1. Field of the Invention
The present invention relates in certain embodiments to systems for treating vertebral compression fractures. In some embodiments, systems and methods for treating bone are disclosed that include delivering a bone fill material into bone, and heating the bone fill material using a vapor source to alter a property of the bone fill material prior to its introduction into bone. In one embodiment, a tubular sleeve is configured as a port that is screwed into the cortical bone of a pedicle to allow instrument exchange through the port into the interior of the vertebra. Another embodiment includes a member with an electrosurgical surface or a sensing electrode surface in a member that includes an insulative diamond-like surface coating.
2. Description of the Related Art
Osteoporotic fractures are prevalent in the elderly, with an annual estimate of 1.5 million fractures in the United States alone. These include 750,000 vertebral compression fractures (VCFs) and 250,000 hip fractures. The annual cost of osteoporotic fractures in the United States has been estimated at $13.8 billion. The prevalence of VCFs in women age 50 and older has been estimated at 26%. The prevalence increases with age, reaching 40% among 80-year-old women. Medical advances aimed at slowing or arresting bone loss from aging have not provided solutions to this problem. Further, the population affected will grow steadily as life expectancy increases. Osteoporosis affects the entire skeleton but most commonly causes fractures in the spine and hip. Spinal or vertebral fractures also cause other serious side effects, with patients suffering from loss of height, deformity and persistent pain which can significantly impair mobility and quality of life. Fracture pain usually lasts 4 to 6 weeks, with intense pain at the fracture site. Chronic pain often occurs when one vertebral level is greatly collapsed or multiple levels are collapsed.
Postmenopausal women are predisposed to fractures, such as in the vertebrae, due to a decrease in bone mineral density that accompanies postmenopausal osteoporosis. Osteoporosis is a pathologic state that literally means “porous bones”. Skeletal bones are made up of a thick cortical shell and a strong inner meshwork, or cancellous bone, of collagen, calcium salts and other minerals. Cancellous bone is similar to a honeycomb, with blood vessels and bone marrow in the spaces. Osteoporosis describes a condition of decreased bone mass that leads to fragile bones which are at an increased risk for fractures. In an osteoporosis bone, the sponge-like cancellous bone has pores or voids that increase in dimension making the bone very fragile. In young, healthy bone tissue, bone breakdown occurs continually as the result of osteoclast activity, but the breakdown is balanced by new bone formation by osteoblasts. In an elderly patient, bone resorption can surpass bone formation thus resulting in deterioration of bone density. Osteoporosis occurs largely without symptoms until a fracture occurs.
Vertebroplasty and kyphoplasty are recently developed techniques for treating vertebral compression fractures. Percutaneous vertebroplasty was first reported by a French group in 1987 for the treatment of painful hemangiomas. In the 1990's, percutaneous vertebroplasty was extended to indications including osteoporotic vertebral compression fractures, traumatic compression fractures, and painful vertebral metastasis. Vertebroplasty is the percutaneous injection of PMMA (polymethylmethacrylate) into a fractured vertebral body via a trocar and cannula. The targeted vertebrae are identified under fluoroscopy. A needle is introduced into the vertebrae body under fluoroscopic control, to allow direct visualization. A bilateral transpedicular (through the pedicle of the vertebrae) approach is typical but the procedure can be done unilaterally. The bilateral transpedicular approach allows for more uniform PMMA infill of the vertebra.
In a bilateral approach, approximately 1 to 4 ml of PMMA is used on each side of the vertebra. Since the PMMA needs to be forced into the cancellous bone, the techniques require high pressures and fairly low viscosity cement. Since the cortical bone of the targeted vertebra may have a recent fracture, there is the potential of PMMA leakage. The PMMA cement contains radiopaque materials so that when injected under live fluoroscopy, cement localization and leakage can be observed. The visualization of PMMA injection and extravasation are critical to the technique—and the physician terminates PMMA injection when leakage is evident. The cement is injected using syringes to allow the physician manual control of injection pressure.
Kyphoplasty is a modification of percutaneous vertebroplasty. Kyphoplasty involves a preliminary step consisting of the percutaneous placement of an inflatable balloon tamp in the vertebral body. Inflation of the balloon creates a cavity in the bone prior to cement injection. The proponents of percutaneous kyphoplasty have suggested that high pressure balloon-tamp inflation can at least partially restore vertebral body height. In kyphoplasty, some physicians state that PMMA can be injected at a lower pressure into the collapsed vertebra since a cavity exists, when compared to conventional vertebroplasty.
The principal indications for any form of vertebroplasty are osteoporotic vertebral collapse with debilitating pain. Radiography and computed tomography must be performed in the days preceding treatment to determine the extent of vertebral collapse, the presence of epidural or foraminal stenosis caused by bone fragment retropulsion, the presence of cortical destruction or fracture and the visibility and degree of involvement of the pedicles.
Leakage of PMMA during vertebroplasty can result in very serious complications including compression of adjacent structures that necessitate emergency decompressive surgery. See “Anatomical and Pathological Considerations in Percutaneous Vertebroplasty and Kyphoplasty: A Reappraisal of the Vertebral Venous System”, Groen, R. et al, Spine Vol. 29, No. 13, pp 1465-1471 2004. Leakage or extravasation of PMMA is a critical issue and can be divided into paravertebral leakage, venous infiltration, epidural leakage and intradiscal leakage. The exothermic reaction of PMMA carries potential catastrophic consequences if thermal damage were to extend to the dural sac, cord, and nerve roots. Surgical evacuation of leaked cement in the spinal canal has been reported. It has been found that leakage of PMMA is related to various clinical factors such as the vertebral compression pattern, and the extent of the cortical fracture, bone mineral density, the interval from injury to operation, the amount of PMMA injected and the location of the injector tip. In one recent study, close to 50% of vertebroplasty cases resulted in leakage of PMMA from the vertebral bodies. See Hyun-Woo Do et al, “The Analysis of Polymethylmethacrylate Leakage after Vertebroplasty for Vertebral Body Compression Fractures”, Jour. of Korean Neurosurg. Soc. Vol. 35, No. 5 (May 2004) pp. 478-82, (http://www.jkns.or.kr/htm/abstract.asp?no=0042004086).
Another recent study was directed to the incidence of new VCFs adjacent to the vertebral bodies that were initially treated. Vertebroplasty patients often return with new pain caused by a new vertebral body fracture. Leakage of cement into an adjacent disc space during vertebroplasty increases the risk of a new fracture of adjacent vertebral bodies. See Am. J. Neuroradiol. 2004 February; 25(2):175-80. The study found that 58% of vertebral bodies adjacent to a disc with cement leakage fractured during the follow-up period compared with 12% of vertebral bodies adjacent to a disc without cement leakage.
Another life-threatening complication of vertebroplasty is pulmonary embolism. See Bernhard, J. et al, “Asymptomatic diffuse pulmonary embolism caused by acrylic cement: an unusual complication of percutaneous vertebroplasty”, Ann. Rheum. Dis. 2003; 62:85-86. The vapors from PMMA preparation and injection also are cause for concern. See Kirby, B, et al., “Acute bronchospasm due to exposure to polymethylmethacrylate vapors during percutaneous vertebroplasty”, Am. J. Roentgenol. 2003; 180:543-544.
In both higher pressure cement injection (vertebroplasty) and balloon-tamped cementing procedures (kyphoplasty), the methods do not provide for well controlled augmentation of vertebral body height. The direct injection of bone cement simply follows the path of least resistance within the fractured bone. The expansion of a balloon applies also compacting forces along lines of least resistance in the collapsed cancellous bone. Thus, the reduction of a vertebral compression fracture is not optimized or controlled in high pressure balloons as forces of balloon expansion occur in multiple directions.
In a kyphoplasty procedure, the physician often uses very high pressures (e.g., up to 200 or 300 psi) to inflate the balloon which crushes and compacts cancellous bone. Expansion of the balloon under high pressures close to cortical bone can fracture the cortical bone, typically the endplates, which can cause regional damage to the cortical bone with the risk of cortical bone necrosis. Such cortical bone damage is highly undesirable as the endplate and adjacent structures provide nutrients for the disc.
Kyphoplasty also does not provide a distraction mechanism capable of 100% vertebral height restoration. Further, the kyphoplasty balloons under very high pressure typically apply forces to vertebral endplates within a central region of the cortical bone that may be weak, rather than distributing forces over the endplate.
There is a general need to provide bone cements and methods for use in treatment of vertebral compression fractures that provide a greater degree of control over introduction of cement and that provide better outcomes. The present invention meets this need and provides several other advantages in a novel and non-obvious manner.
Certain embodiments of the present invention are directed to systems for treating vertebral compression fractures. In some embodiments, systems and methods for treating bone are disclosed that include delivering a bone fill material into bone, and heating the bone fill material using a vapor source to alter a property of the bone fill material prior to its introduction into bone. In one embodiment, a tubular sleeve is configured as a port that is screwed into the cortical bone of a pedicle to allow instrument exchange through the port into the interior of the vertebra. Another embodiment includes a member with an electrosurgical surface or a sensing electrode surface in a member that includes an insulative diamond-like surface coating.
Certain embodiments of the invention provide vertebroplasty systems and methods for sensing retrograde bone cement flows that can migrate along a fractured path toward a pedicle and risk leakage into the spinal canal. The physician can be alerted instantaneously of cement migration in a direction that may impinge on nerves or the spinal cord. Other embodiments include integrated sensing systems and energy delivery systems for applying energy to tissue and/or to bone cement that migrates in a retrograde direction wherein the energy polymerizes the cement and/or coagulates tissue to create a dam to prevent further cement migration. In another embodiment, the systems provide a cooling system for cooling bone cement in a remote container or injection cannula for controlling and extending the working time of bone cement. In another embodiment, the bone cement injection system includes a thermal energy emitter for warming bone cement within an injector or for applying sufficient energy to accelerate polymerization and thereby increase the viscosity of the bone cement.
In one embodiment, a computer controller is provided to controls cement inflow parameters from a hydraulic source, the sensing system and energy delivery parameters for selectively heating tissue or polymerizing cement at both the interior and exterior of the injector to thereby control all parameters of cement injection to reduce workload on the physician.
In another embodiment, a lubricous surface layer is provided in the flow passageway of the bone cement injector to inhibit sticking of the bone cement to the wall of the flow channel of the introducer, particularly when heating the cement.
In accordance with one embodiment, a method for treating bone is provided, the method comprises advancing a bone cement injector into bone, providing a bone cement flow through the injector into the bone, and introducing vapor into the bone cement flow from at least one vapor outlet in the injector.
In accordance with another embodiment, a bone treatment system is provided. The bone treatment system comprises an elongated injector having a flow passageway extending therethrough, a source of bone fill material coupleable to the flow passageway and configured to deliver a flow of bone fill material through the flow passageway, and a vapor source operatively coupleable to at least one channel in the injector that is in communication with the flow passageway for injecting vapor into the flow passageway to heat the bone fill material in the passageway.
In accordance with another embodiment, a device for treating a bone is provided. The device comprises an elongated member having a flow passageway extending therethrough to a distal outlet opening, the elongated member configured for insertion into a bone and for delivering a bone fill material through the flow passageway. The elongated member further comprises at least one channel in communication with the flow passageway via a plurality of openings, the at least one channel configured to deliver a vapor therethrough into the flow passageway to heat a bone fill material flow.
These and other objects of the present invention will become readily apparent upon further review of the following drawings and specification.
In order to better understand the invention and to see how it may be carried out in practice, some preferred embodiments are next described, by way of non-limiting examples only, with reference to the accompanying drawings, in which like reference characters denote corresponding features consistently throughout similar embodiments in the attached drawings.
For the purpose of understanding the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and accompanying text that describe different embodiments of the invention. Referring to
As background, a vertebroplasty procedure using the embodiments disclosed herein can include insertion of the introducer of
Definitions
“Bone fill, fill material, or infill material or composition” includes its ordinary meaning and is defined as any material for infilling a bone that includes an in-situ hardenable material or that can be infused with a hardenable material. The fill material also can include other “fillers” such as filaments, microspheres, powders, granular elements, flakes, chips, tubules and the like, autograft or allograft materials, as well as other chemicals, pharmacological agents or other bioactive agents.
“Flowable material” includes its ordinary meaning and is defined as a material continuum that is unable to withstand a static shear stress and responds with an irrecoverable flow (a fluid)—unlike an elastic material or elastomer that responds to shear stress with a recoverable deformation. Flowable material includes fill material or composites that include a fluid (first) component and an elastic or inelastic material (second) component that responds to stress with a flow, no matter the proportions of the first and second component, and wherein the above shear test does not apply to the second component alone.
“Substantially” or “substantial” mean largely but not entirely. For example, substantially may mean about 10% to about 99.999%, about 25% to about 99.999% or about 50% to about 99.999%.
“Osteoplasty” includes its ordinary meaning and means any procedure wherein fill material is delivered into the interior of a bone.
“Vertebroplasty” includes its ordinary meaning and means any procedure wherein fill material is delivered into the interior of a vertebra.
In one embodiment as shown in
As can be seen in the embodiment shown in
In one embodiment and method of use, referring to
Now referring to
In the embodiment shown in the system of
In one embodiment depicted in
With continued reference to
The amorphous diamond-like carbon coatings and the diamond-like nanocomposites are available from Bekaert Progressive Composites Corporations, 2455 Ash Street, Vista, Calif. 92081 or its parent company or affiliates. Further information on the coating can be found at: http://www.bekaert.com/bac/Products/Diamond-like%20coatings.htm, the contents of which are incorporated herein by reference. The diamond-like coatings comprise amorphous carbon-based coatings with high hardness and low coefficient of friction. The amorphous carbon coatings exhibit non-stick characteristics and excellent wear resistance. The coatings can be thin, chemically inert and have a very low surface roughness. In one embodiment, the coatings have a thickness ranging between 0.001 mm and 0.010 mm; or between 0.002 mm and 0.005 mm. The diamond-like carbon coatings are a composite of sp2 and sp3 bonded carbon atoms with a hydrogen concentration between 0 and 80%. Another diamond-like nanocomposite coatings (a-C:H/a-Si:O; DLN) is made by Bakaert and is suitable for use in the bone cement injector as described in one embodiment of the invention. The materials and coatings are known by the names Dylyn®Plus, Dylyn®/DLC and Cavidur®.
In another embodiment, the bone cement injector 105 has a flow channel 122 extending therethrough with at least one open termination 125, wherein at least a portion of the surface layer 240 of the flow channel is ultrahydrophobic or hydrophobic which may better prevent a hydrophilic cement from sticking.
In another embodiment, the bone cement injector has a flow channel 122 extending therethrough with at least one open termination 125, wherein at least a portion of the surface layer 240 of the flow channel is hydrophilic for which may prevent a hydrophobic cement from sticking.
In another embodiment, the bone cement injector has a flow channel 122 extending therethrough with at least one open termination in a distal end thereof, wherein the surface layer 240 of the flow channel has high dielectric strength, a low dissipation factor, and/or a high surface resistivity.
In another embodiment, the bone cement injector has a flow channel 122 extending therethrough with at least one open termination 125 in a distal end thereof, wherein the surface layer 240 of the flow channel is oleophobic. In another embodiment, the bone cement injector has a flow channel 122 extending therethrough with at least one open termination 125 in a distal end thereof, wherein the surface layer 240 of the flow channel has a substantially low coefficient of friction polymer or ceramic.
In another embodiment, the bone cement injector has a flow channel 122 extending therethrough with at least one open termination 125 in a distal end thereof, wherein the surface layer 240 of the flow channel has a wetting contact angle greater than 70°, greater than 85°, and greater than 100°.
In another embodiment, the bone cement injector has a flow channel 122 extending therethrough with at least one open termination in a distal end thereof, wherein the surface layer 240 of the flow channel has an adhesive energy of less than 100 dynes/cm, less than 75 dynes/cm, and less than 50 dynes/cm.
The apparatus above also can be configured with any other form of thermal energy emitter that includes the non-stick and/or lubricious surface layer as described above. In one embodiment, the thermal energy emitter can comprise at least in part an electrically conductive polymeric layer. In one such embodiment, the electrically conductive polymeric layer has a positive temperature coefficient of resistance.
Methods and apparatus for generating vapor that may be relevant for the present invention are generally disclosed in U.S. Pat. Nos. 6,911,028, 6,508,816, 6,210,404 and U.S. Application Ser. No. 60/615,900 filed Oct. 5, 2004 titled “Medical Instruments and Techniques for Thermally-Mediated Procedures”, Ser. No. 60/643,045 filed Jan. 11, 2005 titled “Surgical Instrument and Method of Use”, Ser. No. 11/158,930 filed Jun. 22, 2005 titled “Medical Instruments and Techniques for Treating Pulmonary Disorders”, Ser. No. 11/244,329 filed Oct. 5, 2005 titled “Medical Instruments and Methods of Use” and Ser. No. 11/329,381 filed Jan. 10, 2006 titled “Medical Instrument and Method of Use”, all of which specifications are incorporated herein by reference.
The source 110 of bone fill material is coupleable to the flow passageway 422, and the vapor source 410 can be sealably coupled to a port 442 in a proximal portion of the injector 105 so as to be in fluid communication with the flow channel 422 for injecting vapor into the flow channel 422.
The controller 440, in one embodiment, can control pressure, flow rates, and material flow intervals in the injector 105 from the source of bone fill material 110. The controller 440 can in one embodiment further control at least one of the pressure, temperature, vapor quality, flow rate, and vapor flow intervals in the injector 105 from the vapor source 410. In one embodiment, the vapor source 410 pulses the vapor flow into the flow passageway 422. The vapor source 410 can be any of the resistive or RF systems described in the patents and patent applications above. For example, a resistive heater can be used to heat a fluid to generate the vapor that is directed to the bone fill material 145 for heating the same.
In another embodiment, the elongated introducer 120 of the bone treatment device can have a distal portion that is flexible, such as one formed from a high-temperature polymer. In another embodiment, the elongated member 120 is deflectable or articulatable.
The device of
In general, the method of treating bone, comprises advancing a bone cement injector into bone, providing a bone cement flow through the injector, and introducing vapor into the bone cement flow from at least one vapor outlet in the injector. The method utilizes a vapor that has a heat of vaporization of greater that about 60° C., 80° C. and 100° C. The vapor can be generated from at least one of water, saline, Ringer's solution, hypertonic saline and alcohol. The vapor advantageously elevates the temperature of the bone cement flow, thereby altering its viscosity. The method includes the vapor undergoing a phase change upon interaction with the bone cement to deliver energy thereto. The method introduces the vapor from a vapor source 410 remote from the injector, or the vapor can be generated within the injector (e.g., with an energy emitter within the injector 105 that applies heat to a fluid to generate vapor, as discussed above).
In another aspect of the invention, the vapor creates a bone cement emulsion, a foam-like bone cement, or an open-cell bone cement in a cured condition. In one embodiment, the method introduces the vapor to create a vortex in the bone cement.
In another embodiment and method, a flexible or shape memory bone cement injector can be introduced into a curved path in bone, and then cement can be injected from a plurality of ports along the length of the injector working end together with vapor.
The scope of the invention includes, but is not limited to, using additional filler materials such as porous scaffold elements and materials for allowing or accelerating bone ingrowth. In any embodiment, the filler material can comprise reticulated or porous elements of the types disclosed in co-pending U.S. patent application Ser. No. 11/146,891, filed Jun. 7, 2005, titled “Implants and Methods for Treating Bone,” which is incorporated herein by reference in its entirety and should be considered a part of this specification. Such fillers also can carry bioactive agents. Additional fillers, or the conductive filler, also can include thermally insulative solid or hollow microspheres of a glass or other material for reducing heat transfer to bone from the exothermic reaction in a typical bone cement component.
The above description of certain preferred embodiments of the invention is intended to be illustrative and not exhaustive. Particular characteristics, features, dimensions and the like that are presented in dependent claims can be combined and fall within the scope of the invention. The invention also encompasses embodiments as if dependent claims were alternatively written in a multiple dependent claim format with reference to other independent claims. Specific characteristics and features as described in certain embodiments of the invention and its method are described in relation to some figures and not in others, and this is for convenience only. While the principles of the invention have been made clear in the exemplary descriptions and combinations, it will be obvious to those skilled in the art that modifications may be utilized in the practice of the invention, and otherwise, which are particularly adapted to specific environments and operative requirements without departing from the principles of the invention. The appended claims are intended to cover and embrace any and all such modifications, with the limits only of the true purview, spirit and scope of the invention.
Of course, the foregoing description is that of certain features, aspects and advantages of the present invention, to which various changes and modifications can be made without departing from the spirit and scope of the present invention. Moreover, the bone treatment systems and methods need not feature all of the objects, advantages, features and aspects discussed above. Thus, for example, those skilled in the art will recognize that the invention can be embodied or carried out in a manner that achieves or optimizes one advantage or a group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein. In addition, while a number of variations of the invention have been shown and described in detail, other modifications and methods of use, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is contemplated that various combinations or sub-combinations of these specific features and aspects of embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the discussed bone treatment systems and methods.
This application claims the benefit of U.S. Provisional Patent Application No. 60/873,590, filed on Dec. 8, 2006, the entire contents of which are hereby incorporated by reference and should be considered a part of this specification. The present application is related to the following U.S. Patent Applications: App. Ser. No. 11/469,764 filed Sept. 1, 2006; App. Ser. No. 11/165,652 filed Jun. 24, 2005; App. Ser. No. 60/726,152 filed Oct. 13, 2005 titled Bone Treatment Systems and Methods; and App. Ser. No. 11/209,035 filed Aug. 22, 2005. The entire contents of all of the above applications are hereby incorporated by reference and should be considered a part of this specification.
Number | Name | Date | Kind |
---|---|---|---|
3349840 | Tope et al. | Oct 1967 | A |
4265618 | Herskovitz et al. | May 1981 | A |
4280233 | Raab | Jul 1981 | A |
4294251 | Greenwald et al. | Oct 1981 | A |
4338925 | Miller | Jul 1982 | A |
4377168 | Rzasa et al. | Mar 1983 | A |
4735625 | Davidson | Apr 1988 | A |
4772287 | Ray et al. | Sep 1988 | A |
4849223 | Pratt et al. | Jul 1989 | A |
4959104 | Lino et al. | Sep 1990 | A |
4963151 | Ducheyne et al. | Oct 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
4969906 | Kronman | Nov 1990 | A |
5037437 | Matsen, III | Aug 1991 | A |
5051482 | Tepic | Sep 1991 | A |
5108404 | Scholten et al. | Apr 1992 | A |
5130950 | Orban et al. | Jul 1992 | A |
5145250 | Planck et al. | Sep 1992 | A |
5336700 | Murray | Aug 1994 | A |
5431654 | Nic | Jul 1995 | A |
5514135 | Earle | May 1996 | A |
5542928 | Evans et al. | Aug 1996 | A |
5574075 | Draenert | Nov 1996 | A |
5679299 | Gilbert et al. | Oct 1997 | A |
5693099 | Harle | Dec 1997 | A |
5788711 | Lehner et al. | Aug 1998 | A |
5814681 | Hino et al. | Sep 1998 | A |
5954716 | Sharkey et al. | Sep 1999 | A |
6048346 | Reiley | Apr 2000 | A |
6075067 | Lidgren | Jun 2000 | A |
6122549 | Sharkey et al. | Sep 2000 | A |
6171312 | Beaty | Jan 2001 | B1 |
6210404 | Shadduck | Apr 2001 | B1 |
6231615 | Preissman | May 2001 | B1 |
6235043 | Reiley et al. | May 2001 | B1 |
6236020 | Friedman | May 2001 | B1 |
6241734 | Scribner | Jun 2001 | B1 |
6248110 | Reiley et al. | Jun 2001 | B1 |
6261289 | Levy | Jul 2001 | B1 |
6264659 | Ross et al. | Jul 2001 | B1 |
6280456 | Scribner | Aug 2001 | B1 |
6309420 | Preissman | Oct 2001 | B1 |
6312254 | Friedman | Nov 2001 | B1 |
6316885 | Collins et al. | Nov 2001 | B1 |
6319255 | Grundei et al. | Nov 2001 | B1 |
6332894 | Stalcup et al. | Dec 2001 | B1 |
6358254 | Anderson | Mar 2002 | B1 |
6395007 | Bhatnagar et al. | May 2002 | B1 |
6425923 | Stalcup et al. | Jul 2002 | B1 |
6436143 | Ross et al. | Aug 2002 | B1 |
6439439 | Rickard | Aug 2002 | B1 |
6443988 | Felt et al. | Sep 2002 | B2 |
6447514 | Stalcup et al. | Sep 2002 | B1 |
6458127 | Truckai | Oct 2002 | B1 |
6458375 | Gertzman et al. | Oct 2002 | B1 |
6458812 | McKittrick et al. | Oct 2002 | B1 |
6485436 | Truckai et al. | Nov 2002 | B1 |
6508816 | Shadduck | Jan 2003 | B2 |
6524102 | Davis | Feb 2003 | B2 |
6610079 | Li et al. | Aug 2003 | B1 |
6613054 | Scribner et al. | Sep 2003 | B2 |
6632235 | Weikel et al. | Oct 2003 | B2 |
6676664 | Al-Assir | Jan 2004 | B1 |
6706069 | Berger | Mar 2004 | B2 |
6709149 | Tepic | Mar 2004 | B1 |
6712852 | Chung et al. | Mar 2004 | B1 |
6716216 | Boucher | Apr 2004 | B1 |
6723095 | Hammerslag | Apr 2004 | B2 |
6726691 | Osorio et al. | Apr 2004 | B2 |
6726991 | Kaeding et al. | Apr 2004 | B2 |
6740093 | Hochschuler et al. | May 2004 | B2 |
6767936 | Walz et al. | Jul 2004 | B2 |
6783515 | Miller | Aug 2004 | B1 |
6814736 | Reiley | Nov 2004 | B2 |
6872403 | Pienkowski et al. | Mar 2005 | B2 |
6890332 | Truckai et al. | May 2005 | B2 |
6899713 | Shaolian et al. | May 2005 | B2 |
6911028 | Shadduck | Jun 2005 | B2 |
6929640 | Underwood | Aug 2005 | B1 |
6958061 | Truckai | Oct 2005 | B2 |
6964667 | Shaolian et al. | Nov 2005 | B2 |
6979352 | Reynolds | Dec 2005 | B2 |
6981981 | Reiley | Jan 2006 | B2 |
6985061 | Hafskjold et al. | Jan 2006 | B2 |
7008433 | Voellmicke et al. | Mar 2006 | B2 |
7044954 | Reiley | May 2006 | B2 |
7081125 | Edwards et al. | Jul 2006 | B2 |
7091460 | Kinzer | Aug 2006 | B2 |
7108696 | Daniel et al. | Sep 2006 | B2 |
7112205 | Carrlson | Sep 2006 | B2 |
7115163 | Zimmermann | Oct 2006 | B2 |
7153306 | Ralph | Dec 2006 | B2 |
7153307 | Scribner | Dec 2006 | B2 |
7160020 | Sand | Jan 2007 | B2 |
7273523 | Wenz | Sep 2007 | B2 |
7306598 | Truckai et al. | Dec 2007 | B2 |
7335195 | Mehier | Feb 2008 | B2 |
7341569 | Soltani et al. | Mar 2008 | B2 |
7357802 | Palanker et al. | Apr 2008 | B2 |
7559932 | Truckai et al. | Jul 2009 | B2 |
7632294 | Milbocker et al. | Dec 2009 | B2 |
7662133 | Scarborough et al. | Feb 2010 | B2 |
7674259 | Shadduck | Mar 2010 | B2 |
20010011190 | Park | Aug 2001 | A1 |
20010012968 | Preissman | Aug 2001 | A1 |
20020026195 | Layne et al. | Feb 2002 | A1 |
20020032447 | Weikel et al. | Mar 2002 | A1 |
20020068974 | Kuslich et al. | Jun 2002 | A1 |
20020082608 | Reiley et al. | Jun 2002 | A1 |
20020099385 | Ralph et al. | Jul 2002 | A1 |
20020147497 | Belef et al. | Oct 2002 | A1 |
20020156483 | Voellmicke et al. | Oct 2002 | A1 |
20020161373 | Osorio et al. | Oct 2002 | A1 |
20020165582 | Porter | Nov 2002 | A1 |
20020183758 | Middleton et al. | Dec 2002 | A1 |
20030012080 | Coffeen et al. | Jan 2003 | A1 |
20030032733 | Fisher et al. | Feb 2003 | A1 |
20030032929 | McGuckin | Feb 2003 | A1 |
20030130373 | Walz et al. | Jul 2003 | A1 |
20030130664 | Boucher et al. | Jul 2003 | A1 |
20030130738 | Hovda et al. | Jul 2003 | A1 |
20030171748 | Truckai et al. | Sep 2003 | A1 |
20030208192 | Truckai et al. | Nov 2003 | A1 |
20030220648 | Osorio et al. | Nov 2003 | A1 |
20030233096 | Osorio et al. | Dec 2003 | A1 |
20040006347 | Sproul | Jan 2004 | A1 |
20040024410 | Olson, Jr. et al. | Feb 2004 | A1 |
20040059328 | Daniel et al. | Mar 2004 | A1 |
20040068306 | Shadduck | Apr 2004 | A1 |
20040073308 | Kuslich et al. | Apr 2004 | A1 |
20040083002 | Belef et al. | Apr 2004 | A1 |
20040091366 | Chung et al. | May 2004 | A1 |
20040092948 | Stevens et al. | May 2004 | A1 |
20040102845 | Reynolds | May 2004 | A1 |
20040110285 | Lendlein | Jun 2004 | A1 |
20040138655 | McClurken et al. | Jul 2004 | A1 |
20040138748 | Boyer, II et al. | Jul 2004 | A1 |
20040167561 | Boucher et al. | Aug 2004 | A1 |
20040172132 | Ginn | Sep 2004 | A1 |
20040186576 | Biscup et al. | Sep 2004 | A1 |
20040193171 | DiMauro et al. | Sep 2004 | A1 |
20040199226 | Shadduck | Oct 2004 | A1 |
20040225296 | Reiss et al. | Nov 2004 | A1 |
20040225926 | Scales et al. | Nov 2004 | A1 |
20040228898 | Ross et al. | Nov 2004 | A1 |
20040267271 | Scribner et al. | Dec 2004 | A9 |
20040267272 | Henniges | Dec 2004 | A1 |
20050010231 | Myers | Jan 2005 | A1 |
20050015148 | Jansen et al. | Jan 2005 | A1 |
20050059979 | Yetkinler et al. | Mar 2005 | A1 |
20050070913 | Milbocker et al. | Mar 2005 | A1 |
20050113843 | Arramon | May 2005 | A1 |
20050119650 | Sanders et al. | Jun 2005 | A1 |
20050180806 | Green et al. | Aug 2005 | A1 |
20050199386 | Kinzer | Sep 2005 | A1 |
20050199650 | Nyhof et al. | Sep 2005 | A1 |
20050209595 | Karmon | Sep 2005 | A1 |
20050222681 | Richley et al. | Oct 2005 | A1 |
20050245938 | Kochan | Nov 2005 | A1 |
20050251149 | Wenz | Nov 2005 | A1 |
20050282117 | Aravena et al. | Dec 2005 | A1 |
20060052743 | Reynolds | Mar 2006 | A1 |
20060052794 | McGill et al. | Mar 2006 | A1 |
20060064145 | Podhajsky | Mar 2006 | A1 |
20060074433 | McGill et al. | Apr 2006 | A1 |
20060079905 | Beyar et al. | Apr 2006 | A1 |
20060095138 | Truckai et al. | May 2006 | A1 |
20060100635 | Reiley et al. | May 2006 | A1 |
20060100706 | Shadduck et al. | May 2006 | A1 |
20060106459 | Truckai et al. | May 2006 | A1 |
20060122614 | Truckai et al. | Jun 2006 | A1 |
20060122621 | Truckai et al. | Jun 2006 | A1 |
20060122622 | Truckai et al. | Jun 2006 | A1 |
20060122623 | Truckai et al. | Jun 2006 | A1 |
20060122624 | Truckai et al. | Jun 2006 | A1 |
20060122625 | Truckai et al. | Jun 2006 | A1 |
20060135955 | Shadduck | Jun 2006 | A1 |
20060150862 | Zhao et al. | Jul 2006 | A1 |
20060224154 | Shadduck | Oct 2006 | A1 |
20060229625 | Truckai et al. | Oct 2006 | A1 |
20060229628 | Truckai et al. | Oct 2006 | A1 |
20060264965 | Shadduck et al. | Nov 2006 | A1 |
20070022912 | Zimmermann | Feb 2007 | A1 |
20070027230 | Beyar et al. | Feb 2007 | A1 |
20070032567 | Beyar et al. | Feb 2007 | A1 |
20070032785 | Diederich et al. | Feb 2007 | A1 |
20070055277 | Osorio et al. | Mar 2007 | A1 |
20070098801 | Verreck et al. | May 2007 | A1 |
20070112299 | Smit et al. | May 2007 | A1 |
20070118144 | Truckai et al. | May 2007 | A1 |
20070162043 | Truckai et al. | Jul 2007 | A1 |
20070185231 | Liu et al. | Aug 2007 | A1 |
20070191858 | Truckai et al. | Aug 2007 | A1 |
20070191964 | Preissman | Aug 2007 | A1 |
20070233148 | Truckai et al. | Oct 2007 | A1 |
20070233249 | Shadduck | Oct 2007 | A1 |
20070233250 | Shadduck | Oct 2007 | A1 |
20070260250 | Wisnewski et al. | Nov 2007 | A1 |
20080103505 | Fransen | May 2008 | A1 |
20080132826 | Shadduck | Jun 2008 | A1 |
20080195112 | Liu et al. | Aug 2008 | A1 |
20080208196 | Daum | Aug 2008 | A1 |
20080319445 | McGill et al. | Dec 2008 | A9 |
20090024161 | Bonutti et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
WO 02058592 | Aug 2002 | WO |
WO 02064062 | Aug 2002 | WO |
WO 02087416 | Nov 2002 | WO |
WO 2004075954 | Sep 2004 | WO |
WO 2006031490 | Mar 2006 | WO |
WO 2006062916 | Jun 2006 | WO |
WO 2006062939 | Jun 2006 | WO |
WO 2006130491 | Dec 2006 | WO |
WO 2007028120 | Mar 2007 | WO |
WO 2008097855 | Aug 2008 | WO |
WO 2009108893 | Sep 2009 | WO |
Entry |
---|
International Search Report PCT/US2005/043984, mailed Jun. 20, 2006. |
International Search Report PCT/US2005/044055, mailed May 31, 2006. |
U.S. Appl. No. 11/469,752, filed Sep. 1, 2006, Truckai et al. |
U.S. Appl. No. 11/469,769, filed Sep. 1, 2006, Truckai et al. |
International Search Report for PCT Application No. PCT/US2006/034409 mailed Apr. 16, 2007. |
Office Action in U.S. Appl. No. 11/148,973 mailed Jun. 29, 2007. |
Office Action in U.S. Appl. No. 11/148,973 mailed Feb. 28, 2008. |
Office Action in U.S. Appl. No. 11/165,045 mailed Mar. 26, 2008. |
Office Action in U.S. Appl. No. 11/165,651 mailed Sep. 21, 2007. |
Office Action in U.S. Appl. No. 11/165,651 mailed Mar. 24, 2008. |
Office Action in U.S. Appl. No. 11/165,651, mailed Sep. 22, 2008. |
Office Action in U.S. Appl. No. 11/165,652 mailed Oct. 3, 2007. |
Office Action in U.S. Appl. No. 11/165,652 mailed Mar. 20, 2008. |
Office Action in U.S. App. No. 11/165,652, mailed Sep. 19, 2008. |
Office Action in U.S. Appl. No. 11/196,089 mailed Jan. 3, 2008. |
Office Action in U.S. Appl. No. 11/196,089, mailed Sep. 19, 2008. |
Office Action in U.S. Appl. No. 11/208,448 mailed Nov. 30, 2007. |
Office Action in U.S. Appl. No. 11/208,448, mailed Sep. 8, 2008. |
Office Action in U.S. Appl. No. 11/209,035 mailed Jan. 3, 2008. |
Office Action in U.S. Appl. No. 11/209,035 mailed Sep. 18, 2008. |
Allowed Claims in U.S. Appl. No. 11/165,651. |
Carrodeguas, et al., “Injectable Acrylic Bone Cements for Vertebroplasty with Improved Properties”, Journal of Biomedical Materials Research, XP002312783, vol. 68, No. 1, Jan. 15, 2004, pp. 94-104. |
Furderer S, Anders M, Schwindling B, Salick M, Duber C, Wenda K, Urban R, Gluck M, Eysel P., “Vertebral body stenting. A method for repositioning and augmenting vertebral compression fractures”, Orthopade. Apr. 2002; 31(4):356-61, Abstract. |
Pending Claims in the Amendment in response to non-final Office Action mailed Sep. 19, 2008 in U.S. Appl. No. 11/165,652. |
Pending Claims in the Amendment in response to non-final Office Action mailed Sep. 22, 2008 in U.S. Appl. No. 11/165,651. |
Office Action in U.S. Appl. No. 11/196,045, mailed Oct. 3, 2008. |
Office Action in U.S. Appl. No. 11/196,045, mailed Apr. 3, 2009. |
Office Action in U.S. Appl. No. 11/196,045, mailed Jan. 7, 2010. |
Pending Claims in the Amendment in response to non-final Office Action mailed Oct. 3, 2008 in U.S. Appl. No. 11/196,045. |
Office Action in U.S. Appl. No. 11/196,089, mailed May 8, 2009. |
Office Action in U.S. Appl. No. 11/196,089, mailed Dec. 28, 2009. |
Office Action in U.S. Appl. No. 11/208,448, mailed Apr. 3, 2009. |
Office Action in U.S. Appl. No. 11/208,448, mailed Dec. 29, 2009. |
Pending Claims in the Amendment in response to non-final Office Action mailed Sep. 8, 2008 in U.S. Appl. No. 11/208,448. |
Office Action in U.S. Appl. No. 11/209,035, mailed May 20, 2009. |
Exam Report for EPO App. 05 848 386.8 dated Sep. 18, 2009 in 5 pgs. |
Office Action in U.S. Appl. No. 11/148,973, mailed Apr. 16, 2009. |
Office Action in U.S. Appl. No. 11/148,973, mailed Sep. 26, 2009. |
Office Action in U.S. Appl. No. 11/148,973, mailed Nov. 27, 2009. |
Office Action in U.S. Appl. No. 11/469,769, mailed Dec. 11, 2008. |
Office Action in U.S. Appl. No. 11/469,769, mailed Oct. 2, 2009. |
Number | Date | Country | |
---|---|---|---|
20080154273 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
60873590 | Dec 2006 | US |