1. Technical Field
The present disclosure relates to bone anchors and, more particularly, to pedicle screw assemblies made from non-uniform materials.
2. Background of Related Art
It is a common surgical procedure to stabilize and fix bones and bone fragments in a particular spatial relationship with fixation devices to correct the location of skeletal components due to injury or disease. This can be accomplished by using a number of fixation devices such as bone pins, anchors, or screws placed in bone across a discontinuity (e.g., a fracture) in the bone, bone fragments, adjacent vertebrae, or joints. These fixation devices can be connected by a rod to maintain a desired spatial relationship. In some cases, these fixation devices may be permanently implanted. In other cases, these fixation devices may be implanted only as a temporary means of stabilizing or fixing the bones or bone fragments. It is also common that fixation devices that are intended to be permanently implanted require subsequent modifications as the dynamics of a patient's condition warrant.
Spinal fixation apparatuses are widely employed in surgical procedures for correcting spinal injuries and diseases. A common desire for spine surgery, especially for scoliosis surgeries, is the need for a stronger, stiffer rod, typically made of Cobalt Chrome (CoCr). These rods provide the needed strength to correct the deformity, but due to the strength of typical spine screws, the rod may dislocate from the spinal fixation device under bodily forces experienced after implantation. Such dislocation can be caused either by axial slip, i.e., sliding of the rod end through the spinal fixation device along the axis of the rod, or radial displacement of the rod out of the screw. Either type of dislocation can happen with any type of spinal fixation device, including both taper lock style screws and set screw style screws.
To prevent these potential problems, a stronger housing that could withstand the increased force required to lock and unlock the spinal rod is needed. However, while the housing is desirably made of a stronger and stiffer material, the screw itself may need to be formed of a less rigid, bone interface material. Specifically, a screw made of a titanium alloy such as Ti-6Al-4V has been shown to be very compatible as a bone interface material.
In accordance with the present disclosure, a bone anchor is provided. The bone anchor includes a screw and a housing assembly. The screw has a threaded shank portion and a head portion. The housing assembly has a passageway extending therethrough. A saddle is defined within the proximal end of the housing assembly and is configured to retain a portion of a rod therein. The distal end of the housing assembly is configured to securely engage the head portion of the screw such that the screw is rotatable and/or pivotable with respect to the housing. At least a portion of the screw and at least a portion of the housing assembly are made of different material.
In one embodiment, the entire housing assembly is made from cobalt chrome. In another embodiment, only a portion of the housing assembly is made from cobalt chrome. The entire screw may be made from titanium or another biocompatible material.
In another embodiment, the housing assembly includes a housing part, a coupling, an insert, and a set screw. The housing part includes two proximally extending fingers defining the saddle therebetween. The coupling is disposable within the housing part and is configured to engage the head portion of the screw. The insert is configured to engage the housing part to secure the coupling and the head portion of the screw therebetween. The set screw is configured to engage the housing part and to secure the screw in position.
In yet another embodiment, the housing assembly includes a collet, a coupling, and a pin. The collet has an opening extending therethrough and includes two proximally extending fingers defining the saddle therebetween. The collet is configured to accept, through its distal end, the head portion of the screw. The head portion of the screw is partially insertable into the opening in the collet. The coupling also has an opening extending therethrough. The coupling is configured to pass proximally over the shank portion of the screw to ultimately surround the collet, thereby securing the head portion of the screw between the collet and the coupling. The pin is configured to engage the collet with the coupling to thereby secure the collet and the coupling to each other.
Embodiments of the presently disclosed bone screw assembly are described herein with reference to the accompanying drawings, wherein:
Turning to
With reference now to
As shown in
Continuing with reference to
The insert 150, as shown in
Referring again to
As previously discussed, when the coupling 130 is seated in the recess 120 of the pedicle screw 110, rotation of the coupling 130 causes a corresponding rotation of the pedicle screw 110, thereby allowing the pedicle screw 110 to be inserted and removed from a target location. The interaction of coupling 130 and recess 120 in screw 110 permits the screw 110 to be driven in response to a driver tool (not shown) which engages the coupling 130 even if the screw 110 is disposed at an angle relative to the coupling 130. Thus, the screw shaft 116 and driving tool (not shown) can be out of alignment during insertion of the screw 110 into bone.
During assembly, the coupling 130 and the pedicle screw 110 are inserted into the housing 170. The distal opening 171 in the housing 170 has a greater diameter than the outer diameters of either the head 118 or the coupling 130. The insert 150 is then slid over the shank 116 of the pedicle screw 110 and threaded, or wedged, onto the distal end 170a of the housing 170. The opening 154 of the insert 150 has a diameter that is less than that of the head 118 of the pedicle screw 110, thereby inhibiting the pedicle screw 110 from passing through the opening 154 of the insert 150. By threading the insert 150 onto the distal end 170a of the housing 170, the pedicle screw 110 and the coupling 130 are retained in the housing 170 and thereby form the assembled bone anchor 100. The pedicle screw 110 is rotatable and pivotable in relation to the housing 170.
After the bone anchor 100 is positioned at a desired location in a patient, a rod member (not shown) is placed in the saddle 176 and is retained within the housing 170 using a locking, or set screw 190. As the set screw 190 is tightened against the rod member (not shown), the rod member presses against the coupling 130, thereby pressing the head 118 of the pedicle screw 10 against the inner surfaces of the insert 150 and securing the pedicle screw 110 in position (i.e. locking the screw in place).
In accordance with another embodiment of the present disclosure, as shown in
As shown in
In addition, the body portion 272 of inner collet 270 may include a plurality of grooves (not explicitly shown) that extend to the distal end of the body portion 272 and which are open at the distal end of the body portion 272. The grooves extend vertically into each of the wings 276, and define front and rear portions of the body portion 272. As configured, the grooves permit the front and rear sections of the body portion 272 to flex relative to one another along the axis defined by the slot 273. The body portion 272 also includes a plurality of notches 277 that are open at the distal end of the body portion 272 and extend towards the wings 276. The notches 277, in combination with the slot 273 and the grooves (not shown), allow arcuate sections of the body portion 272 to flex inwardly and outwardly in response to compressive and tensile forces applied to the inner collet 270.
With continued reference to
Referring now to
The bone anchors 100, 200, described above, may be composed of a range of materials. Biocompatible materials include, but are not limited to, titanium, titanium alloys, stainless steel, cobalt chrome and cobalt chrome alloys, ultra high molecular weight polyethylene, PEEK (polyetheretherketone), and other polymers such as polycarbonate urethane may be used. In one particular application, spinal surgery, strong, stiff rods, e.g., Cobalt Chrome (CoCr) rods, are used to help correct the spinal deformity. However, due to the strength of these rods as well as the spine screws used, the housing portion of the screw assembly may splay open or allow the rod to slip or turn in the saddle.
In accordance with the present disclosure, the housing, or saddle portion, is formed from a strong material that provides a greater holding force on the rod. CoCr is a preferred material for forming the housing portion due to its strength and stiffness. However, while Cobalt Chrome (CoCr) is a preferred material for forming housing portion, it is not necessarily a preferred material for forming the shank portion of the screw because CoCr may be too rigid to be used as a bone interface material. Instead, the preferred material for forming the screw shank is titanium, due to its lower modulus of elasticity and biocompatibility properties.
Put generally, due to the different interactions between and forces acting on the different parts of the screw assembly, it is preferable to construct the screw shank and the housing from different materials, according to the requirements for those specific parts. Furthermore, the sub-components of the housing, e.g., the coupling, insert, and/or collet, need not be made from the same material. For example, while it is preferred that the housing and set screw be made from CoCr, the other sub-components of the housing assembly may be made from titanium, depending on the intended usage of the bone anchor.
More specifically, bone anchor 100 is formed from titanium or a titanium alloy while at least the housing part 170 is made of CoCr. The housing part 170 is made from CoCr, which reduces splay and helps prevent the rod from slipping within the saddle 178 due to the strength and stiffness of CoCr. Further, the strength of CoCr allows housing part 170 to have a reduced thickness, or volume, while maintaining the structural integrity of the housing part 170. The screw 110, on the other hand, is constructed from titanium, which facilitates insertion and retention within bone due to its elasticity and biocompatible properties. The coupling 130, the insert 150, and the set screw 190 may each be made from one of CoCr, titanium or, titanium alloy. In one embodiment of bone anchor 200, screw 210 is made from titanium or titanium alloy, while the inner collet 270 and the outer collet 250 are made from either cobalt chrome (CoCr), titanium, or titanium alloy. Other materials are also contemplated for forming the components of bone anchors 100, 200, such that different materials may be used to form any or all of the components based upon the desired characteristics, e.g., strength or elasticity, of the specific component.
It will be understood that various modifications may be made to the embodiments of the presently disclosed pedicle screw construct. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.
This application claims the benefit of and priority to U.S. Provisional Application Nos. 61/203,481 and 61/203,502, both of which were filed on Dec. 23, 2008, and are hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61203481 | Dec 2008 | US | |
61203502 | Dec 2008 | US |