Bone transport external fixation frame

Information

  • Patent Grant
  • 9101398
  • Patent Number
    9,101,398
  • Date Filed
    Thursday, August 23, 2012
    11 years ago
  • Date Issued
    Tuesday, August 11, 2015
    8 years ago
  • CPC
  • Field of Search
    • US
    • 606 053-059
    • CPC
    • A61B17/6466
    • A61B17/62
    • A61B17/66
    • A61B17/60
    • A61B17/6416
    • A61B17/645
    • A61B17/6441
    • A61B17/6458
    • A61B17/6425
    • A61B17/8875
    • A61B17/1739
    • A61B17/484
    • A61B17/64
    • A61B17/663
    • A61B17/6475
    • A61B17/7077
    • A61B2017/292
  • International Classifications
    • A61B17/00
    • A61B17/62
    • Term Extension
      169
Abstract
Disclosed herein are systems and methods for manipulating the orientation of a plurality of bone fragments with respect to one another. A bone transport frame including first and second rings, a plurality of elongate struts, and a plurality of ring transport assemblies for orienting a first bone segment with respect to a second bone segment is disclosed. A third ring may be included in the bone transport frame for orienting a third bone segment with respect to the first and second bone segments. Manipulation of an adjustable member of the bone transport frame can transport a ring in either a proximal or distal direction with respect to other rings of the frame. Manipulation of another adjustable member of the bone transport frame can translate a central axis of one of the rings either toward or away from the central axes of the plurality of elongate struts.
Description
FIELD OF THE INVENTION

The present invention relates to systems and methods for manipulating the orientation of a plurality of bone fragments with respect to one another, and in particular it relates to external fixation devices in which rings thereof may be manipulated with respect to one another via bone transport assemblies.


BACKGROUND OF THE INVENTION

External fixation frames may be used to correct skeletal deformities using the distraction osteogenesis process. The Ilizarov external fixation devices, for example, are widely used for this purpose. The Ilizarov-type devices may be used to translate bone segments by manipulating rings connected to each bone segment.


External fixation devices generally utilize a plurality of threaded rods fixated to through-holes in the rings to build the frame. In order to build a desired frame, these rods generally have to have different lengths. A problem that may arise out of this is that such external fixation frames generally do not allow significant manipulation of what may be referred to as a transport ring without disassembling and then reassembling the frame or adding new devices. These systems generally require removal of the entire frame in order to perform reconstruction.


Once the frame is installed, the patient or surgeon generally moves the rings or percutaneous fixation components manually or mechanically by adjusting a series of adjustment mechanism, such as nuts, for example. A traditional method of adjusting the frame height generally requires the surgeon to loosen an individual nut gradually while tightening another other nut in order to secure the frame. These position adjustments must be done where the nuts are secured, making it very difficult for the patient to make the required daily adjustments with consideration of stable fixation in mind. Other devices use different techniques to adjust the effective length of the rods, but all must be adjusted somewhere between the ends, offering limited access for the patient.


As adjustments made to external fixation devices are often a daily task for the patient, easy access to frame adjustment mechanisms would be beneficial for the patient.


BRIEF SUMMARY OF THE INVENTION

A first aspect of the present invention is a bone transport frame including first and second rings, a plurality of elongate struts, and a plurality of ring transport assemblies. The first and second rings each have upper and lower ring surfaces and a central axis that is perpendicular to the upper and lower ring surfaces. The plurality of elongate struts each having a central axis and are coupled to the first and second rings, the plurality of elongate struts each include a first adjustable member. The plurality of ring transport assemblies are adapted to rotatably couple the second ring to the plurality of elongate struts, the plurality of ring transport assemblies each include a second adjustable member. Preferably, rotation of the first adjustable member transports the second ring in either a proximal or distal direction with respect to the first ring, and rotation of the second adjustable member translates the central axis of the second ring either toward or away from each central axis of the plurality of elongate struts.


In accordance with one embodiment of this first aspect of the present invention, the bone transport frame includes a third ring having upper and lower ring surfaces and having a central axis that is perpendicular to the upper and lower ring surfaces. The third ring is also coupled to the plurality of elongate struts and is located distally to the second ring, the second ring being located distally to the first ring.


In accordance with another embodiment of this first aspect, the first, second and third rings each include a plurality of through-holes that extend through the upper and lower ring surfaces.


In accordance with yet another embodiment of this first aspect, the bone transport frame further includes a plurality of pin retention members and bone pins adapted to couple the first, second, and third rings to a first, second and third bone fragments, respectively. The plurality of pin retention members are operatively coupled to the plurality of through-holes of the first, second and third rings.


In accordance with still yet another embodiment of this first aspect, the bone transport frame further includes a plurality of wire retention members and bone wires adapted to couple the first, second and third rings to the first, second and third bone fragments, respectively. The plurality of wire retention members are operatively coupled to the plurality of through-holes of the first, second, and third rings.


In accordance with still yet another embodiment of this first aspect, the bone transport frame further includes a plurality of flange extension members adapted to couple the first ring to the plurality of elongate struts, wherein each of the plurality of flange extension members include a first through-hole adapted to receive a first coupling member for coupling a first end of the plurality of flange extension members to the first ring and a second through hole adapted to receive a proximal end portion of the plurality of elongate struts. Each of the plurality of flange extension members further comprises a third through-hole adapted to receive a second coupling member for rigidly coupling the first end of the plurality of flange extension members to the first ring.


In accordance with still yet another embodiment of this first aspect, the first adjustable member of each of the plurality of elongate struts is located at the proximal end portion of the plurality of elongate struts. The first adjustable member of each of the plurality of elongate struts is adapted to make incremental adjustments, each incremental adjustment corresponding to a clinically optimal adjustment length. The first adjustable member of each of the plurality of elongate struts is adapted to record each incremental adjustment.


In accordance with still yet another embodiment of this first aspect, the plurality of elongate struts further includes a threaded shaft and a position adjustment member coupled to each of the plurality of ring transport assemblies, each position adjustment member adapted to transport along a length of the threaded shaft in the proximal and distal directions. Each position adjustment member has a semi-locked position such that the location of each position adjustment member on the threaded shaft is constant when the threaded shaft is not being rotated in either clockwise or counterclockwise directions about the central axis of the plurality of elongate struts and has an unlocked position such that the location of each position adjustment member can transport in either the proximal or distal directions without the threaded shaft being rotated in either the clockwise or counterclockwise directions about the central axis of the plurality of elongate struts.


In accordance with still yet another embodiment of this first aspect, each of the plurality of ring transport assemblies further comprises a third adjustment member and wherein releasing the third adjustment member allows the second ring to move such that the central axis of the second ring is oblique to the central axis of each of the plurality of elongate struts.


In accordance with still yet another embodiment of this first aspect, the second adjustment member is coupled to the third adjustment member, the second adjustment member being adapted to incrementally translate the central axis of the second ring either toward or away from each central axis of the plurality of elongate struts.


A second aspect of the present invention is a method for transporting a second bone segment with respect to a first bone segment utilizing a bone transport frame including a first ring, a second ring, a plurality of ring transport assemblies, a plurality of first and second adjustment mechanisms, and a plurality of elongate struts. The method includes coupling the first bone segment to the first ring; coupling the second bone segment to the second ring; actuating the first adjustment mechanism to transport the second ring in either a proximal or distal direction along a central axis of at least one of the plurality of elongate struts; and actuating the second adjustable member to translate the second ring either toward or away from each of the plurality of elongate struts.


In accordance with one embodiment of this second aspect, the step of actuating the first adjustment mechanism comprises incrementally rotating the first adjustment mechanism such that the second ring transports a fixed length along the central axis of at least one of the plurality of elongate struts, each incremental rotation of the first adjustment mechanism corresponding to a first fixed length. The step of actuating the second adjustable member comprises incrementally rotating the second adjustment mechanism such that the second ring translates either toward or away from each of the plurality of elongate struts, each incremental rotation of the second adjustment mechanism corresponding to a second fixed length.


In accordance with another embodiment of this second aspect, the step of coupling the first bone segment to the first ring comprises coupling a first end of a bone pin to the first bone segment and coupling a second end of the bone pin to a pin retention member, the pin retention member being coupled to the first ring. The step of coupling the first bone segment to the first ring comprises coupling a first end of a bone wire to the first bone segment and coupling a second end of the bone wire to a wire retention member, the wire retention member being coupled to the first ring.


In accordance with yet another embodiment of this second aspect, the method further includes transporting a position adjustment member along a length of one of the plurality of elongate strut members in the proximal or distal direction, the position adjustment member being in an unlocked state and being coupled to one of the plurality of bone transport assemblies; and locking the position adjustment member into a semi-locked state such that the position adjustment member engages a thread of the elongate strut member and such that the position adjustment member is unable to transport along a length of the elongate strut member in the proximal or distal direction independently of rotation of the thread.


A third aspect of the present invention is a bone transport frame including first and second rings, a plurality of elongate struts, and a plurality of ring transport assemblies. The first and second rings each have upper and lower ring surfaces and a central axis that is perpendicular to the upper and lower ring surfaces. The plurality of elongate struts each having a central axis and are coupled to the first and second rings, the plurality of elongate struts each include a first adjustable member. Rotation of the first adjustable member transports the second ring in either a proximal or distal direction along the central axis of at least one of the plurality of elongate struts. The plurality of ring transport assemblies are adapted to rotatably couple the second ring to the plurality of elongate struts, wherein at least one of the plurality of ring transport assemblies comprises a flange and a ball joint, a first end of the flange being coupled to the second ring and a second end of the flange being coupled to one of the plurality of elongate struts, the ball joint enabling the second ring to rotate with respect to the plurality of elongate struts such that the central axis of the second ring is oblique to the central axis of each of the plurality of elongate struts.





BRIEF DESCRIPTION OF THE DRAWINGS

Other aspects, aims and advantages of the present invention will become more apparent on reading the following detailed description of preferred embodiments thereof, given by way of example, and with reference being made to the attached drawings, in which:



FIG. 1 is a perspective view of one embodiment of a bone transport frame in accordance with the present invention.



FIG. 2 is an isometric view of the bone transport frame of FIG. 1.



FIG. 3 is an exemplary view showing ring manipulation of the bone transport frame of FIG. 1 in accordance with the present invention.



FIG. 4 is a perspective view of a strut assembly of the bone transport frame of FIG. 1.



FIG. 5 is a perspective view of a top click mechanism and flange of the bone transport frame of FIG. 1.



FIG. 6 is a perspective view of the top click mechanism of FIG. 5 and a top click mechanism screw driver.



FIG. 7 is a vertical cross sectional view of the top click mechanism of FIG. 5 at A-A.



FIG. 8 is a horizontal cross sectional view of the top click mechanism of FIG. 5 at B-B.



FIG. 9 is a perspective view illustrating a bolted connection between a ring of the bone transport frame of FIG. 1 and the top click mechanism and flange of FIG. 5.



FIG. 10 is a perspective view illustrating the capability of the flange of FIG. 5 to be mechanically connected to either the top or bottom of a ring of the bone transport frame of FIG. 1.



FIG. 11 is a perspective view illustrating the capability of the strut assembly of FIG. 4 to be connected to either the inside or outside of a ring of the bone transport frame of FIG. 1.



FIG. 12 is a perspective view of one embodiment of a bone transport assembly of the bone transport frame of FIG. 1 in accordance with the present invention.



FIG. 13 is a perspective view illustrating the connection between a bone transport assembly and a ring of the bone transport frame of FIG. 1.



FIG. 14 is a vertical cross sectional view of the ring transport assembly of FIG. 12 at C-C.



FIG. 15 is a vertical cross sectional view of the ring transport assembly of FIG. 12 at D-D.



FIG. 16 is a vertical cross sectional view of the ring transport assembly of FIG. 12 at E-E.



FIG. 17 is a perspective view of a quick release and frame height adjustment mechanism and flange in accordance with an embodiment of the present invention.



FIG. 18 is a vertical cross sectional view of the quick release and frame height adjustment mechanism and flange of FIG. 17 at F-F.



FIG. 19 is vertical cross sectional view of the quick release and frame height adjustment mechanism of FIG. 17 at G-G, which is orthogonal to section F-F.



FIG. 20 is a perspective view of an alternate configuration of a quick release and frame height adjustment mechanism and flange of an embodiment of the present invention.



FIG. 21 is a vertical cross sectional view of the quick release and frame height adjustment mechanism and flange of FIG. 20 at H-H.



FIG. 22 is a perspective view of another embodiment of a bone transport frame in accordance with the present invention.



FIG. 23 is a perspective view of the bone transport assembly of FIG. 22.



FIG. 24 is a perspective view of another embodiment of a bone transport frame in accordance with the present invention.



FIG. 25 is a perspective view of a strut assembly of the bone transport frame of FIG. 24.



FIG. 26 is a perspective view illustrating possible movements of the bone strut assembly of FIG. 25.



FIG. 27 is a perspective view illustrating possible movements of the bone transport frame of FIG. 24.



FIG. 28 is a perspective view of the bone transport frame of FIG. 24 illustrating the position of a medial ring after transport has occurred.





DETAILED DESCRIPTION

Where possible, identical or similar elements or parts are designated by the same reference labels.


The term “proximal” and “distal” used throughout the present description correspond, respectively, to that end of the bone transport frame nearest the patient's heart and the end of the bone transport frame farthest from the patient's heart.


Referring to FIGS. 1-3, a first embodiment of a bone transport frame 100 is shown. The bone transport frame 100 generally comprises a plurality of bone transport assemblies 150, a plurality of bone transport rings 200, a plurality of strut assemblies 300, a plurality of top click mechanisms 400, and a plurality of devices that interact with different segments or portions of a bone.


Each of the bone transport rings 200 has a lower ring surface 280 and an upper ring surface 285 as well as an outer ring surface 290 and an inner ring surface 295. Upper 285, lower 280, inner 295, and outer 290 ring surfaces are substantially flat such that each ring has a vertical cross section that is substantially rectangular. In other embodiments, ring surfaces 280, 285, 290 and 295 need not be flat, but rather can take on various shapes to accommodate other devices such as clamps, for example.


Along the circumference of each of the bone transport rings 200 resides a plurality of through-holes 210 that extend through both the upper 285 and lower 280 ring surfaces. The through-holes 210 facilitate mechanical connections between the strut assemblies 300 and numerous other devices the surgeon may deem necessary during use of bone transport frame 100.


Such devices, for example, include bone-pin retaining devices 920 and bone-wire retaining devices 960. Due to the substantially flat contours of the ring surfaces and the plurality of through-holes 210, a user is provided significant flexibility in appropriately placing the bone-pin retaining devices 920 and bone-wire retaining devices 960 at desired locations. Thus, a user can couple any of these devices at numerous locations around the circumference of each of the bone transport rings 200 as well as coupling the devices at the upper 285 or lower 280 ring surfaces of the bone transport rings 200. Devices that can be used to facilitate interaction between the bone transport frame 100 and portions of a bone include, for example, a series of bone-wires 980 and bone-pins 940.


As shown in FIGS. 1 and 2, bone transport frame 100 includes a proximal ring 220, a medial ring 240, and a distal ring 260 wherein the proximal ring 220 is affixed to a first bone segment 820, the medial ring 240 is affixed to a second bone segment 840, and the distal ring 260 is affixed to a third bone segment 860. The first bone segment 820 and second bone segment 840 are typically separated by an osteotomy created in the bone to allow for osteogenesis as the second bone segment is incrementally transported toward the third bone segment 840. The second bone segment 820 and third bone segment 860 are typically separated by a deformity, such as a fracture or the like.


Strut assemblies 300 act to stabilize the bone segments and to provide for transportation thereof. FIGS. 1-3 show bone transport frame 100 including three strut assemblies 300, but in other embodiments more than three strut assemblies 300 may be utilized, such as four, five, six or more strut assemblies 300, for example.


Referring to FIGS. 4-8, the proximal end of each strut assembly 300 includes a top click mechanism 400. The top-click mechanism 400 includes a square head 410, a clamping nut 420, a clicking body 430, a driver body 440, a spring and ball system 460, and a series of retaining balls 450. The square head 410 provides an interface to mate with a screw driver 480 as shown in FIG. 6. The clamping nut 420 clamps a flange 700 to the top-click mechanism 400.


The driver body 440 is rigidly coupled to the strut 310 via a coupling member 415 and pin 417 so that rotation of the driver body 440 causes the strut 310 to rotate in unison with the driver body 440. Further, the driver body 440 has an elongated portion 445 which terminates at the proximal end thereof as at square head 410.


A clicking body 430 fits over the elongated portion 445 of the driver body 440 like a sleeve, for example. The clicking body 430 is axially retained by a series of retaining balls 450 that allow the clicking body 430 to rotate with respect to the driver body 440 without translating with respect to the driver body.


A cylindrical notch 470 is formed within the elongated portion of the driver body 440. Within this cylindrical notch 470 resides a detent means in the form of a spring and ball system 460, for example, which communicates with a series of recesses 490 on the internal portion of the clicking body 430 as shown in FIG. 8. The recesses or profile cuts 490 are created so that a portion of the ball of the spring and ball system 460 sits in and partially conforms to each of the profile cuts 490. Further, the profile cuts 490 are such that as the driver body 440 is rotated, the ball of the ball and spring system 460 is capable of translating to an adjacent profile cut 490 creating a clicking sound and feel.


Each profile cut 490 should be spaced and each strut 310 should be threaded so that each click corresponds with the strut 310 rotating a sufficient amount to cause the medial ring 240 to axially translate along the strut 310 a clinically optimal length. In one embodiment, the clinically optimal length is approximately 0.25 mm. At a rate of four “clicks” per day, the rate of osteogenesis between the first bone segment 820 and second bone segment 840 will be approximately 1 mm per day. However, a single “click” can correspond to different distances lengths, depending on the specific needs for a particular situation.


The ball and spring system 460 additionally functions to constrain the driver body 440 and strut 310 from the rotation provided by the retaining balls 450. Thus, the driver body 440 and strut 310 cannot rotate until a screw driver 480 applies the proper torque to the square nut 410 to overcome the force of the spring and ball system 460 and translate the ball to the adjacent profile cut 490.


An arrow 495 as shown in FIG. 8 that points distally is etched on the outer surface of the clicking body 430 and is lined up with a corresponding number 485 etched on the outer surface of the driver body 440. The numbers 485 are spaced such that each click corresponds to a rotation of the arrow 495 from a first number 485 to an adjacent number 485. Preferably, the numbers 485 are placed on the flat surfaces of an octagon and numbered 1-4 and 4-1. This numbering is done so that the patient can keep track of the preferred four adjustments per day, for example. The clicking mechanism as disclosed in U.S. Patent Application Publication No. 2012/0041439 is hereby incorporated by reference herein in its entirety.


As best seen in FIG. 5, a flange 700 extends from the outer surface of a portion of the clicking body 430 and is clamped against the clicking body 430 by a clamping nut 420. When the flange 700 is coupled to a transport ring 200, clamping the flange 700 will not only secure the flange to the clicking body 430 but also prohibits the clicking body 430 from rotating with the driver body 440 and strut 310.


The flange 700 includes anterior through-holes 740 and a medial through-hole 760 in a triangular pattern. The anterior through-holes 740 are the primary junctions for coupling the flange 700 to the bone transport rings 200. A single retaining pin 720 can be used to couple the flange 700 to the through-holes 210 of the transport rings 200. Alternately, both anterior through-holes 740 can be used, each in conjunction with a retaining pin 720, to provide an anti-torque function that prevents rotation of the flange 700 with respect to the transport ring 200. Other connection mechanisms besides retaining pints 720 can be used. For example, a user may choose to use a bolt and nut system in lieu of the retaining pin to secure the flange to the transport ring as seen in FIGS. 9-10.


The flat surfaces of the flange 700 and the transport rings 200 allow the flange 700 to be coupled to the upper 285 or lower 280 ring surfaces of the transport rings 200 as seen in FIG. 10. This provides the user with the option of coupling a bone transport ring 200 to the top of flange 700 or to the bottom of flange 700. Also, the dimensions of the flange 700 allow the strut assembly 300 to be coupled to the bone transport ring 200 such that the strut 310 can lie either inside the bone transport ring 200 or outside of the bone transport ring 200 as seen in FIG. 11.


Referring to FIGS. 12-16, there are shown different illustrations of a bone transport assembly 150 of the first embodiment of the invention. The bone transport assembly generally includes a ball and socket joint 500, a quick release mechanism 600, and a translational rod 1000.


The ball and socket joint 500 has a hyperbolic collar 595 that fits loosely over the distal end of the quick release mechanism 600 and is coupled to the quick release mechanism 600 by a locking nut 620 that substantially conforms to the shape of the hyperbolic collar 595. When the locking nut 620 is loosened, the ball and socket joint 500 is free to swivel about a three dimensional axis until the locking nut 620 is tightened, thereby locking the ball and socket joint 500 at its latest position. This feature enables the medial ring 240 to rotate so that it is no longer parallel with the proximal 220 and distal 260 rings, thus allowing the second bone segment 840 to be more precisely aligned with the third bone segment 860 as the distraction osteogenesis process progresses. An example of a medial ring 240 being non-parallel to a proximal 220 and distal 260 ring is shown in FIG. 3, for example. The ball and socket joint 500 also helps in aligning second bone segment 840 with third bone segment 860 during the docking process. A user can accomplish this by unlocking locking nut 620, marginally loosening the ball and socket joint 500, and rotating at least one of the top click mechanism 400 and translational short rod 1000 or translation bolt 730.


The hyperbolic collar 595 terminates on two sides with a first retaining ring 575 on one side and a second retaining ring 585 on the opposing side. The first retaining ring 575 connects and retains the translational rod 1000 to the ball and socket joint 500 by way of a series of retaining pins 565. The second retaining ring 585 provides the user the option to add an extra rod of any type, for example, to provide extra stiffness to the frame 100, if desired.


The translational rod 1000 has a structure similar to the click mechanism 400. One end of the translational rod 1000 terminates in a square head 1010 that can mate with a driving tool such as a screw driver. The translational rod 1000 includes a driving body 1040 with a cylindrical notch 1070 that houses a spring and ball system 1060. A first retaining ring 575 includes recesses or profile cuts 1090. As the driving body 1040 is rotated, the ball of the spring and ball system 1060 may move from one profile cut 1090 and into an adjacent profile cut 1090.


The driving body 1040 is threadedly mated to a connector piece 1085. The connector piece 1085 includes an aperture 1095. The connector piece 1085 can be fixed to a bone transport ring 200 by means of a fastener, such as a locking nut 1097 that extends through a through-hole 210 of a bone transport ring 200 and further through the aperture 1095 of the connector piece 1085.


When the square head 1010 of the translational short rod 1000 is rotated, for example by a screw driver, the driving body 1040 rotates. As the driver body 1040 rotates, the spring and ball system 1060 provides feedback to the user each time the ball moves into one of the profile cuts 1090 of the first retaining ring 575. The rotation of the driver body 1040 forces the outer body 1080 to move axially. The axial movement of the outer body 1080 is caused by the inability of the outer body 1080 to rotate, due to the rigid connection to the connecting piece 1085 and the bone ring 200. The axial movement of the outer body 1080 causes the connector piece 1085 to move in conjunction with the outer body 1080. Finally, the movement of the connector piece 1085 moves the bone transport ring 200 to which the connector piece 1085 is attached, allowing translation of the bone transport ring 200 towards or away from strut assembly 300. This translation of the medial ring 240 may be useful when “docking” the bone. The docking phase is reached at the end of the transport phase, when the second bone segment 840 reaches the third bone segment 860. Sometimes the two bone segments do not align well and then it becomes advantageous to translate the medial ring 240 to correct the alignment between the second bone segment 840 and the third bone segment 860.


Quick release mechanism 600 of bone transport assembly 150 allows for quick adjustment of the medial ring 240 compared to the finer adjustment by the top click mechanism 400. It should be noted that the quick release mechanism 600 is only intended to be used prior to fixation of the bone transport frame 100 to the patient. Because the distal ring 260 includes an anti-torque quick release mechanism 605, which is substantially similar to the quick release mechanism 600, the workings of the quick release mechanism 600 are omitted here and are described with reference to the anti-torque quick release mechanism 605.


Referring to FIGS. 17-21, the distal portion of the strut assembly 300 generally includes a flange 700, an anti-torque quick release mechanism 605, and a tapered nut 630.


The anti-torque quick release mechanism 605 has an unlocked state, a semi-locked state, and a locked state. In the unlocked state, the anti-torque quick release mechanism 605, flange 700 and attached distal ring 260 are free to move vertically up or down the strut 310 regardless of rotation of the strut 310. This allows for quick adjustment of the distal ring 260 prior to fixing the bone transport frame 100 to the patient's bone. The quick release mechanism 600 provided with the medial ring 240 has the same feature.


In the semi-locked state, the anti-torque quick release mechanism 605 travels vertically up or down the strut 310 with rotation of the strut 310 by the top click mechanism 400. To switch from the unlocked state to the semi-locked state, the user rotates the anti-torque quick release mechanism 605. To accomplish this, the body of the anti-torque quick release mechanism 605 is pushed proximally, compressing spring 670. This moves locking pin 680 into a position in groove 690 which allows for rotation of the body of the anti-torque quick release mechanism 605. Rotation is continued until the locking pin 680 traverses to the opposite side of the groove, allowing the spring to decompress. Once rotated, the bearings 660 engage the thread of the strut 310, disabling the anti-torque quick release mechanism 605 from freely travelling vertically up or down the strut 310. Rather, it will move vertically up or down the strut 310 only with rotation of the strut 310 by virtue of rotation of the top click mechanism 400. It should be noted, however, that this function is only desirable for the quick release mechanism 600 coupled to the bone transport assembly 150, and not for the anti-torque quick release mechanism 605.


The anti-torque quick release mechanism 605 should only be configured in the unlocked state or the locked state, and not the semi-locked state. To switch from the semi-locked state to the locked state, the tapered nut 630 is threaded onto sleeve 640. Because of the taper inside tapered nut 630, the collet 635 at the tip of sleeve 640 bends inward and creates friction with the strut 310 when the tapered nut 630 is tightened. This friction causes the tapered nut 630, sleeve 640 and strut 310 to move as a single unit, rotating together with the strut 310. This rotation is possible because of the retaining balls 650, which allow these pieces to rotate inside the flange 700. The flange 700 is connected to the distal ring 260. Because there is no thread at the interface between the flange 700 and the combination tapered nut 630, sleeve 640 and strut 310, the distal ring 260 is not driven vertically up or down the strut 310 when it is rotated by actuation of the top click mechanism 400. The quick release mechanism 600, on the other hand, has no anti-torque feature and thus can only be in the unlocked or semi-locked state. When the quick release mechanism 600 is in the semi-locked state, the medial ring 240 thus can be driven vertically up or down the strut 310 allowing for transport.


The bearings 660, in addition to enabling the switch from the unlocked to the semi-locked positions, take much of the axial load when that load moves from the strut 310 to the sleeve 640 (e.g. when the patient is standing). The bent collet 635 alone may not be able to take all that axial loading. A screw 695 is provided at the far distal end of the strut 310 to prevent the anti-torque quick release mechanism 605 from sliding off the strut 310 when it is in the unlocked state and the distal ring 260 is being adjusted.


Referring to FIGS. 22-23, a second embodiment of a bone transport frame 100′ is shown. The bone transport frame 100′ generally includes a plurality of bone transport assemblies 150′, a plurality of bone transport rings 200 and a plurality of strut assemblies 300.


One difference between the second embodiment shown in FIGS. 22-23 and the first embodiment shown in FIGS. 1-3 is that the bone transport assembly 150′ coupled to the medial ring 240 includes a different structure such that the gradual translation of the medial ring 240 does not occur by way of a clicking mechanism.


The second embodiment of the bone transport assembly 150′ comprises a quick release mechanism 600, a ball jointed flange 705, a series of hinge pin and bracket assemblies, a series of nuts, and a translational bolt.


The ball jointed flange 705 has a hyperbolic collar 595 much like the hyperbolic collar 595 seen on the ball joint 500 of the first embodiment. This ball jointed flange 705 is also coupled to the quick release mechanism 600 by means of the same locking nut 620. However, rather than terminating with a first retaining ring 575 and a second ring 585, the hyperbolic collar 595 terminates with a flange like that disclosed elsewhere herein. A hinge pin 715 is coupled to the ball jointed flange 705 through the medial through-hole 760 and is axially retained by a series of nuts 725, but is capable of rotation within the medial through-hole 760. The hinge pin 715 terminates at the proximal end with a bracket 710. Another hinge pin 715 and bracket 710 is coupled to a through-hole 210 of the medial ring 240. A translating bolt 730 connects both of the hinge pin 715 and bracket 710 assemblies and is retained by a series of nuts 725. The hinged connection in combination with the translating bolt 730 allows the surgeon to translate the medial ring 240 toward or away from the struts 310. This is accomplished by rotating the translating bolt 730. Furthermore, the ball jointed flange 705 allows for swivel about a three dimensional axis. These features combine to provide the medial ring 240 with six degrees of freedom.


Referring to FIGS. 24-28, there is shown a third embodiment of a bone transport frame 100″. A difference between the bone transport frame 100″ shown in FIGS. 24-28 and previous embodiments is that medial ring 240 does not have the capability of horizontal translation.


Structurally speaking, the embodiment shown in FIGS. 24-28 is obtained by taking the embodiment of the bone transport frame 100′ shown in FIGS. 22-23, removing the translating bolt 730 and accessories, and directly attaching the ball jointed flange 705 to the medial ring 240. As disclosed elsewhere herein, the ball jointed flange 705 can connect to the medial ring 240 by virtue of a retaining pin 720 that extends through both a through-hole 210 of the medial ring 240 and through an anterior through-hole 740 of the ball jointed flange 705. This permits the medial ring 240 to move such that it is no longer parallel with proximal ring 220 and distal ring 260, but there are no mechanisms for translating medial ring 240 toward or away from the struts 310 as shown in FIG. 28.


Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims
  • 1. A bone transport frame comprising: first and second rings each having upper and lower ring surfaces and each having a central axis that is perpendicular to the upper and lower ring surfaces;a plurality of elongate struts each having a central axis, the plurality of elongate struts having a fixed parallel relationship to one another and being coupled to the first and second rings, the plurality of elongate struts each including a first adjustable member; anda plurality of ring transport assemblies adapted to rotatably couple the second ring to the plurality of elongate struts, the plurality of ring transport assemblies each including a second adjustable member,wherein rotation of the first adjustable member transports the second ring in either a proximal or distal direction with respect to the first ring,wherein rotation of the second adjustable member translates the central axis of the second ring either toward or away from each central axis of the plurality of elongate struts, andwherein the plurality of elongated struts remain in the fixed parallel relationship to one another during adjustment of the second ring.
  • 2. The bone transport frame of claim 1, further comprising: a third ring having upper and lower ring surfaces and having a central axis that is perpendicular to the upper and lower ring surfaces,wherein the third ring is coupled to the plurality of elongate struts,wherein the third ring is located distally to the second ring, andwherein the second ring is located distally to the first ring.
  • 3. The bone transport frame of claim 1, wherein the first and second rings each include a plurality of through-holes that extend through the upper and lower ring surfaces.
  • 4. The bone transport frame of claim 3, further comprising a plurality of pin retention members and bone pins adapted to couple the first and second rings to a first bone fragment and a second bone fragment respectively.
  • 5. The bone transport frame of claim 4, wherein the plurality of pin retention members are operatively coupled to the plurality of through-holes of the first and second rings.
  • 6. The bone transport frame of claim 4, further comprising a plurality of wire retention members and bone wires adapted to couple the first and second rings to the first and second bone fragments respectively.
  • 7. The bone transport frame of claim 6, wherein the plurality of wire retention members are operatively coupled to the plurality of through-holes of the first and second rings.
  • 8. The bone transport frame of claim 1, further comprising: a plurality of flange extension members adapted to couple the first ring to the plurality of elongate struts,wherein each of the plurality of flange extension members include a first through-hole adapted to receive a first coupling member for coupling a first end of the plurality of flange extension members to the first ring and a second through hole adapted to receive a proximal end portion of the plurality of elongate struts.
  • 9. The bone transport frame of claim 8, wherein each of the plurality of flange extension members further comprises a third through-hole adapted to receive a second coupling member for rigidly coupling the first end of the plurality of flange extension members to the first ring.
  • 10. The bone transport frame of claim 9, wherein the first adjustable member of each of the plurality of elongate struts is located at the proximal end portion of the plurality of elongate struts.
  • 11. The bone transport frame of claim 10, wherein the first adjustable member of each of the plurality of elongate struts is adapted to make incremental adjustments, each incremental adjustment corresponding to a clinically optimal adjustment length.
  • 12. The bone transport frame of claim 11, wherein the first adjustable member of each of the plurality of elongate struts is adapted to record each incremental adjustment.
  • 13. The bone transport frame of claim 1, wherein the plurality of elongate struts further comprises: a threaded shaft and a position adjustment member coupled to each of the plurality of ring transport assemblies, the position adjustment member adapted to transport along a length of the threaded shaft in the proximal and distal directions, the position adjustment members having a semi-locked position such that the location of the position adjustment member on the threaded shaft is constant when the threaded shaft is not being rotated in either clockwise or counterclockwise directions about the central axis of the plurality of elongate struts and having an unlocked position such that the location of the position adjustment member can transport in either the proximal or distal directions without the threaded shaft being rotated in either the clockwise or counterclockwise directions about the central axis of the plurality of elongate struts.
  • 14. The bone transport frame of claim 13, wherein each of the plurality of ring transport assemblies further comprises a third adjustment member wherein releasing the third adjustment member allows the second ring to move such that the central axis of the second ring is oblique to the central axis of each of the plurality of elongate struts.
  • 15. The apparatus of claim 14, wherein the second adjustment member is coupled to the third adjustment member, the second adjustment member being adapted to incrementally translate the central axis of the second ring either toward or away from each central axis of the plurality of elongate struts.
  • 16. A bone transport frame comprising: first and second rings each having upper and lower ring surfaces and each having a central axis that is perpendicular to the upper and lower ring surfaces;a plurality of elongate struts each having a central axis, the plurality of elongate struts having a fixed parallel relationship to one another and being coupled to the first and second rings, the plurality of elongate struts each including a first adjustable member,wherein rotation of the first adjustable member transports the second ring in either a proximal or distal direction along the central axis of at least one of the plurality of elongate struts;a plurality of ring transport assemblies adapted to rotatably couple the second ring to the plurality of elongate struts,wherein at least one of the plurality of ring transport assemblies comprises a flange and a ball joint, a first end of the flange being coupled to the second ring and a second end of the flange being coupled to one of the plurality of elongate struts, the ball joint enabling the second ring to rotate with respect to the plurality of elongate struts such that the central axis of the second ring is oblique to the central axis of each of the plurality of elongate struts, andwherein the plurality of elongated struts remain in the fixed parallel relationship to one another during adjustment of the second ring.
US Referenced Citations (288)
Number Name Date Kind
6214 Yerger Mar 1849 A
2035952 Ettinger Mar 1936 A
2055024 Bittner Sep 1936 A
2291747 Neuwirth Aug 1942 A
2333033 Mraz Oct 1943 A
2391537 Anderson Dec 1945 A
2393831 Stader Jan 1946 A
2883219 Cox Apr 1959 A
3691788 Mazziotti Sep 1972 A
3727610 Riniker Apr 1973 A
3863037 Schindler et al. Jan 1975 A
3977397 Kalnberz et al. Aug 1976 A
3985127 Volkov et al. Oct 1976 A
4006740 Volkov et al. Feb 1977 A
4100919 Oganesyan et al. Jul 1978 A
4185623 Volkov et al. Jan 1980 A
4308863 Fischer Jan 1982 A
4338927 Volkov et al. Jul 1982 A
4365624 Jaquet Dec 1982 A
4403606 Woo et al. Sep 1983 A
4450834 Fischer May 1984 A
4520983 Templeman Jun 1985 A
4548199 Agee Oct 1985 A
4554915 Brumfield Nov 1985 A
4611586 Agee et al. Sep 1986 A
4615338 Ilizarov et al. Oct 1986 A
4730608 Schlein Mar 1988 A
4768524 Hardy Sep 1988 A
4784125 Monticelli et al. Nov 1988 A
4819496 Shelef Apr 1989 A
4889111 Ben-Dov Dec 1989 A
4976582 Clavel Dec 1990 A
4978348 Ilizarov Dec 1990 A
5028180 Sheldon et al. Jul 1991 A
5062844 Jamison et al. Nov 1991 A
5067954 Ilizarov Nov 1991 A
5074866 Sherman et al. Dec 1991 A
5087258 Schewior Feb 1992 A
5112331 Miletich May 1992 A
5122140 Asche et al. Jun 1992 A
5160335 Wagenknecht Nov 1992 A
5179525 Griffis et al. Jan 1993 A
5207676 Canadell et al. May 1993 A
5275598 Cook Jan 1994 A
5279176 Tahmasebi et al. Jan 1994 A
5301566 Tahmasebi et al. Apr 1994 A
5353504 Pai Oct 1994 A
5358504 Paley et al. Oct 1994 A
5372597 Hotchkiss et al. Dec 1994 A
5391167 Pong et al. Feb 1995 A
5397322 Campopiano Mar 1995 A
5437666 Tepic et al. Aug 1995 A
5451225 Ross, Jr. et al. Sep 1995 A
5466237 Byrd, III et al. Nov 1995 A
5496319 Allard et al. Mar 1996 A
5540686 Zippel et al. Jul 1996 A
5568993 Potzick Oct 1996 A
5630814 Ross, Jr. et al. May 1997 A
5658283 Huebner Aug 1997 A
5662648 Faccioli et al. Sep 1997 A
5681309 Ross, Jr. et al. Oct 1997 A
5688271 Faccioli et al. Nov 1997 A
5702389 Taylor et al. Dec 1997 A
5709681 Pennig Jan 1998 A
5713897 Goble et al. Feb 1998 A
5725526 Allard et al. Mar 1998 A
5725527 Biedermann et al. Mar 1998 A
5728095 Taylor et al. Mar 1998 A
5766173 Ross, Jr. et al. Jun 1998 A
5776132 Blyakher Jul 1998 A
5776173 Madsen, Jr. et al. Jul 1998 A
5788695 Richardson Aug 1998 A
5797908 Meyers et al. Aug 1998 A
5843081 Richardson Dec 1998 A
5846245 McCarthy et al. Dec 1998 A
5863292 Tosic Jan 1999 A
5870834 Sheldon Feb 1999 A
5885282 Szabo Mar 1999 A
5891143 Taylor et al. Apr 1999 A
5897555 Clyburn et al. Apr 1999 A
5919192 Shouts Jul 1999 A
5921985 Ross, Jr. et al. Jul 1999 A
5928230 Tosic Jul 1999 A
5931837 Marsh et al. Aug 1999 A
5968043 Ross, Jr. et al. Oct 1999 A
5971984 Taylor et al. Oct 1999 A
5976133 Kraus et al. Nov 1999 A
5997537 Walulik Dec 1999 A
6007535 Rayhack et al. Dec 1999 A
6010501 Raskin et al. Jan 2000 A
6013081 Burkinshaw et al. Jan 2000 A
6021579 Schimmels et al. Feb 2000 A
6030386 Taylor et al. Feb 2000 A
6036691 Richardson Mar 2000 A
6086283 Ziegert Jul 2000 A
6090111 Nichols Jul 2000 A
6099217 Wiegand et al. Aug 2000 A
6129727 Austin et al. Oct 2000 A
6176860 Howard Jan 2001 B1
6196081 Yau Mar 2001 B1
6245071 Pierson Jun 2001 B1
6277118 Grant et al. Aug 2001 B1
6328737 Moorcroft et al. Dec 2001 B1
6342052 Allende Jan 2002 B1
6342054 Mata Jan 2002 B1
6355037 Crosslin et al. Mar 2002 B1
6371957 Amrein et al. Apr 2002 B1
6391250 Wolfsgruber et al. May 2002 B1
6423061 Bryant Jul 2002 B1
6428540 Claes et al. Aug 2002 B1
6491694 Orsak Dec 2002 B1
6537275 Venturini et al. Mar 2003 B2
6565565 Yuan et al. May 2003 B1
6565567 Haider May 2003 B1
6610063 Kumar et al. Aug 2003 B2
6613049 Winquist et al. Sep 2003 B2
6648583 Roy et al. Nov 2003 B1
6648891 Kim Nov 2003 B2
6652524 Weiner Nov 2003 B1
6671975 Hennessey Jan 2004 B2
6701174 Krause et al. Mar 2004 B1
6733502 Altarac et al. May 2004 B2
6746448 Weiner et al. Jun 2004 B2
6769194 Hennessey Aug 2004 B2
6784125 Yamakawa et al. Aug 2004 B1
6793655 Orsak Sep 2004 B2
6860883 Janowski et al. Mar 2005 B2
6964663 Grant et al. Nov 2005 B2
7022122 Amrein et al. Apr 2006 B2
7048735 Ferrante et al. May 2006 B2
7127660 Blaum Oct 2006 B2
7147640 Huebner et al. Dec 2006 B2
7197806 Boudreaux et al. Apr 2007 B2
7226449 Venturini et al. Jun 2007 B2
7261713 Langmaid et al. Aug 2007 B2
7276069 Biedermann et al. Oct 2007 B2
7282052 Mullaney Oct 2007 B2
7291148 Agee et al. Nov 2007 B2
7306601 McGrath et al. Dec 2007 B2
7311711 Cole Dec 2007 B2
7361176 Cooper et al. Apr 2008 B2
7377923 Purcell et al. May 2008 B2
7422593 Cresina et al. Sep 2008 B2
7449023 Walulik et al. Nov 2008 B2
7468063 Walulik et al. Dec 2008 B2
7479142 Weiner et al. Jan 2009 B2
7491008 Thomke et al. Feb 2009 B2
7507240 Olsen Mar 2009 B2
7527626 Lutz et al. May 2009 B2
7575575 Olsen et al. Aug 2009 B2
7578822 Rezach et al. Aug 2009 B2
RE40914 Taylor et al. Sep 2009 E
7608074 Austin et al. Oct 2009 B2
7632271 Baumgartner et al. Dec 2009 B2
7699848 Hoffman et al. Apr 2010 B2
7708736 Mullaney May 2010 B2
7749224 Cresina et al. Jul 2010 B2
7763020 Draper Jul 2010 B2
7803158 Hayden Sep 2010 B2
7806843 Marin Oct 2010 B2
7815586 Grant et al. Oct 2010 B2
7875030 Hoffmann-Clair et al. Jan 2011 B2
7881771 Koo et al. Feb 2011 B2
7887498 Marin Feb 2011 B2
7887537 Ferrante et al. Feb 2011 B2
7931650 Winquist et al. Apr 2011 B2
7938829 Mullaney May 2011 B2
7955333 Yeager Jun 2011 B2
7955334 Steiner et al. Jun 2011 B2
7985221 Coull et al. Jul 2011 B2
8029505 Hearn et al. Oct 2011 B2
8057474 Knuchel et al. Nov 2011 B2
8114077 Steiner et al. Feb 2012 B2
8137347 Weiner et al. Mar 2012 B2
8142432 Matityahu Mar 2012 B2
8147490 Bauer Apr 2012 B2
8147491 Lavi Apr 2012 B2
8157800 Vvedensky et al. Apr 2012 B2
8172849 Noon et al. May 2012 B2
8182483 Bagnasco et al. May 2012 B2
8187274 Schulze May 2012 B2
8192434 Huebner et al. Jun 2012 B2
8202273 Karidis Jun 2012 B2
8241285 Mullaney Aug 2012 B2
8251937 Marin Aug 2012 B2
8257353 Wong Sep 2012 B2
8282652 Mackenzi et al. Oct 2012 B2
20010025181 Freedlan Sep 2001 A1
20010049526 Venturini et al. Dec 2001 A1
20020010465 Koo et al. Jan 2002 A1
20020013584 Termaten Jan 2002 A1
20020042613 Mata Apr 2002 A1
20020165543 Winquist et al. Nov 2002 A1
20030063949 Hohenocker Apr 2003 A1
20030069580 Langmaid et al. Apr 2003 A1
20030106230 Hennessey Jun 2003 A1
20030109879 Orsak Jun 2003 A1
20030181911 Venturini Sep 2003 A1
20030191466 Austin et al. Oct 2003 A1
20030216734 Mingozzi et al. Nov 2003 A1
20030225406 Weiner et al. Dec 2003 A1
20040059331 Mullaney Mar 2004 A1
20040073211 Austin et al. Apr 2004 A1
20040073212 Kim Apr 2004 A1
20040097944 Koman et al. May 2004 A1
20040116926 Venturini et al. Jun 2004 A1
20040133199 Coati et al. Jul 2004 A1
20040133200 Ruch et al. Jul 2004 A1
20040167518 Estrada, Jr. Aug 2004 A1
20050015087 Walulik et al. Jan 2005 A1
20050043730 Janowski et al. Feb 2005 A1
20050059968 Grant et al. Mar 2005 A1
20050084325 O'Brien et al. Apr 2005 A1
20050113829 Walulik et al. May 2005 A1
20050119656 Ferrante et al. Jun 2005 A1
20050149018 Cooper et al. Jul 2005 A1
20050215997 Austin et al. Sep 2005 A1
20050234448 McCarthy Oct 2005 A1
20050248156 Hsieh Nov 2005 A1
20050251136 Noon et al. Nov 2005 A1
20060155276 Walulik et al. Jul 2006 A1
20060184169 Stevens Aug 2006 A1
20060229605 Olsen Oct 2006 A1
20060235383 Hollawell Oct 2006 A1
20060243873 Carnevali Nov 2006 A1
20060247622 Maughan et al. Nov 2006 A1
20060247629 Maughan et al. Nov 2006 A1
20060261221 Carnevali Nov 2006 A1
20060276786 Brinker Dec 2006 A1
20060287652 Lessig et al. Dec 2006 A1
20070038217 Brown et al. Feb 2007 A1
20070043354 Koo et al. Feb 2007 A1
20070049930 Hearn et al. Mar 2007 A1
20070055233 Brinker Mar 2007 A1
20070055234 McGrath et al. Mar 2007 A1
20070123857 Deffenbaugh et al. May 2007 A1
20070161983 Cresina et al. Jul 2007 A1
20070161984 Cresina et al. Jul 2007 A1
20070162022 Zhang et al. Jul 2007 A1
20070225704 Ziran et al. Sep 2007 A1
20070233061 Lehmann et al. Oct 2007 A1
20070250071 Soerensen et al. Oct 2007 A1
20070255280 Austin et al. Nov 2007 A1
20070282338 Mullaney Dec 2007 A1
20080021451 Coull et al. Jan 2008 A1
20080228185 Vasta et al. Sep 2008 A1
20080269741 Karidis Oct 2008 A1
20090018541 Lavi Jan 2009 A1
20090036890 Karidis Feb 2009 A1
20090036891 Brown et al. Feb 2009 A1
20090105621 Boyd et al. Apr 2009 A1
20090131935 Yeager May 2009 A1
20090177198 Theodoros et al. Jul 2009 A1
20090198234 Knuchel et al. Aug 2009 A1
20090198235 Steiner et al. Aug 2009 A1
20090264883 Steiner et al. Oct 2009 A1
20090287212 Hirata et al. Nov 2009 A1
20090312757 Kehres et al. Dec 2009 A1
20100087819 Mullaney Apr 2010 A1
20100145336 Draper Jun 2010 A1
20100179548 Marin Jul 2010 A1
20100191239 Sakkers et al. Jul 2010 A1
20100234844 Edelhauser et al. Sep 2010 A1
20100249779 Hotchkiss et al. Sep 2010 A1
20100280516 Taylor Nov 2010 A1
20100298827 Cremer et al. Nov 2010 A1
20100305568 Ross et al. Dec 2010 A1
20100312243 Ross et al. Dec 2010 A1
20100331840 Ross et al. Dec 2010 A1
20110060336 Pool et al. Mar 2011 A1
20110066151 Murner et al. Mar 2011 A1
20110082458 Crozet et al. Apr 2011 A1
20110098707 Mullaney Apr 2011 A1
20110112533 Venturini et al. May 2011 A1
20110118737 Vasta et al. May 2011 A1
20110118738 Vasta et al. May 2011 A1
20110172663 Mullaney Jul 2011 A1
20110172664 Bagnasco et al. Jul 2011 A1
20110245830 Zgonis et al. Oct 2011 A1
20110313418 Nikonovas Dec 2011 A1
20110313419 Mullaney Dec 2011 A1
20120004659 Miller et al. Jan 2012 A1
20120041439 Singh et al. Feb 2012 A1
20120078251 Benenati et al. Mar 2012 A1
20120089142 Mullaney et al. Apr 2012 A1
20120095462 Miller Apr 2012 A1
20120136355 Wolfson May 2012 A1
20120143190 Wolfson Jun 2012 A1
Foreign Referenced Citations (28)
Number Date Country
596826 Mar 1978 CH
4421223 Dec 1995 DE
202006006734 Jun 2006 DE
0377744 Jul 1990 EP
611007 Aug 1994 EP
1136041 Sep 2001 EP
1016381 Dec 2003 EP
2417923 Feb 2012 EP
2417924 Feb 2012 EP
2439002 May 1980 FR
2439002 May 1980 FR
2576774 Aug 1986 FR
2756025 May 1998 FR
1259768 Mar 1996 IT
9214426 Sep 1992 WO
9418898 Sep 1994 WO
9730650 Aug 1997 WO
9730651 Aug 1997 WO
0115611 Mar 2001 WO
0122892 Apr 2001 WO
0178613 Oct 2001 WO
03086213 Oct 2003 WO
2006116307 Nov 2006 WO
2007075114 Jul 2007 WO
2007111576 Oct 2007 WO
2009100459 Aug 2009 WO
2010104567 Sep 2010 WO
2012102685 Aug 2012 WO
Non-Patent Literature Citations (19)
Entry
Nanua et al., IEEE Transactions on Robotics and Automation, vol. 6, No. 4, pp. 438-444, Aug. 1990.
U.S. Appl. No. 13/788,466, filed Mar. 7, 2013 (not yet published).
Alizade et al., Mech. Mach. Theory, vol. 29, No. 1, pp. 115-124, 1994, Great Britain.
Basic Ilizarov Techniques, Techniques in Orthopaedics, vol. 5, No. 4, pp. 55-59, Dec. 1990.
BIOMET® Vision™ Footing™ System: Surgical Technique, 39 pages, (2008).
European Search Report, EP 11176512, dated Sep. 19, 2011.
European Search Report, EP 11176566, dated Sep. 20, 2011.
Hwang et al., Asian Journal of Control, vol. 6, No. 1, pp. 136-144, Mar. 2004.
International Search Report and Written Opinion, PCT/US2010/000712, dated Jun. 28, 2010.
S.V. Sreenivasan et al., “Closed-Form Direct Displacement Analysis of a 6-6 Stewart Platform,” Mech. Mach. Theory, vol. 29, No. 6, pp. 855-864, 1994.
Smith&Nephew, Taylor Spatial Frame, website printout, Aug. 12, 2009.
Extended European Search Report for Application No. EP13180720 dated Apr. 15, 2014.
Partial European Search Report for Application No. EP13180720 dated Dec. 3, 2013.
European Search Report, EP 08 15 0944 dated Aug. 18, 2008.
European Search Report, EP 08 15 0960 dated Jul. 30, 2008.
European Search Report, EP 08 15 4754 dated Jul. 4, 2008.
European Search Report, EP 08 15 4761 dated Aug. 21, 2008.
European Search Report, EP 10 172 523 dated Mar. 25, 2011.
Tsai, Technical Research Report, The Jacobian Analysis of a Parallel Manipulator Using Reciprocal Screws, T.R. 98-34, date unknown.
Related Publications (1)
Number Date Country
20140058389 A1 Feb 2014 US