Aksaci, D., et al., “Porous Fluorapatite/Spinel Osteoceramic For Bone Bridges”, Phosphorus: Studies in Inorganic Chemistry, vol. 6:283-301, ( 1985 ). |
McGee, et al., “General Requirements for A Successful Orthopedic Implant”, pp. 69-82. |
Ito, Kuniomi, et al., “Osteogenic Activity of Synthetic Hydroxylapatite With Controlled Texture-on The Relationship Of Osteogenic Quanity t. . . ”, CRC Handbook Of Bioactive Ceramics, vol. 11:39-44. |
Johnson, Kenneth D. et al., “Porous Ceramics As Bone Graft Substitutes In Long Bone Defects . . . ”, J. Orthop. Rev., vol. 14(13):351-369, (1996). |
“Bone Grafts And Bone Substitutes”, Orthopedic Network News, vol. 6(4):7-9, (1995). |
Constantz, Brent R., et al., “Skeletal Repair By In Situ Formation Of The Mineral Phase Of Bone”, Science, vol. 267dd: 1796-1799, (1995). |
Chaki T.K. et al., “Strengthening Behavior Of Hydroxyapatite-Silver Composite”, Bioceramics: Materials And Applications, pp. 235-244. |
Damien, C. et al., “Bone Graft and Bone Graft Substitutes: A Review Of Current Technology and Applications”, J. App. Biomat., vol. 2:187-208, (1991). |
Ioku, Koji, et al., “Dense/Porous Layered Apatite Ceramics Prepared By HIP Post-Sintering”, J. Mat. Science, pp. 1203-1204, (1989). |
Wu, Jenn-Ming, et al., “Sintering Of Hydrowylapatite-Zirconia Composite Materials”, J. Science, pp. 3771-3777, (1988). |
Li J., et al., “High-Strength Biofunctional Zirconia: Mechanical Properties and Static Fatigue Behavior Of Zirconia-Apatite Composites”, J. Bio. Sci. Mat., pp. 50-54, (1993). |
Suda, Akio, et al., “Biocompatibility Of Zirconia Dispersed Hydroxyaptite Ceramics”, J. Jap. Orthop. Assoc., vol. 64:249-258. |
Takaoka, Kunio, et al., “Ectopic Bone Induction On And In Porous Hydroxyapatite Combined With Collagen And Bone Morphogenetic Protein”, Clinical Orthopedics, No. 234:250-254, (1988). |
Mattioli-Belmonte, et al., “Osteoinduction In The Presence Of Chitosan-Coated Porous Hydroxyapatite”, J. Bio. Comp. Poly., vol. 10:249-257, (1995). |
Wan, Andrew, et al., “Hydroxyapatite Modified Chitin As Potential Hard Tissue Substitute Material”, J. Bio. Mat. Res., vol. 38(3):235-241, (1997). |
Zhang, Qi-Qing, “Porous Hydroxyapatite Reinforced With Collagen Protein”, Marcel Dekker, Inc., pp. 693-702, (1996). |
Gao, T., et al., “Enhanced Healing Of Segmental Tibial Defects In Sheep By A Composite Bone Substitute Composed of Traicalcium Phosphate Cylinder, Bone . . . ”, J. Bio. Mat. Res., vol. 32:505-512, (1996). |
Verheyen, et la., “Hydroxylapatite/Poly (L-Lactide) Composites: An Animal Study On Push-out Strengths And Interface Histology”, J. Bio. Mat. Res., vol. 27:433-444, (1993). |
Tenhuisen, K. et al., “Formation And Propertied Of A Synthetic Bone Composite: Hydroxyapatite-Collagen”, J. Bio. Mat. Res., vol. 29:803-810, (1995). |
Muller-Mai, C. et al., “Nanoapatite And Organoapatite Implants In Bone: Histology And Ultrastructure Of The Inerface”, J. Bio. Mat. Res., vol. 29:9-18, (1995). |
Annals of NY Academy of Sciences, vol. 523, Jun. 10, 1988, “Mechanical And Bone Ingrowth-Properties Of A Polymer-Coated Porous Synthetic Coralline Hydroxyapatite Bone Graft Material”, pp. 157-172, A. F. Tencer, P. L . . Woodard, J. Swenson and K. L. Brown. |
Tian, Y., “A Novel Chondrocyte-Seeded Hydroxyapatite-Collagen Scaffold For Cartilage Repair”, Fifth World Biomaterials Congress, (1996). |