1. Field of the Invention
The present invention relates to bone cement injection systems and methods for osteoplasty procedures, such as vertebral compression fractures. In particular, one embodiment provides a system for controlling the viscosity of bone cement to a desired level prior to delivery into bone. Another embodiment provides a system for controlling the flow rate of injected bone cement.
2. Description of the Related Art
Osteoporotic fractures are prevalent in the elderly, with an annual estimate of 1.5 million fractures in the United States alone. These include 750,000 vertebral compression fractures (VCFs) and 250,000 hip fractures. The annual cost of osteoporotic fractures in the United States has been estimated at $13.8 billion. The prevalence of VCFs in women age 50 and older has been estimated at 26%. The prevalence increases with age, reaching 40% among 80-year-old women. Medical advances aimed at slowing or arresting bone loss from aging have not proved solutions to this problem. Further, the population affected will grow steadily as life expectancy increases.
Osteoporosis affects the entire skeleton but most commonly causes fractures in the spine and hip. Spinal or vertebral fractures also cause other serious side effects, with patients suffering from loss of height, deformity and persistent pain which can significantly impair mobility and quality of life. Fracture pain usually lasts 4 to 6 weeks, with intense pain at the fracture site. Chronic pain often occurs when one vertebral level is greatly collapsed or multiple levels are collapsed.
Postmenopausal women are predisposed to fractures, such as in the vertebrae, due to a decrease in bone mineral density that accompanies postmenopausal osteoporosis. Osteoporosis is a pathologic state that literally means “porous bones”. Skeletal bones are made up of a thick cortical shell and a strong inner meshwork, or cancellous bone, made up of collagen, calcium salts and other minerals. Cancellous bone is similar to a honeycomb, with blood vessels and bone marrow in the spaces. Osteoporosis is a condition of decreased bone mass leading to fragile bones with an increased risk of fractures. In an osteoporosis bone, the sponge-like cancellous bone has pores or voids that increase in dimension making the bone very fragile. In young, healthy bone tissue, bone breakdown occurs continually as the result of osteoclast activity, but the breakdown is balanced by new bone formation by osteoblasts. In an elderly patient, bone resorption can surpass bone formation thus resulting in deterioration of bone density. Osteoporosis occurs largely without symptoms until a fracture occurs.
Vertebroplasty and kyphoplasty are recently developed techniques for treating vertebral compression fractures. Percutaneous vertebroplasty was first reported by a French group in 1987 for the treatment of painful hemangiomas. In the 1990's, percutaneous vertebroplasty was extended to include osteoporotic vertebral compression fractures, traumatic compression fractures, and painful vertebral metastasis. Vertebroplasty is the percutaneous injection of PMMA (polymethylmethacrylate) into a fractured vertebral body via a trocar and cannula. The targeted vertebrae are identified under fluoroscopy. A needle is introduced into the vertebrae body under fluoroscopic control, to allow direct visualization. A bilateral transpedicular (through the pedicle of the vertebrae) approach is typical but the procedure can be done unilaterally. The bilateral transpedicular approach allows for more uniform PMMA infill of the vertebra.
In a bilateral approach, approximately 1 to 4 ml of PMMA is used on each side of the vertebra. Since the PMMA needs to be is forced into the cancellous bone, the techniques require high pressures and fairly low viscosity cement. Since the cortical bone of the targeted vertebra may have a recent fracture, there is the potential of PMMA leakage. The PMMA cement contains radiopaque materials so that when injected under live fluoroscopy, cement localization and leakage can be observed. The visualization of PMMA injection and extravasation are critical to the technique—and the physician terminates PMMA injection when leakage is evident. The cement is injected using syringes to allow the physician manual control of injection pressure.
Kyphoplasty is a modification of percutaneous vertebroplasty. Kyphoplasty involves a preliminary step consisting of the percutaneous placement of an inflatable balloon tamp in the vertebral body. Inflation of the balloon creates a cavity in the bone prior to cement injection. The proponents of percutaneous kyphoplasty have suggested that high pressure balloon-tamp inflation can at least partially restore vertebral body height. In kyphoplasty, some physicians state that PMMA can be injected at a lower pressure into the collapsed vertebra since a cavity exists, when compared to conventional vertebroplasty.
The principal indications for any form of vertebroplasty are osteoporotic vertebral collapse with debilitating pain. Radiography and computed tomography must be performed in the days preceding treatment to determine the extent of vertebral collapse, the presence of epidural or foraminal stenosis caused by bone fragment retropulsion, the presence of cortical destruction or fracture and the visibility and degree of involvement of the pedicles.
Leakage of PMMA during vertebroplasty can result in very serious complications including compression of adjacent structures that necessitate emergency decompressive surgery. See Groen, R. et al., “Anatomical and Pathological Considerations in Percutaneous Vertebroplasty and Kyphoplasty: A Reappraisal of the Vertebral Venous System”, Spine, V. 29, No. 13, pp 1465-1471 (2004). Leakage or extravasation of PMMA is a critical issue and can be divided into paravertebral leakage, venous infiltration, epidural leakage and intradiscal leakage. The exothermic reaction of PMMA carries potential catastrophic consequences if thermal damage were to extend to the dural sac, cord, and nerve roots. Surgical evacuation of leaked cement in the spinal canal has been reported. It has been found that leakage of PMMA is related to various clinical factors such as the vertebral compression pattern, and the extent of the cortical fracture, bone mineral density, the interval from injury to operation, the amount of PMMA injected and the location of the injector tip. In one recent study, close to 50% of vertebroplasty cases resulted in leakage of PMMA from the vertebral bodies. See Hyun-Woo Do et al., “The Analysis of Polymethylmethacrylate Leakage after Vertebroplasty for Vertebral Body Compression Fractures”, J. Korean Neurosurg. Soc., V. 35, No. 5 (2004) pp. 478-82, (http://www.jkns.or.kr/htm/abstract.asp?no=0042004086).
Another recent study was directed to the incidence of new VCFs adjacent to the vertebral bodies that were initially treated. Vertebroplasty patients often return with new pain caused by a new vertebral body fracture. Leakage of cement into an adjacent disc space during vertebroplasty increases the risk of a new fracture of an adjacent vertebral body. See Am. J. Neuroradiol., 25(2):175-80 (February 2004). This study found that 58% of vertebral bodies adjacent to a disc with cement leakage fractured during the follow-up period, compared with 12% of vertebral bodies adjacent to a disc without cement leakage.
Another life-threatening complication of vertebroplasty is pulmonary embolism. See Bernhard, J. et al., “Asymptomatic diffuse pulmonary embolism caused by acrylic cement: an unusual complication of percutaneous vertebroplasty”, Ann. Rheum. Dis., 62:85-86 (2003). The vapors from PMMA preparation and injection also are cause for concern. See Kirby, B. et al., “Acute bronchospasm due to exposure to polymethylmethacrylate vapors during percutaneous vertebroplasty”, Am. J. Roentgenol., 180:543-544 (2003).
In both higher pressure cement injection (vertebroplasty) and balloon-tamped cementing procedures (kyphoplasty), the methods involved do not provide for well controlled augmentation of vertebral body height. The direct injection of bone cement simply follows the path of least resistance within the fractured bone. The expansion of a balloon also applies compacting forces along lines of least resistance in the collapsed cancellous bone. Thus, the reduction of a vertebral compression fracture is not optimized or controlled in high pressure balloons as forces of balloon expansion occur in multiple directions.
In a kyphoplasty procedure, the physician often uses very high pressures (e.g., up to 200 or 300 psi) to inflate the balloon which crushes and compacts cancellous bone. Expansion of the balloon under high pressures close to cortical bone can fracture the cortical bone, typically the endplates, which can cause regional damage to the cortical bone with the risk of cortical bone necrosis. Such cortical bone damage is highly undesirable as the endplate and adjacent structures provide nutrients for the disc.
Kyphoplasty also does not provide a distraction mechanism capable of 100% vertebral height restoration. Further, kyphoplasty balloons under very high pressure typically apply forces to vertebral endplates within a central region of the cortical bone that may be weak, rather than distributing forces over the endplate.
There is a general need to provide bone cement delivery systems and methods for use in treatment of vertebral compression fractures that provide a greater degree of control over introduction of cement.
In accordance with one embodiment an apparatus for bone cement delivery is provided. The apparatus can comprise a handle body defining a flow channel extending therethrough from an inlet of the body to an outlet of the body, the inlet of the handle body detachably coupleable to a source of bone cement, the outlet of the handle body detachably coupleable to an elongated bone cement injector and a thermal energy emitter disposed in the handle body in communication with the flow channel, the thermal energy emitter configured to apply energy to bone cement passing through the flow channel. In certain embodiments, the thermal energy emitter can be disposed about the flow channel such that bone cement flows through the emitter.
In some embodiments the thermal energy emitter can comprise a PTCR heater with spaced apart opposing polarity electrodes. In certain embodiments the handle body can further define a second channel co-linear with the elongated bone cement injector. The second channel can be configured to allow insertion of a tool therethrough into the bone cement injector.
In an additional embodiment a system for delivering a bone fill material into a bone is provided. The system can comprise a handle body, a thermal energy emitter, a source of bone fill material and an elongated injector. The handle body can define a flow channel and the thermal energy emitter can be disposed in the handle body in communication with the flow channel. The thermal energy emitter can apply energy to a bone fill material passing through the flow channel. The bone fill material can reside in the source of bone fill material which can be detachably coupled to the handle body. The elongated injector can be detachably coupleable to the handle body such that a bore through the injector is in communication with the flow channel, the injector configured to allow flow of bone fill material therethrough to an outlet opening at a distal portion of the injector into a bone.
Other embodiments of the system can further comprise an energy source coupleable to the thermal energy emitter. The energy source of certain embodiments can comprise at least one of a voltage source, a radiofrequency source, an electromagnetic energy source, a non-coherent light source, a laser source, an LED source, a microwave source, a magnetic source and an ultrasound source. Other embodiments of the system can further comprise a controller. The controller can be configured to control the polymerization rate of the bone fill material flowing through the flow channel to achieve a generally constant bone fill material viscosity at the outlet opening of the injector.
A further embodiment provides a method for treating a bone. The method can comprise inserting part of an elongated bone cement injector percutaneously through a patient's skin into a bone, coupling an injector to a handle body, coupling a source of bone cement to the handle body, flowing bone cement from the source of bone cement through the handle body and through a bore in the injector into the bone and applying energy to the bone cement as it flows through the handle body. Applying energy to the bone cement can accelerate the setting rate in the bone cement so as to reach a selected polymerization endpoint as the bone cement exits the injector. In some embodiments the selected polymerization endpoint provides a bone cement viscosity that substantially inhibits extravasation of bone cement upon introduction of the bone cement into the bone.
Certain embodiments of the method can further comprise the step of modulating the applied energy via a controller based at least in part on a signal indicative of a temperature of the bone cement that is communicated to the controller. Alternatively, or additionally, other embodiments can include the step of modulating the applied energy via a controller based at least in part on a signal indicative of a flow rate of the bone cement that is communicated to the controller.
Certain embodiments of the method can further comprise the step of introducing a tool into a bore of the injector while at least a portion of the cannula is positioned in the cancellous bone. This step, in certain embodiments, can be for extending the tool through the injector to obtain a biopsy tissue.
In accordance with another embodiment a system for delivering bone fill material into a bone is provided. The system can comprise an injector body, a bone fill material container, a low pressure drive mechanism and a high pressure drive mechanism. The injector body can comprise a handle portion and an elongated cannula attached to the handle portion. The bone fill material container can be removably coupleable to the injector body. The low pressure drive mechanism can be coupled to the bone fill material container. The low pressure drive mechanism can operate below about 10 psi and can effect a flow of bone fill material from the container to the injector body. The high pressure drive mechanism can also be operatively coupleable to the injector body. The high pressure drive mechanism can operate above about 20 psi and can effect a flow of bone fill material through the injector body and into the bone.
In certain embodiments the system can comprise a one-way valve positioned in the bone fill material container or in the injector body. In some embodiments the system can comprise a flow control mechanism configured to generate a bone fill material flow rate signal. In some embodiments the system can comprise a flow meter device.
In accordance with one embodiment a bone cement injection system for osteoplasty procedures is provided. The system can comprise a bone cement injector body, a bone cement container and a one-way valve. The bone cement injector body can have a handle portion and a distal end portion with a flow channel extending therethrough. The bone cement container can couple to the bone cement injector and it can have a flow passage in communication with the flow channel. The one-way valve can be positioned in the flow passage or in the flow channel.
A further embodiment provides a method for delivering bone cement into a vertebra. The method can comprise providing a bone cement injector system and applying pressure to flow bone cement. The bone cement injector system can comprise a low-pressure drive system configured to move cement from a bone cement container to a bone cement injector at a pressure of less than about 10 psi and a high pressure drive system configured to move bone cement through the bone cement injector and into a cancellous bone portion of a vertebra at a pressure of greater than about 20 psi. The step of applying pressure can comprise applying a pressure of less than about 10 psi to flow bone cement from the bone cement container to the injector. The step of applying pressure can further comprise applying a pressure of greater than about 20 psi to flow the bone cement through the injector and into the vertebra.
In certain embodiments the method can comprise applying a selected level of energy to the cement flow from a thermal energy emitter. In some embodiments the method can comprise providing bone cement flow rate signals to a controller.
According to an additional embodiment a system for delivering bone fill material into a bone is provided. The system can comprise an injector body, a flow control mechanism, a thermal energy emitter and a controller. The injector body can comprise a handle portion and an elongated cannula attached to the handle portion. The flow control mechanism can be disposed in the injector body and configured to generate a flow rate signal of bone fill material flowing through the injector body. The thermal energy emitter can be disposed in the injector body and configured to apply energy to the bone fill material flowing through the injector body. The controller can be configured to receive the flow rate signal from the flow control mechanism and to modulate at least one of the flow rate of bone fill material through the injector body and the energy applied by the thermal energy emitter to the bone fill material based at least in part on the flow rate signal.
In certain embodiments the flow rate signal can correspond to a measured electrical parameter of a PTCR or NTCR material that can respond to heat transfer from the bone fill material flow to the PTCR or NTCR material to thereby determine the flow rate of the bone fill material flow. In some embodiments this electrical parameter can be impedance.
An additional embodiment of the invention provides a method for injecting bone cement into a bone. The method can comprise inserting part of an injector body into a bone. The injector body can comprise a flow control mechanism configured to generate a flow rate signal of bone cement flowing through the injector body. The method can further comprise flowing bone cement through the injector body into the bone, generating a flow rate signal corresponding to the flow of bone cement through the injector body and modulating the application of thermal energy to the bone cement flowing through the injector body based at least in part on the flow rate signal.
According to another embodiment a method of delivering bone fill material into a bone is provided. The method can comprise inserting part of an injector body into a bone, the injector body comprising a PTCR or NTCR material, flowing a bone fill material through the injector body into the bone and measuring an electrical parameter of the PTCR or NTCR material in response to heat transfer from the flow of bone fill material to the PTCR or NTCR material to thereby determine a selected parameter of the bone fill material flow.
In some embodiments the measured electrical parameter can comprise an impedance value. In certain embodiments the selected parameter of the bone fill material can be any or all of: a flow rate, a temperature, and a viscosity. The method in certain embodiments can comprise modulating the flow rate of the bone fill material in response, at least in part, to determining the selected parameter.
In some embodiments the method can comprise applying energy to the bone fill material flow via a thermal energy emitter disposed in a handle portion of the injector body. The method can further comprise modulating at least one of the flow rate of the bone fill material flow and energy application to the bone fill material to maintain a substantially constant viscosity of the bone fill material flow ejected from the injector body over a desired injection interval.
These and other objects of the present invention will become readily apparent upon further review of the following drawings and specification.
In order to better understand the invention and to see how it may be carried out in practice, some preferred embodiments are next described, by way of non-limiting examples only, with reference to the accompanying drawings, in which like reference characters denote corresponding features consistently throughout similar embodiments in the attached drawings.
For purposes of understanding the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and the accompanying text. As background, a vertebroplasty procedure could include inserting an injector of the system of
Now turning to
In one embodiment, the energy emitter 122, can be integrated into the handle body 120. In some embodiments the energy emitter 122 can be glued in place within the handle body 120. In some embodiments the handle body 120 can be made from two handle halves and the energy emitter 122 can be captured within the in a recess when the two handle halves are put together.
Referring to
In some embodiments, the lead lines 149a and 149b can be soldered onto electrodes 155A and 155B that can be painted onto the emitter 122. In one embodiment the emitter 122 is removable and it can be electrically connected to the lead lines 149a and 149b via electrical contacts that contact the electrodes 155A and 155B on the emitter 122.
Heat emitter 122 can comprise a conductive plastic. In some embodiment, heat emitter 122 can comprise a polymer PTCR material that can range from about 1 mm to 50 mm in length with any suitable bore 124 extending therethrough. In one embodiment, as in
In other embodiments, the thermal energy emitter 122 can be a PTCR constant temperature heater as described above or selected from the group of emitters consisting of at least one of a resistive heater, a fiber optic emitter, a light channel, an ultrasound transducer, an electrode and an antenna. Accordingly in any such embodiment, the energy source 140 can comprise at least one of a voltage source, a radiofrequency source, an electromagnetic energy source, a non-coherent light source, a laser source, an LED source, a microwave source, a magnetic source and an ultrasound source, that is operatively coupled to the emitter 122.
Referring now to
Referring to
Referring to
Returning back to
Now referring to
Still referring to
In one embodiment of the system, the bone cement 125 can have a predetermined working time for polymerizing from an initial state to a selected endpoint of at least 10 minutes, 12 minutes, 14 minutes, 16 minutes, 18 minutes, 20 minutes, 25 minutes, 30 minutes and/or 40 minutes, as disclosed in Provisional application Ser. No. 60/899,487 filed Feb. 5, 2007 titled Bone Treatment Systems and Methods, and U.S. application Ser. No. 12/024,969, filed Feb. 1, 2008. The selected endpoint is defined as providing the bone cement 125 in a partly polymerized condition having a selected viscosity range that substantially prevents cement extravasation. Herein, the terms ‘polymerization rate’, ‘working time’ and ‘setting time’ may be used alternatively to describe the interval in which the cement polymerizes from the initial or just-mixed state to the selected endpoint. Setting time is measured in accordance with ASTM standard F451, “Standard Specification for Acrylic Bone Cement,” which is hereby incorporated by reference in its entirety. Viscosity is also measured according to ASTM standard F451.
As can be understood from
A method of using the system 10 of
In some embodiments of the method, the energy-delivery component 120 can be detachably coupled to the bone cement source 130 and to the proximal end 102 of the injector needle 100.
In another embodiment of the method, the energy-delivery component 120 can be actuated by the operator from a location outside any imaging field.
In another embodiment of the method, the energy-delivery component 120 can be actuated to apply energy of at least 0.01 Watt, 0.05 Watt, 0.10 Watt, 0.50 Watt and/or 1.0 Watt. In another aspect of the method, the applied energy can be modulated by controller 145 to maintain a selected temperature as measured by temperature sensor 156 (
Referring now to
In
In one embodiment as shown in
Now referring to
In the system of
In one embodiment depicted in
Another aspect of the invention can be understood from
Amorphous diamond-like carbon coatings and diamond-like nanocomposites are available from Bekaert Progressive Composites Corporations, 2455 Ash Street, Vista, Calif. 92081 or its parent company or affiliates. Further information on coatings can be found at: http://www.bekaert.com/bac/Products/Diamondlike % 20-coatings.htm, the contents of which are incorporated herein by reference. The diamond-like coatings can comprise amorphous carbon-based coatings with high hardness and low coefficient of friction. The amorphous carbon coatings can exhibit non-stick characteristics and excellent wear resistance. The coatings can be thin, chemically inert and can have a very low surface roughness. In one embodiment, the coatings can have a thickness ranging between 0.001 mm and 0.010 mm; or between 0.002 mm and 0.005 mm. The diamond-like carbon coatings can be a composite of sp2 and sp3 bonded carbon atoms with a hydrogen concentration between 0 and 80%. Another diamond-like nanocomposite coating (a-C:H/a-Si:O; DLN) is made by Bakaert and is suitable for use in the bone cement injector of the invention. Some of the disclosed materials and coatings are known by the names DYLYN®PLUS, DYLYN®/DLC and CAVIDUR®.
In another embodiment, the bone cement injector has a flow channel 12 extending therethrough with at least one open termination 25, wherein at least a portion of the surface layer 240 of the flow channel can be ultrahydrophobic or hydrophobic which may better prevent a hydrophilic cement from sticking.
In another embodiment, the bone cement injector can have a flow channel 12 extending therethrough with at least one open termination 25, wherein at least a portion of the surface layer 240 of the flow channel can be hydrophilic for which may prevent a hydrophobic cement from sticking.
In another embodiment, the bone cement injector can have a flow channel 12 extending therethrough with at least one open termination in a distal end thereof, wherein the surface layer 240 of the flow channel can have high dielectric strength, a low dissipation factor, and/or a high surface resistivity.
In another embodiment, the bone cement injector can have a flow channel 12 extending therethrough with at least one open termination 25 in a distal end thereof, wherein the surface layer 240 of the flow channel can be oleophobic. In another embodiment, the bone cement injector can have a flow channel 12 extending therethrough with at least one open termination 25 in a distal end thereof, wherein the surface layer 240 of the flow channel can have a substantially low coefficient of friction polymer or ceramic.
In another embodiment, the bone cement injector can have a flow channel 12 extending therethrough with at least one open termination 25 in a distal end thereof, wherein the surface layer 240 of the flow channel can have a wetting contact angle greater than 70°, greater than 85°, and greater than 100°.
In another embodiment, the bone cement injector can have a flow channel 12 extending therethrough with at least one open termination in a distal end thereof, wherein the surface layer 240 of the flow channel can have an adhesive energy of less than 100 dynes/cm, less than 75 dynes/cm, and less than 50 dynes/cm.
The apparatus above also can be configured with any other form of thermal energy emitter that includes the non-stick and/or lubricious surface layer as described above. In one embodiment, the thermal energy emitter can comprise at least in part an electrically conductive polymeric layer. In one such embodiment, the electrically conductive polymeric layer can have a positive temperature coefficient of resistance.
In the illustrated embodiment of
In the embodiment of
In the embodiment of
In another aspect of the invention referring to
With reference to
With reference to
Another method of performing bone cement injection in a vertebroplasty can comprise providing a bone cement injector body carrying a flow control mechanism capable of providing flow rate signals of cement flows therein, actuating a flow drive mechanism thereby causing cement flows within a passageway in the injector body, applying energy to the cement flow from an emitter in the injector body wherein a controller can modulate the application of said energy in response to said flow rate signals, wherein the flow control mechanism and flow drive mechanism can be independent.
The method of performing bone cement injections can include providing continuous cement flows, pulsed cement flows or cement flows in intervals.
The method of performing bone cement injections can include providing a flow drive mechanism and controller capable of providing cement flows ranging from 0.1 cc/min to 10.0 cc/min, or from 1.0 cc/min to 5.0 cc/min.
Another method of performing bone cement injection can include providing a bone cement injector system having a first low pressure system for moving cement from a first chamber to a second chamber, and second high pressure system for moving cement from the second chamber through an extending member for introduction into a bone using a pressure of less than about 10 psi to move cement from the first chamber to the second chamber, and using a pressure of greater than about 20 psi to move cement from the second chamber through the extending member into bone.
In accordance with another embodiment, an apparatus for bone cement injection is provided that can include an injector body having a handle portion and an extension portion that can be configured for insertion into cancellous bone, a member having a first chamber carrying fill material coupleable to a second chamber in said injector body, a first low pressure drive mechanism operatively coupled to the first chamber for moving fill material from said first chamber to said second chamber; and a second high pressure drive mechanism operatively coupled to the second chamber for moving fill material from said second chamber through said extension portion and into cancellous bone. In this embodiment, the first low pressure drive mechanism can operate using a pressure of less than about 10 psi. The second high pressure drive mechanism can operate using a pressure of greater than about 20 psi.
With reference to
In accordance with another embodiment, a method for bone cement injection in an osteoplasty procedure comprise (a) providing a bone cement injector body carrying a PTCR or NTCR material (positive temperature coefficient of resistance or negative temperature coefficient of resistance); (b) causing cement flow through the injector body; and (c) measuring an electrical parameter of the a PTCR or NTCR material in response to heat transfer from the cement flow to the PTCR or NTCR material to thereby determine a selected parameter of the cement flow. It has been found that the change in impedance of the temperature coefficient material can be used to accurately determine the flow rate of the cement flow. In turn, the signals can indicate a measurement of impedance, capacitance, a change in impedance over an interval, or the rate of change of impedance of the temperature coefficient material to determine the viscosity of the cement within the cement flow proximate to the PTCR material or at the flow outlet.
Another method of bone cement injection can include modulating the rate of cement flow in response to determining a selected parameter of the cement flow such as flow rate. The method of bone cement injection can further include applying and modulating thermal energy application from an emitter in the injector body to the cement flow. The method of bone cement injection can further include modulating the application of energy in response to signals that relate to a selected parameter such as flow rate of the cement flow.
Another method of bone cement injection comprises (a) providing a bone cement injector body carrying a PTCR (positive temperature coefficient of resistance) material in a flow channel therein, (b) applying a selected level of energy to a cement flow through the PTCR material, and (c) utilizing an algorithm that processes impedance values of the PTCR material to determine the cement flow rate. The method of bone cement injection further includes modulating a cement injection parameter in response to the processed impedance values.
Still another method of bone cement injection comprises (a) providing a bone cement injector body carrying a PTCR material or other thermal energy emitter in a flow channel therein, (b) causing a selected cement flow rate and a selected level of energy delivery to the cement flow through the emitter, and (c) modulating the selected flow rate and/or energy delivery to maintain a substantially constant impedance value of the emitter material over a cement injection interval. The selected cement injection interval can be at least 1 minute, at least 5 minutes, at least 10 minutes and at least 15 minutes. In another aspect of the invention, the method modulated the selected flow rate and/or energy delivery to maintain a substantially constant viscosity of bone cement ejected from the injector over a cement injection interval. The system and energy source is configured for applying energy of at least 0.01 Watt, 0.05 Watt, 0.10 Watt, 0.50 Watt and 1.0 Watt. In another aspect, the energy source and controller are configured for accelerating polymerization rate of the bone cement to a selected endpoint in less than 1 second, 5 seconds, 10 seconds, 20 seconds, 30 seconds, 45 seconds, 60 seconds and 2 minutes.
Another method of bone cement injection utilizes apparatus as described above and comprises (a) providing a bone cement injector body with a flow channel extending therethrough from a proximal handle end though a medial portion to a distal end portion having a flow outlet, (b) causing cement flow through the flow channel, and (c) warming the cement flow with an energy emitter in a proximal end or medial portion thereof to initiate or accelerate polymerization of the cement of the cement flow. The method includes providing a flow rate of the cement flow that ranges from 0.1 cc/minute to 20 cc/minute, from 0.2 cc/minute to 10 cc/minute, and from 0.5 cc/minute to 5 cc/minute.
The above-described method of bone cement injection allows a predetermined cement flow rate to provide a selected interval in which the cement flows is allowed to polymerize in the flow channel downstream from the energy emitter. This method includes providing a selected interval of greater than 1 second, greater than 5 seconds, greater than 10 seconds, greater than 20 seconds, and greater than 60 seconds.
The above-described method utilizes an energy emitter that applies energy sufficient to elevate the temperature of the bone cement by at least 1° C., at least 2° C., and at least 5° C. The method of bone cement injection includes utilizing an energy emitter that applies at least 0.1 Watt of energy to the cement flow, at least 0.5 Watt of energy to the cement flow, and at least 1.0 Watt of energy to the cement flow. The method includes the flow rate of the cement flow being adjusted in intervals by controller 145, or being continuously adjusted by a controller.
With reference to
In one embodiment of bone cement injection system referring to
In another embodiment, the bone cement injection system can include a bone cement injector body with a flow channel extending therethrough from a proximal handle end though a medial portion to a distal end portion having a flow outlet, a heating element in a proximal handle end or medial portion of the injector body; and a controller system for controlling operational parameter of the system, wherein control algorithms can include algorithms that plot the time of initial mixing of the bone cement, algorithms that plot cement viscosity in relationship to said time of initial mixing, and algorithms that plot cement viscosity in relation to a temperature profile of the cement. The controller and algorithms can be capable of modulating flow rate and energy application to provide a substantially constant cement viscosity at the flow outlet.
In another embodiment, the power delivery can be accomplished from a battery system rather that an RF generator as shown in
A method of altering a fill material can include at least one of a radiofrequency source, a laser or light source, a microwave source, a magnetic source and an ultrasound source. Each of these energy sources can be configured to preferentially deliver energy to a cooperating, energy sensitive filler component carried by the fill material. For example, such filler can be suitable chromophores for cooperating with a light source, ferromagnetic materials for cooperating with magnetic inductive heating means, or fluids that thermally respond to microwave energy. In other embodiments the system of the invention can use any suitable energy source to accomplish the purpose of altering the viscosity of the fill material 14.
The above description of the invention is intended to be illustrative and not exhaustive. Particular characteristics, features, dimensions and the like that are presented in dependent claims can be combined and fall within the scope of the invention. The invention also encompasses embodiments as if dependent claims were alternatively written in a multiple dependent claim format with reference to other independent claims. Specific characteristics and features of the invention and its method are described in relation to some figures and not in others, and this is for convenience only. While the principles of the invention have been made clear in the descriptions and combinations, it will be obvious to those skilled in the art that modifications may be utilized in the practice of the invention, and otherwise, which are particularly adapted to specific environments and operative requirements without departing from the principles of the invention. The appended claims are intended to cover and embrace any and all such modifications, with the limits only of the true purview, spirit and scope of the invention.
Certain embodiments of the invention provide bone cement injectors and control systems that allow for vertebroplasty procedures that inject cement having a substantially constant viscosity over an extended cement injection interval.
In certain embodiments, a computer controller is provided to control cement flow parameters in the injector and energy delivery parameters for selectively accelerating polymerization of bone cement before the cement contacts the patient's body.
Of course, the foregoing description is that of certain features, aspects and advantages of the present invention, to which various changes and modifications can be made without departing from the spirit and scope of the present invention. Moreover, the bone treatment systems and methods need not feature all of the objects, advantages, features and aspects discussed above. Thus, for example, those skill in the art will recognize that the invention can be embodied or carried out in a manner that achieves or optimizes one advantage or a group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein. In addition, while a number of variations of the invention have been shown and described in detail, other modifications and methods of use, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is contemplated that various combinations or subcombinations of these specific features and aspects of embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the discussed bone treatment systems and methods.
This application claims the benefit of the following U.S. Provisional Applications: App. No. 60/907,467 filed Apr. 3, 2007; App. No. 60/907,468 filed Apr. 3, 2007; App. No. 60/907,469 filed Apr. 3, 2007; and App. No. 60/929,416 filed Jun. 26, 2007; the entire contents of which are hereby incorporated by reference and should be considered a part of this specification. This application is also related to the following U.S. patent applications: application Ser. No. 11/469,764 filed Sep. 1, 2006; application Ser. No. 11/165,652 filed Jun. 24, 2005; App. No. 60/713,521 filed Sep. 1, 2005; application Ser. No. 11/209,035 filed Aug. 22, 2005; App. No. 60/929,936 filed Apr. 30, 2007; App. No. 60/899,487 filed Feb. 5, 2007; and application Ser. No. 12/024,969 filed Feb. 1, 2008. The entire contents of all of the above applications are hereby incorporated by reference and should be considered a part of this specification.
Number | Name | Date | Kind |
---|---|---|---|
3349840 | Tope et al. | Oct 1967 | A |
4250887 | Dardik et al. | Feb 1981 | A |
4265618 | Herskovitz et al. | May 1981 | A |
4294251 | Greenwald et al. | Oct 1981 | A |
4338925 | Miller | Jul 1982 | A |
4377168 | Rzasa et al. | Mar 1983 | A |
4735625 | Davidson | Apr 1988 | A |
4772287 | Ray et al. | Sep 1988 | A |
4815454 | Dozier | Mar 1989 | A |
4963151 | Ducheyene et al. | Oct 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
4969906 | Kronman | Nov 1990 | A |
5037437 | Matsen | Aug 1991 | A |
5108404 | Scholten | Apr 1992 | A |
5130950 | Orban et al. | Jul 1992 | A |
5145250 | Planck et al. | Sep 1992 | A |
5324305 | Kanner | Jun 1994 | A |
5431654 | Nic | Jul 1995 | A |
5514135 | Earle | May 1996 | A |
5542928 | Evans et al. | Aug 1996 | A |
5679299 | Gilbert et al. | Oct 1997 | A |
5693099 | Harle | Dec 1997 | A |
5788711 | Lehner et al. | Aug 1998 | A |
5814681 | Hino et al. | Sep 1998 | A |
5954716 | Sharkey et al. | Sep 1999 | A |
6048346 | Reiley et al. | Apr 2000 | A |
6075067 | Lidgren | Jun 2000 | A |
6077256 | Mann | Jun 2000 | A |
6122549 | Sharkey et al. | Sep 2000 | A |
6171312 | Beaty | Jan 2001 | B1 |
6228072 | Omaleki et al. | May 2001 | B1 |
6231615 | Preissman | May 2001 | B1 |
6235043 | Reiley et al. | May 2001 | B1 |
6236020 | Friedman | May 2001 | B1 |
6241734 | Scribner | Jun 2001 | B1 |
6248110 | Reiley et al. | Jun 2001 | B1 |
6261289 | Levy | Jul 2001 | B1 |
6264659 | Ross et al. | Jul 2001 | B1 |
6280456 | Scribner et al. | Aug 2001 | B1 |
6284809 | Plummer et al. | Sep 2001 | B1 |
6309420 | Preissman | Oct 2001 | B1 |
6312254 | Friedman | Nov 2001 | B1 |
6316885 | Collins et al. | Nov 2001 | B1 |
6319255 | Grundei et al. | Nov 2001 | B1 |
6332894 | Stalcup et al. | Dec 2001 | B1 |
6348055 | Preissman | Feb 2002 | B1 |
6358254 | Anderson | Mar 2002 | B1 |
6383190 | Preissman | May 2002 | B1 |
6425923 | Stalcup et al. | Jul 2002 | B1 |
6436143 | Ross et al. | Aug 2002 | B1 |
6439439 | Rickard | Aug 2002 | B1 |
6440138 | Reiley et al. | Aug 2002 | B1 |
6443988 | Felt et al. | Sep 2002 | B2 |
6447514 | Stalcup et al. | Sep 2002 | B1 |
6485436 | Truckai et al. | Nov 2002 | B1 |
6524102 | Davis | Feb 2003 | B2 |
6575331 | Peeler et al. | Jun 2003 | B1 |
6610079 | Li et al. | Aug 2003 | B1 |
6613054 | Scribner et al. | Sep 2003 | B2 |
6632235 | Weikel et al. | Oct 2003 | B2 |
6662969 | Peeler et al. | Dec 2003 | B2 |
6676664 | Al-Assir | Jan 2004 | B1 |
6706069 | Berger | Mar 2004 | B2 |
6712852 | Chung et al. | Mar 2004 | B1 |
6716216 | Boucher et al. | Apr 2004 | B1 |
6719773 | Boucher et al. | Apr 2004 | B1 |
6723095 | Hammerslag | Apr 2004 | B2 |
6726691 | Osorio et al. | Apr 2004 | B2 |
6736537 | Coffeen et al. | May 2004 | B2 |
6740093 | Hochschuler et al. | May 2004 | B2 |
6767936 | Walz et al. | Jul 2004 | B2 |
6783515 | Miller | Aug 2004 | B1 |
6814736 | Reiley et al. | Nov 2004 | B2 |
6863672 | Reiley et al. | Mar 2005 | B2 |
6899713 | Shaolian et al. | May 2005 | B2 |
6923813 | Phillips | Aug 2005 | B2 |
6929640 | Underwood | Aug 2005 | B1 |
6957747 | Peeler et al. | Oct 2005 | B2 |
6958061 | Truckai et al. | Oct 2005 | B2 |
6964667 | Shaolian et al. | Nov 2005 | B2 |
6979352 | Reynolds | Dec 2005 | B2 |
6985061 | Hafskjold et al. | Jan 2006 | B2 |
7008433 | Voellmicke et al. | Mar 2006 | B2 |
7044954 | Reiley | May 2006 | B2 |
7048743 | Miller et al. | May 2006 | B2 |
7081125 | Edwards et al. | Jul 2006 | B2 |
7108696 | Daniel et al. | Sep 2006 | B2 |
7112205 | Carrison | Sep 2006 | B2 |
7115163 | Zimmermann | Oct 2006 | B2 |
7153306 | Ralph et al. | Dec 2006 | B2 |
7153307 | Scribner et al. | Dec 2006 | B2 |
7156861 | Scribner et al. | Jan 2007 | B2 |
7160020 | Sand | Jan 2007 | B2 |
7166121 | Reiley et al. | Jan 2007 | B2 |
7273523 | Wenz | Sep 2007 | B2 |
7399306 | Reiley et al. | Jul 2008 | B2 |
7559932 | Truckai et al. | Jul 2009 | B2 |
7572263 | Preissman | Aug 2009 | B2 |
7662133 | Scarborough et al. | Feb 2010 | B2 |
7678116 | Truckai et al. | Mar 2010 | B2 |
8109933 | Truckai et al. | Feb 2012 | B2 |
20010011190 | Park | Aug 2001 | A1 |
20020026195 | Layne et al. | Feb 2002 | A1 |
20020068974 | Kuslich et al. | Jun 2002 | A1 |
20020082608 | Reiley et al. | Jun 2002 | A1 |
20020099385 | Ralph et al. | Jul 2002 | A1 |
20020147497 | Belef et al. | Oct 2002 | A1 |
20020156483 | Voellmicke et al. | Oct 2002 | A1 |
20020161373 | Osorio et al. | Oct 2002 | A1 |
20030032733 | Fischer et al. | Feb 2003 | A1 |
20030032929 | McGuckin | Feb 2003 | A1 |
20030130373 | Walz et al. | Jul 2003 | A1 |
20030130664 | Boucher et al. | Jul 2003 | A1 |
20030130738 | Hovda et al. | Jul 2003 | A1 |
20030195547 | Scribner et al. | Oct 2003 | A1 |
20030220648 | Osorio et al. | Nov 2003 | A1 |
20030233096 | Osorio et al. | Dec 2003 | A1 |
20040002692 | Claude et al. | Jan 2004 | A1 |
20040006347 | Sproul | Jan 2004 | A1 |
20040024410 | Olson | Feb 2004 | A1 |
20040073308 | Kuslich et al. | Apr 2004 | A1 |
20040083002 | Belef et al. | Apr 2004 | A1 |
20040092892 | Kagan et al. | May 2004 | A1 |
20040092948 | Stevens et al. | May 2004 | A1 |
20040102845 | Reynolds | May 2004 | A1 |
20040110285 | Lendlein | Jun 2004 | A1 |
20040127475 | New et al. | Jul 2004 | A1 |
20040138748 | Boyer, II et al. | Jul 2004 | A1 |
20040167561 | Boucher et al. | Aug 2004 | A1 |
20040172132 | Ginn | Sep 2004 | A1 |
20040186576 | Biscup et al. | Sep 2004 | A1 |
20040193171 | DiMauro et al. | Sep 2004 | A1 |
20040210231 | Boucher et al. | Oct 2004 | A1 |
20040215202 | Preissman | Oct 2004 | A1 |
20040225296 | Reiss et al. | Nov 2004 | A1 |
20040225926 | Scales | Nov 2004 | A1 |
20040228898 | Ross et al. | Nov 2004 | A1 |
20040267271 | Scribner et al. | Dec 2004 | A9 |
20040267272 | Henniges | Dec 2004 | A1 |
20050010231 | Myers | Jan 2005 | A1 |
20050015148 | Jansen et al. | Jan 2005 | A1 |
20050059979 | Yetkinler | Mar 2005 | A1 |
20050070915 | Mazzuca et al. | Mar 2005 | A1 |
20050113843 | Arramon | May 2005 | A1 |
20050180806 | Green et al. | Aug 2005 | A1 |
20050209595 | Karmon | Sep 2005 | A1 |
20050222681 | Richley et al. | Oct 2005 | A1 |
20050245938 | Kochan | Nov 2005 | A1 |
20050251149 | Wenz | Nov 2005 | A1 |
20060052743 | Reynolds | Mar 2006 | A1 |
20060052794 | McGill et al. | Mar 2006 | A1 |
20060052873 | Buck et al. | Mar 2006 | A1 |
20060074433 | McGill et al. | Apr 2006 | A1 |
20060079905 | Beyar et al. | Apr 2006 | A1 |
20060100635 | Reiley et al. | May 2006 | A1 |
20060122614 | Truckai et al. | Jun 2006 | A1 |
20060122621 | Truckai et al. | Jun 2006 | A1 |
20060122622 | Truckai et al. | Jun 2006 | A1 |
20060122623 | Truckai et al. | Jun 2006 | A1 |
20060122624 | Truckai et al. | Jun 2006 | A1 |
20060122625 | Truckai et al. | Jun 2006 | A1 |
20060150862 | Zhao et al. | Jul 2006 | A1 |
20060182780 | Riley et al. | Aug 2006 | A1 |
20060264965 | Shadduck et al. | Nov 2006 | A1 |
20060264967 | Ferreyro et al. | Nov 2006 | A1 |
20070022912 | Zimmermann | Feb 2007 | A1 |
20070027230 | Beyar et al. | Feb 2007 | A1 |
20070042016 | Nayak et al. | Feb 2007 | A1 |
20070112299 | Smit et al. | May 2007 | A1 |
20070118144 | Truckai et al. | May 2007 | A1 |
20070162043 | Truckai et al. | Jul 2007 | A1 |
20070191858 | Truckai et al. | Aug 2007 | A1 |
20070191964 | Preissman | Aug 2007 | A1 |
20070198023 | Sand et al. | Aug 2007 | A1 |
20070233148 | Truckai et al. | Oct 2007 | A1 |
20070282346 | Scribner et al. | Dec 2007 | A1 |
20080103505 | Fransen | May 2008 | A1 |
20080195112 | Liu et al. | Aug 2008 | A1 |
20080255570 | Truckai et al. | Oct 2008 | A1 |
20090024161 | Bonutti et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
WO 02058592 | Aug 2002 | WO |
WO 02064062 | Aug 2002 | WO |
WO 02087416 | Nov 2002 | WO |
WO 2004075954 | Sep 2004 | WO |
WO 2006031490 | Mar 2006 | WO |
WO 2006062916 | Jun 2006 | WO |
WO 2006130491 | Dec 2006 | WO |
WO 2007028120 | Mar 2007 | WO |
Entry |
---|
Office Action in U.S. Appl. No. 11/196,045 mailed Mar. 26, 2008. |
Carrodeguas, et al., “Injectable Acrylic Bone Cements for Vertebroplasty with Improved Properties”, Journal of Biomedical Materials Research, XP002312783, vol. 68, No. 1, Jan. 15, 2004, pp. 94-104. |
Furderer S, Anders M, Schwindling B, Salick M, Duber C, Wenda K, Urban R, Gluck M, Eysel P., “Vertebral body stenting. A method for repositioning and augmenting vertebral compression fractures”, Orthopade. Apr. 2002; 31(4):356-61, Abstract. |
International Search Report, mailing date May 31, 2006, PCT/US2005/044055, 4 pg. |
Office Action in U.S. Appl. No. 11/165,045, mailed Mar. 26, 2008. |
Office Action in U.S. Appl. No. 11/165,651, mailed Sep. 21, 2007. |
Office Action in U.S. Appl. No. 11/165,651, mailed Mar. 24, 2008. |
Office Action in U.S. Appl. No. 11/165,652, mailed Oct. 3, 2007. |
Office Action in U.S. Appl. No. 11/165,652, mailed Mar. 20, 2008. |
Office Action in U.S. Appl. No. 11/166,045, mailed Mar. 26, 2008. |
Office Action in U.S. Appl. No. 11/196,089, mailed Jan. 3, 2008. |
Office Action in U.S. Appl. No. 11/208,448, mailed Nov. 30, 2007. |
Office Action in U.S. Appl. No. 11/209,035, mailed Jan. 30, 2008. |
International Search Report and Written Opinion, mailing date Sep. 11, 2008, PCT/US08/59305. |
Office Action in U.S. Appl. No. 11/165,652 mailed Sep. 19, 2008. |
Office Action in U.S. Appl. No. 11/165,651 mailed Sep. 22, 2008. |
Office Action in U.S. Appl. No. 11/196,045 mailed Oct. 3, 2008. |
Office Action in U.S. Appl. No. 11/196,089 mailed Sep. 19, 2008. |
Office Action in U.S. Appl. No. 11/208,448 mailed Sep. 8, 2008. |
Office Action in U.S. Appl. No. 11/209,035 mailed Sep. 18, 2008. |
Office Action dated Sep. 26, 2011 for U.S. Appl. No. 12/062,345. |
Number | Date | Country | |
---|---|---|---|
20080249530 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
60907467 | Apr 2007 | US | |
60907468 | Apr 2007 | US | |
60907469 | Apr 2007 | US | |
60929416 | Jun 2007 | US |