | Apr 1992 | A |
5116339 | Glock | May 1992 | A |
5141520 | Goble et al. | Aug 1992 | A |
5226915 | Bertin | Jul 1993 | A |
5250051 | Maryan | Oct 1993 | A |
5258033 | Lawes et al. | Nov 1993 | A |
5282865 | Dong | Feb 1994 | A |
5312411 | Steele et al. | May 1994 | A |
5314479 | Rockwood, Jr. et al. | May 1994 | A |
5358525 | Fox et al. | Oct 1994 | A |
5374269 | Rosenberg | Dec 1994 | A |
5405349 | Burkinshaw et al. | Apr 1995 | A |
5423827 | Mumme et al. | Jun 1995 | A |
5454816 | Ashby | Oct 1995 | A |
5470336 | Ling et al. | Nov 1995 | A |
5476467 | Benoist | Dec 1995 | A |
5486178 | Hodge | Jan 1996 | A |
5490852 | Azer et al. | Feb 1996 | A |
5507817 | Craig et al. | Apr 1996 | A |
5514139 | Goldstein et al. | May 1996 | A |
5540696 | Booth, Jr. et al. | Jul 1996 | A |
5549704 | Sutter | Aug 1996 | A |
5569263 | Hein | Oct 1996 | A |
5662476 | Ingber et al. | Sep 1997 | A |
5683395 | Mikhail | Nov 1997 | A |
5690636 | Wildgoose et al. | Nov 1997 | A |
5702460 | Carls et al. | Dec 1997 | A |
5723018 | Cyprien et al. | Mar 1998 | A |
5735905 | Parr | Apr 1998 | A |
5769852 | Branemark | Jun 1998 | A |
5776194 | Mikol et al. | Jul 1998 | A |
5776201 | Colleran et al. | Jul 1998 | A |
5779710 | Matsen, III | Jul 1998 | A |
5800437 | Gustilo et al. | Sep 1998 | A |
5800557 | Elhami | Sep 1998 | A |
5830216 | Insall et al. | Nov 1998 | A |
5893850 | Cachia | Apr 1999 | A |
5957926 | Masini | Sep 1999 | A |
6013104 | Kampner | Jan 2000 | A |
6045582 | Prybyla | Apr 2000 | A |
6063124 | Amstutz | May 2000 | A |
6071311 | O'Neil et al. | Jun 2000 | A |
6093124 | Eyley | Jul 2000 | A |
6102916 | Masini | Aug 2000 | A |
6110200 | Hinnenkamp | Aug 2000 | A |
6127596 | Brown et al. | Oct 2000 | A |
6129764 | Servidio | Oct 2000 | A |
6132469 | Schroeder | Oct 2000 | A |
6156069 | Amstutz | Dec 2000 | A |
6168628 | Huebner | Jan 2001 | B1 |
6187012 | Masini | Feb 2001 | B1 |
6190390 | McAllister | Feb 2001 | B1 |
6200319 | Storer et al. | Mar 2001 | B1 |
6206884 | Masini | Mar 2001 | B1 |
6283999 | Rockwood, Jr. | Sep 2001 | B1 |
6319104 | Emter | Nov 2001 | B1 |
6334874 | Tornier et al. | Jan 2002 | B1 |
6364910 | Shultz et al. | Apr 2002 | B1 |
6368353 | Arcand | Apr 2002 | B1 |
6508840 | Rockwood, Jr. et al. | Jan 2003 | B1 |
6508841 | Martin et al. | Jan 2003 | B2 |
6554865 | Grusin et al. | Apr 2003 | B2 |
6709439 | Rogers et al. | Mar 2004 | B2 |
6740120 | Grimes | May 2004 | B1 |
6755865 | Tarabishy | Jun 2004 | B2 |
6783549 | Stone et al. | Aug 2004 | B1 |
6875222 | Long et al. | Apr 2005 | B2 |
6942699 | Stone et al. | Sep 2005 | B2 |
6979299 | Peabody et al. | Dec 2005 | B2 |
7097397 | Keightley | Aug 2006 | B2 |
7112204 | Justin et al. | Sep 2006 | B2 |
7517364 | Long et al. | Apr 2009 | B2 |
7527631 | Maroney et al. | May 2009 | B2 |
8211113 | Brown et al. | Jul 2012 | B2 |
20010009971 | Sherts et al. | Jul 2001 | A1 |
20010037152 | Rockwood, Jr. | Nov 2001 | A1 |
20010047210 | Wolf | Nov 2001 | A1 |
20020016634 | Maroney et al. | Feb 2002 | A1 |
20020099381 | Maroney | Jul 2002 | A1 |
20020099445 | Maroney et al. | Jul 2002 | A1 |
20020133153 | Hyde, Jr. | Sep 2002 | A1 |
20020183849 | Grusin et al. | Dec 2002 | A1 |
20030018341 | Deloge et al. | Jan 2003 | A1 |
20030114859 | Grusin et al. | Jun 2003 | A1 |
20030163202 | Lakin | Aug 2003 | A1 |
20030212403 | Swanson | Nov 2003 | A1 |
20040122521 | Lee et al. | Jun 2004 | A1 |
20040193277 | Long et al. | Sep 2004 | A1 |
20040193278 | Maroney et al. | Sep 2004 | A1 |
20050065612 | Winslow | Mar 2005 | A1 |
20060052791 | Hagen et al. | Mar 2006 | A1 |
20060142870 | Robinson et al. | Jun 2006 | A1 |
20080004701 | Axelson et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
2041929 | Aug 1970 | DE |
4228710 | Aug 1992 | DE |
4220217 | Dec 1993 | DE |
10233204 | Jul 2002 | DE |
0845250 | Nov 1997 | EP |
0888752 | Jul 1998 | EP |
0903128 | Sep 1998 | EP |
1064890 | Jun 2000 | EP |
1228739 | Aug 2002 | EP |
1470802 | Oct 2004 | EP |
1518519 | Mar 2005 | EP |
2418664 | Mar 1978 | FR |
2578739 | Sep 1986 | FR |
2737107 | Jul 1995 | FR |
2898267 | Sep 2007 | FR |
764600 | Dec 1956 | GB |
2259253 | Aug 1992 | GB |
9415551 | Jul 1994 | WO |
9522302 | Aug 1995 | WO |
9807393 | Feb 1998 | WO |
9937254 | Jul 1999 | WO |
0113823 | Mar 2001 | WO |
0113823 | Mar 2001 | WO |
0217822 | Mar 2002 | WO |
Entry |
---|
Biomet Orthopaedics, INC., Introducing the Copeland Humeral Resurfacing Head, 2001. |
Biomet Merck, Ltd., Copeland Surface Replacement Shoulder Arthroplasty, published at least as early as Mar. 30, 2003. |
Endotec, INC. Buechel-Pappas Resurfacing Shoulder System Surgical Procedure by Frederick F. Buechel, M.D. 2001. |
Biomet Orthopaedics, INC., Copeland Hunmeral Resurfacing Head, published at least as early as Mar. 30, 2003. |
European Search Report for European Application No. 04251871.2-1526, Sep. 8, 2004, 3 pages. |
European Search Report for European Application No. 05251328.0-2310, Jul. 21, 2005, 4 pages. |
European Search Report dated Dec. 5, 2005, for corresponding EP application 04251913.2. |
Australian Examiner's Report in corresponding Australian patent application ( i.e., AU 2009213073), mailed Feb. 25, 2011 (2 pages). |
Australian Government-IP Australia, Examiner's First Report on Australian Patent Application No. 2004201199, dated Jan. 9, 2009 (2 pages). |
Australian Government-IP Australia, Examiner's First Report on Australian Patent Application No. 2004201349, dated Jun. 4, 2009 ( 7 pages). |
Japan Patent Office, Notification of Reasons for Refusal, corresponding to Japanese Patent Application No. 2004-099913, mailed Feb. 9, 2010 (3 pages). |
Depuy Orthopaedics, INC., Moreland Cemented Hip Revision Instrumentation, 2.3M500, 0602-28-00 (REV.6) USA, 1995 (12 pages). |
Depuy Orthopaedics, INC., Moreland Cementless Hip Revision Instrumentation, 1998 (12 pages). |
Smith & Nephew, INC. Orthopaedic Catalog, Prepared Oct. 16, 2003, USA, (25 pages). |
Depuy Ace, Engineering Drawing, Title: Articulated Tension Device Outline Drawings-Large Fragment System, P/N 13710-010, Dec. 11, 1998 (Rev. C) USA. |
Biomet brochure (engineering drawings), Jul. 22, 1997. |
European Search Report in corresponding European patent application (i.e., EP 10 18 7319), mailed Jan. 13, 2011 (8 pages). |
Depuy Orthopaedics, INC., Global Advantage CTA Humeral Head, 2000, 3.5M0460, 0612-03-050 (Rev 3), USA (6 pages). |
Number | Date | Country | |
---|---|---|---|
20130245776 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12421335 | Apr 2009 | US |
Child | 13874958 | US | |
Parent | 10403708 | Mar 2003 | US |
Child | 12421335 | US |