The present invention relates to a bone screw, in particular to a bone screw with a thread section having a periphery with an open net-like or mesh-like structure.
A bone screw having a tubular wall with a plurality of recesses is described in DE 100 55 891 A1. It includes a thread section, a tip at one end and a head for engagement with a screwdriver at the other end. The thread section of the tubular wall also comprises the plurality of recesses.
This bone screw can be used e.g. in the treatment of osteoporotic fractures. On account of the open mesh (or net-like) design of the screw, fusion with surrounding bone material can take place.
A problem can be encountered when the position of the fracture in the bone, which e.g. in the hipbone is far away from the surface from which the screw is screwed in. In such situation, for reliable fixation, precise positioning of the bone screw is required and, sometimes, a mechanical connection to external and/or internal bracing implants also may be required.
A bone screw system including a cannulated bone screw and an adapter designed to be releasably coupled to the screw is known from U.S. Pat. No. 6,048,343. The bone screw has a head with a diameter which is larger than the diameter of the shaft of the screw. The largest diameter of the adapter is also greater than the diameter of the shaft of the bone screw. Thus the bone screw cannot be placed at a fracture which is at a location far away from the surface of the bone. DE 199 49 285 A1 discloses a similar bone screw system including a bone screw and an adapter.
The present invention provides a bone screw with a thread section having a periphery with an open mesh (or net-like) structure and a bone fixation device with improved properties. Preferred bone screws of the present invention can be positioned precisely and, optionally, also can be connected to external and/or internal bracing implants.
In accord with one embodiment of the present invention, a bone screw comprises a thread section of tubular construction having a tip at its first end, a second end opposite the latter, and a holding element with a first section for connection to the second end of the thread section and a rod-like second section which, in the inserted state of the holding element, protrudes beyond the second end of the thread section. The tubular thread section comprises a bone thread on its outer wall and the outer wall of the thread section comprises a plurality of recesses providing an open mesh structure. Preferably, a stop is provided for limiting the distance of insertion of the holding element into the thread section.
In another embodiment of the invention, the bone screw comprises a thread section of tubular construction having a tip at its first end and a second end opposite the latter and, adjoining the second end of the thread section, a section free of bone thread and integral with the thread section. At the end of the adjoining section free of bone thread opposite the tip, preferably, a means for engagement with a screw-in tool and/or a means for attaching a fixation element is provided. The tubular thread section comprises a bone thread on its outer wall and the wall of the thread section comprises a plurality of recesses providing an open mesh structure.
In a preferred embodiment, the fixation element comprises a fixation plate with a hole or recess through which the free end of the rod-like holding element can be passed, and the attaching means comprises a nut for screwing onto the holding element from its free end for fixing the plate.
The invention also provides a bone fixation device comprising at least one bone screw as described herein and a marrow nail for fixing a bone, the marrow nail having a borehole through which the free end of the rod-like holding element can be passed.
Certain preferred embodiments of the bone screws of the present invention comprise one or more of the following (wherein references to the drawings are provided as merely exemplary): the thread section 2 of tubular construction comprises an internal thread section 24 at its second end and the first section 41, 61 of the holding element 4, 6 comprises an external thread for screwing into the internal thread section 24; the connection between the holding element 4, 6 and the thread section 2 is made in the form of an interference fit; the holding element 4, 6 comprises an element 44, 64 at its free end for engagement with a screw-in tool; the stop is provided in the form of a shoulder 42, 62 between the first section 41, 61 and the second section 43, 63 of the holding element; the stop is provided in the tubular thread section 2 of the bone screw 1; the rod-like section 43, 63 of the holding element 4, 6 comprises an external thread for screwing on a nut 83 from the free end of the holding element 4, 6; the thread section 2 of tubular construction comprises an internal thread section 23 at its first end; the thread section 2 of tubular construction comprises an internal thread section 23 that extends over the whole length of the thread section 2 of the tubular construction and the tip 3, 5, 7 at the first end of the thread section 2 can be screwed into this internal thread section 23; the internal thread section 23, 24 is designed and structured as a metric or inch thread; the tip 7 is designed and structured as a self-tapping tip; the tip 5 is cannulated (i.e., comprises a cannula); the holding element 6 is cannulated; and/or the length of the section 13 free of bone thread is the same as or greater than that of the thread section 12.
The invention further provides a holding element 4, 6 for attaching to a bone screw, wherein the bone screw comprises a tip at its first end and, at the second end opposite the latter, a section for connection to the holding element. The holding element comprises a first section 41, 61 for connection to the bone screw, a rod-like second section 43, 63 and, preferentially, a stop for limiting the distance of insertion of the holding element 4, 6 into the bone screw. Thus, when the holding element is inserted into the bone screw, the rod-like second section 43, 63 of the holding element 4, 6 in the inserted state protrudes beyond the second end of the bone screw.
Preferably, the holding element comprises an external thread for screwing into an internal thread section of the bone screw or the connection between the holding element and the bone screw is made in the form of an interference fit.
The bone screw according to preferred embodiments of the invention has an advantage that it can be immersed to the required location in the bone. Thus, it can fulfil its function as a tension element, without a part protruding from the bone (for example, see
The invention also provides a method for repairing a bone having a fracture. The method comprises providing a bone screw as described herein, fully introducing the bone screw into the bone and positioning the bone screw at the place of fracture, and attaching the holding element to a bone fixation device. Preferably, the bone fixation device comprises a plate or a marrow nail. In preferred embodiments, before attaching the bone fixation device, the method also includes removing the holding element from the bone screw, applying a filler material into the interior of the thread section of the bone screw and reconnecting the holding element to the thread section.
Bone cement or reagents can be placed precisely by means of the bone screw.
Further characteristics and advantages of the invention are shown by the description of embodiments with the aid of the attached drawings wherein:
a to
A bone screw according to a preferred embodiment of the present invention now will be described with reference to
The modular bone screw shown in
On the outer surface of the wall there is provided a so-called bone thread 22 which corresponds in shape to that of the usual bone screws that are well known to those skilled in the art. On the inner surface of the wall, the tubular thread section 2 comprises at each of its two ends an internal thread 23, 24, e.g., a metric thread.
The tip 3 includes a shank portion 32 and the actual tip portion 31 having tapered sides. In the embodiment shown, the shank 32 comprises an external thread which corresponds to the internal thread 23 of the tubular thread section 2 for connection of the tip 3 to the thread section 2, as shown in
The holding element 4 comprises at a first end a first section 41 with an external thread which corresponds to the internal thread 23 of the tubular thread section 2 for connection of the holding element 4 to the thread section 2, as shown in
The holding element further comprises a rod-like section 43 which, as shown in
At its free end opposite the section 41, the holding element comprises an engagement element for a screw-in tool in the form of a hexagon shaped outer surface 44. However, the engagement element can be a structure that corresponds to any standard or non-standard driving tool for turning the bone fixation assembly.
The thread section 2, the tip 3 and the holding element 4 are formed preferably from titanium. However, any other biocompatible material can be used providing it has sufficient strength properties for use in a bone fixation application.
Use of the bone screw now is described with reference to
The fixation device is assembled, first, by screwing the tip 3 into the tubular thread section 2. Next, the holding element 4 is screwed into the thread section 2. As a result the structure shown in
Next, as shown in
In a further step, such as depicted in
The immersed bone screw serves as a reinforcement for the bone trabeculae weakened e.g. by osteoporosis. Through the recesses 21, the bone can grow into the screw. Stabilization of the fracture point of the weakened bone, thus, takes place as a combination of tension relief and fusion.
c illustrates the use of an outer fixation plate 81 as a fixation device 80 for fixation of the bone. Here, after injection of the filler material, if desired, the holding element 4 is screwed back into the thread section 2. The plate 81 with a recess (or through-hole) 82 is applied to the bone in such a way that the free end of the holding element 4 extends through the recess 82, and the plate 81 is rigidly connected to the bone screw 1 by screwing a nut 83 onto the external thread of the rod-like section 43 of the holding element 4. Further, bone screws 84 can be added to serve for a stable fixation of the plate 81 to the bone. The rod-like section 43 the holding element 4 preferably can be shortened to a finished length such that it does not protrude substantially beyond the nut 83.
A second embodiment of the modular bone screw 1 shown in
All other characteristics of this second embodiment match the first embodiment, and use of the device also takes place in the same way. This embodiment has the advantage that, even without unscrewing the holding element and even after installation is completed, a medicinal reagent can be introduced precisely to the desired location, e.g., by means of a syringe.
A third embodiment of the modular bone screw 1 shown in
A fourth embodiment shown in
The thread section 12, like the thread section 2 described in the first embodiment, comprises in its circumferential wall a plurality of recesses 21 and, on its outer surface of the wall, a bone thread 22. The section 13, on the other hand, is formed without bone thread. In this embodiment as shown, no recesses are formed in the wall in the section 13, which is free of bone thread. However, in certain preferred embodiments, recesses can be provided here, too, to provide further open mesh structure.
On the inner surface of the wall, the tubular screw section 11 comprises preferably at each of its two ends a metric internal thread 14, 15. The axial length of the section 13 (free of bone thread) is selected as a function of the place of use of the bone screw in such a way that the thread section 12 can be immersed to the required location in the bone. The axial length of the section 13 also can be longer than the axial length of the thread section 12.
The tubular screw section 11 is preferably formed from titanium. However, as stated above, any other biocompatible material having suitable strength properties can be used as well.
Use of the embodiment shown in
The embodiments described are only examples. Thread section, tip and holding element can be combined with each other not only as described in the embodiments, but in many ways by those skilled in the art after considering this disclosure. This modular structure allows adaptation to the most varied demands.
As shown in
The holding element 4, 6 can be formed such that the rod-like section 43, 63 comprises an external thread over its whole length as in the first embodiment, or only in a partial section as in the second embodiment. Alternatively, the rod-like section 43, 63 can also be formed completely without an external thread. Further, the diameter of the rod-like section 43, 63 can, as shown in
The holding section 14 according to the fourth embodiment too can have an external thread over its whole length or only in a partial section as in the second embodiment.
Instead of the outer hexagon section 44, 64, any other shape or type of engagement element for cooperating with a screw-in tool can be provided. Thus, the free end of the holding element 4, 6 alternatively can have, e.g., a recess for an Allen type wrench, too. The holding element 4, 6 also can be designed without an engagement element 44, 64 for a screw-in tool. The bone screw is then screwed in with a suitable tool which engages with the rod-like section 43.
The thread sections 23, 24, 41, 43, 61, 66, 14 and 15 have been described sometimes herein as metric in the embodiments. Alternatively, the threads can be inch threads or in some other suitable form.
Instead of the internal threads 23 and 24 or 14 and 15, a single internal thread which extends over the whole length of the thread section 2 or screw section 11 can be formed (this also can be applied for holding element sections that are a tubular structure). This has the advantage that the tubular material can be manufactured in long pieces and cut to any length, so that bone screws of the desired length can be made at the site of use, and so stockkeeping of various lengths of components can be substantially reduced.
As an alternative to the diamond-shaped recesses 21, other shapes of opening can be provided, in particular, round openings.
The tip 3, 5, 7 can be connected to the thread section 2 or 12 not only by screwing in. Alternatively, the first end of the thread section 2 or 12 and the shank 32, 52, 72 of the tip 3, 5, 7 can be formed without the respective threads and defined in their dimensions such that the tip 3, 5, 7 is rigidly connected to the thread section 2 or 12 in a snug fit or interference fit. Further, alternatively, the tip 3, 5, 7 can be connected rigidly to the thread section 2 or 12 in any other way. The tip and thread section also can be formed integrally in one piece.
As shown in
As an alternative to the procedure shown in
The screw can also remain in the immersed state without being connected to a plate via a holding element.
The combination of tension relief and fusion described above with reference to
The bone screw 1, 10 is not suitable only, as shown in the practical examples, for introduction into long bones. It can be used e.g. in vertebrae or other bones as well.
The holding element 4, 6 can be used not only in combination with the tubular thread section 2, but also with any other form of bone screws which can be, e.g., solid or cannulated. The connection to other forms of bone screws is made in the same or a similar way as the connection to the thread section 2 described above.
This invention has been described in detail including the preferred embodiments thereof. However, it will be appreciated that those skilled in the art, upon consideration of this disclosure, may make modifications and improvements within the spirit and scope of this invention.
Number | Date | Country | Kind |
---|---|---|---|
102 46 386 | Oct 2002 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1394608 | Davern | Oct 1921 | A |
1988813 | Seguin | Jan 1935 | A |
2993950 | Forman | Jul 1961 | A |
4022099 | Ballantyne | May 1977 | A |
4456005 | Lichty | Jun 1984 | A |
4484570 | Sutter et al. | Nov 1984 | A |
4653489 | Tronzo | Mar 1987 | A |
4705027 | Klaue | Nov 1987 | A |
4708132 | Silvestrini | Nov 1987 | A |
4940467 | Tronzo | Jul 1990 | A |
5030052 | Anderson et al. | Jul 1991 | A |
5057111 | Park | Oct 1991 | A |
5092866 | Breard et al. | Mar 1992 | A |
5100405 | McLaren | Mar 1992 | A |
5167664 | Hodorek | Dec 1992 | A |
5549610 | Russell et al. | Aug 1996 | A |
5645546 | Fard | Jul 1997 | A |
5713901 | Tock | Feb 1998 | A |
5964761 | Kambin | Oct 1999 | A |
6048343 | Mathis et al. | Apr 2000 | A |
6053916 | Moore | Apr 2000 | A |
6402757 | Moore, III et al. | Jun 2002 | B1 |
6471707 | Miller et al. | Oct 2002 | B1 |
6517543 | Berrevoets et al. | Feb 2003 | B1 |
6755834 | Amis | Jun 2004 | B2 |
6902567 | Del Medico | Jun 2005 | B2 |
20010000186 | Bramlet et al. | Apr 2001 | A1 |
20010021852 | Chappius | Sep 2001 | A1 |
20010049528 | Kubota | Dec 2001 | A1 |
20020055783 | Tallarida et al. | May 2002 | A1 |
20040015172 | Biedermann et al. | Jan 2004 | A1 |
20040172030 | Tipirrneni | Sep 2004 | A1 |
20050101958 | Adam | May 2005 | A1 |
20050143735 | Kyle | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
199 49285 | May 2001 | DE |
100 55 891 | Jun 2002 | DE |
1 222 899 | Jul 2002 | EP |
2 820 630 | Aug 2002 | FR |
04-506615 | Nov 1992 | JP |
2001-17440 | Jan 2001 | JP |
WO 8803781 | Jun 1988 | WO |
WO 0238054 | May 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040122431 A1 | Jun 2004 | US |