Bone void forming apparatus

Abstract
A bone void forming assembly includes a support member having a head portion and an elongate portion extending therefrom. A guide member is connected to the support member and has a guide body including a channel extending therethrough. The channel defines an axis offset and obliquely angled relative to an axis of the elongate portion. The assembly also includes reamer having a cutting head and a stop member. A bushing is slidably connected to the reamer between the stop member and cutting head and is slidably connectable to the guide body via the channel.
Description
BACKGROUND OF THE INVENTION

Joint replacement surgery is a common orthopedic procedure to repair and replace a damaged, diseased, or otherwise unhealthy joint. These procedures generally fall into two categories: primary and revision. In a primary joint replacement, the operator replaces the native joint with prosthetic components typically by first resecting the native bone and/or cartilage and then affixing the prosthetic components to the resected bone.


A revision procedure is performed to replace the primary prosthesis, or in some instances, a previously implanted revision prosthesis. Typically, during a revision procedure, the previously implanted prosthesis is extracted and the underlying bone resurfaced in preparation for receipt of the revision prosthesis. Bone defects in the form of bone loss or deterioration are frequently exposed upon extraction of the previously implanted prosthesis. These defects often reside within the epiphyseal and metaphyseal regions of the bone and extend radially outwardly from the center of the bone. Such defects may be caused by, inter alia, osteolysis, necrosis, infection, and bone incidentally removed along with the previously implanted prosthesis. In order to account for such defects, numerous void filling implants, such as that disclosed in Noiles U.S. Pat. No. 4,846,839, for example, have been developed to fill the voids formed by these defects and to provide structural support for the bone and prosthesis.


Despite the benefits of these void filling implants, their use in complex revision procedures may further complicate the procedure. Prior to extraction of a previously implanted prosthesis, the joint must be exposed. In an example of a total knee replacement, exposure can be made difficult for a number of reasons, such as an exceptionally tight extensor mechanism, which may be due to an improperly fitted prosthesis. One technique for exposing difficult-to-expose knees is a tibial tubercle osteotomy in which the patella tendon is released from the tibia by resecting the bone surrounding the tibial tubercle, which is later resecured to the tibia by at least one fixation device, such as a bone screw or cerclage wire, for example. However, the presence of a void filler, or even an intramedullary stem, creates an obstacle for the fixation device that must be navigated, oftentimes blind, resulting in increased complication of the procedure.


In another example, a patient may suffer an extensor mechanism complication, such as patellar tendon rupture, that must be repaired during the revision procedure. The ruptured tendon may be repaired by an allograft technique where a bone plug with an attached tendon is secured to the tibia also by a fixation device. Again the presence of a void filler or intramedullary stem may interfere with such a repair.


Therefore there is a need for a void filling prosthesis that facilitates bone-to-bone fixation and tissue-to-bone fixation.


BRIEF SUMMARY OF THE INVENTION

Generally, disclosed herein are devices and methods for filling bone voids and also providing means for soft tissue and/or bone-to-bone fixation.


In one aspect of the disclosure, a void filling prosthesis, includes first and second ends defining a length therebetween and outer and inner surfaces defining a sidewall therebetween. The sidewall is at least partially curved about an axis that extends along the length. The void filling prosthesis also includes a fixation prominence extending from the outer surface and includes a first aperture extending in a direction toward the sidewall.


Additionally, the first aperture may be threaded to receive a threaded fastener. A second aperture may define a passageway extending entirely through the fixation prominence. Furthermore, a third aperture may be disposed adjacent to the first aperture. The second aperture may extend through the fixation prominence between the first and third apertures. Also, the first and third apertures may extend parallel to each other and the second aperture may extend substantially perpendicular to the first and third apertures.


Continuing with this aspect, the inner surface may include a solid material and the outer surface may include a porous material. The fixation prominence may be at least partially comprised of a porous metal material. Also, the void filler may include first and second portions and a channel extending therethrough. The channel may define the inner surface. Further, the first and second portions may each be substantially frustoconical. The void filler may also include at least one notch in the sidewall. The first portion may be configured to fit in a void formed in a metaphysis of a long bone and the second portion may be configured to fit in a void formed in a diaphysis of a long bone. The long bone may be a tibia. The fit of the first portion in the void may be a press-fit.


In another aspect of the disclosure, a void filling prosthesis includes first and second ends and an inner surface disposed therebetween. The inner surface defines a channel that extends through the entirety of the prosthesis and is configured to receive an elongate portion of a joint prosthesis therein. The void filling prosthesis also includes a fixation prominence extending from an outer surface of the prosthesis and has at least one fixation aperture.


Additionally, the at least one fixation aperture may a threaded opening. Also, the channel may extend along a longitudinal axis of the void filling prosthesis and the at least one fixation aperture may extend through the fixation prominence in a direction transverse to the longitudinal axis.


Continuing with this aspect, the at least one fixation aperture may be a plurality of fixation apertures that include a first set of fixation apertures that each have a threaded inner surface and a second set of fixation apertures that are oriented in a direction transverse to the first set of fixation apertures. The first set of fixation apertures may extend partially into the fixation prominence and the second set of fixation apertures extend through the fixation prominence.


In a further aspect of the disclosure, a prosthetic system for implantation into an end of bone includes a first prosthesis having a stem, and a second prosthesis having first and second ends and inner and outer surfaces extending between the first and second ends. The inner surface defines a channel for receipt of the stem. The outer surface has at least one fixation aperture extending therein.


Additionally, the channel may be configured to receive the stem such that a gap sufficiently large to support a cement mantle is formed between the stem and the inner surface of the second prosthesis. The second prosthesis may include a first portion configured to be received within a metaphysis of the bone and a second portion configured to be received within a diaphysis of the bone.


Continuing with this aspect, the second prosthesis may include a fixation prominence extending radially outwardly therefrom. The at least one fixation aperture may extend into the fixation prominence. The fixation prominence may extend along the first and second portions. The fixation prominence may include an intermediate segment that is at least partially cylindrical and the at least one fixation aperture may extend into the intermediate segment. The at least one fixation aperture may be threaded. The fixation prominence may include first and second flanking segments that flank the intermediate segment. The thickness of the void filler is may be greater at the intermediate segment than at the flanking segments.


In a still further aspect of the disclosure, a method of implanting a void filling prosthesis into an end of bone includes inserting a void filling prosthesis into a void in the bone. The void filling prosthesis has first and second ends and a fixation prominence extending therefrom. The fixation prominence has at least one fixation aperture. The method also includes advancing a first fixation device through the bone and at least partially into the fixation aperture.


Additionally, the inserting step may include inserting the void filling prosthesis so that the second end is disposed within the bone and the first end is flush with the end of the bone or disposed within the bone. The fixation aperture and fixation device may be correspondingly threaded. The method may also include reaming a first portion of the bone to receive a first frustoconical portion of the void filling prosthesis, and reaming a second portion of the bone to receive the fixation prominence. The method may also include inserting a body of an aiming device into the first end of the void filling prosthesis. The aiming device may include an aiming arm that has at least one guide aperture. The method may also include aligning the at least one guide aperture with at least one fixation aperture.


In yet a further aspect of the disclosure, a method of implanting a void filling prosthesis into an end of bone includes inserting a void filling prosthesis into a void in the bone. The void filling prosthesis has first and second ends and inner and outer surfaces disposed therebetween. The inner surface defines a channel that extends through the entirety of the prosthesis and is configured to receive an elongate portion of a joint prosthesis. The outer surface includes at least one fixation aperture. The method also includes advancing a first fixation device through the bone and at least partially into the fixation aperture.


Additionally, the method may also include inserting the elongate portion of a joint prosthesis into and through the channel such that at least a portion of the elongate portion extends from the second end of the void filling prosthesis.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:



FIG. 1 is a front view of one embodiment of a void filling prosthesis.



FIG. 2 is a perspective view of the void filling prosthesis of FIG. 1.



FIG. 3 is perspective view of one embodiment of a bone resection assembly.



FIG. 4 is a perspective view of the void filling prosthesis of FIG. 1 and an aiming device.





DETAILED DESCRIPTION

When referring to specific directions in the following discussion of certain implantable devices, it should be understood that such directions are described with regard to the implantable device's orientation and position during exemplary application to the human body. Thus, as used herein, the term “proximal” means close to the heart and the term “distal” means more distant from the heart. The term “anterior” means toward the front of the body or the face and the term “posterior” means toward the back of the body. The term “medial” means toward the midline of the body and the term “lateral” means away from the midline of the body. Also, as used herein, the terms “about,” “generally” and “substantially” are intended to mean that deviations from absolute are included within the scope of the term so modified.



FIGS. 1 and 2 depict a void filler 10 or void filling prosthesis that is configured for placement within a void in a tibia and generally includes a metaphyseal portion or first portion 12, a diaphyseal portion or second portion 14, and a fixation prominence 16 that extends along portions of metaphyseal and diaphyseal portions 12 and 14. It is noted that, while the following discussion refers to void filler 10 in relation to a tibia, the same principles apply for a void filler that may be utilized in a proximal humerus or distal or proximal femur. Of course, it is also envisioned that the present invention may have applicability elsewhere in the body.


Metaphyseal portion 12, as shown, is generally frustoconical. However, in some embodiments, metaphyseal portion 12 may be cylindrical. In other embodiments metaphyseal portion 12 may include lobed portions, asymmetrical geometries or other geometries that extend beyond the general frustoconical shape in order to help address asymmetric or lateral and/or medial defects in the bone. Examples of alternate geometrical shapes that can be employed are disclosed in U.S. Publication Nos. 2013/0150858; 2013/0172892; 2014/0276882; and 2014/0277567, the disclosures of which are hereby incorporated-by-reference herein in their entireties.


A channel extends through metaphyseal portion 10 and defines an inner surface 26 and a sidewall 30. Inner surface 26 is preferably a stepped surface or otherwise textured surface to promote bone cement adhesion. Metaphyseal portion 12 also includes notches 28 in sidewall 30 that form a clearance space for a baseplate keel of a tibial component.


Diaphyseal portion 14 is generally cylindrical or frustoconical to substantially match the intramedullary canal of a long bone. In some embodiments, diaphyseal portion 14 may be frustoconical with a cylindrical distal end. Diaphyseal portion 14 extends distally from metaphyseal portion 12, and the channel that extends through metaphyseal portion 12 also extends through diaphyseal portion 14 so that the channel extends through the length of the entirety of void filler 10. The inner surface of diaphyseal portion 14 that is defined by this channel may also be stepped or textured to facilitate cement adhesion. The channel is preferably sized to receive a prosthesis stem and allow for sufficient space to receive and support a cement mantle such as a cement mantle that includes polymethyl methacrylate.


Fixation prominence 16 extends radially outwardly from the outer surface of diaphyseal and metaphyseal portions 12 and 14 and extends along these portions in a general proximal-distal direction. Fixation prominence 16 is preferably located in an area of void filler 10 that would be placed in an anterior or posterior position inside a tibial bone. However, fixation prominence 16 can be located in other locations, such as medial or lateral positions on void filler 10. In some embodiments, fixation prominence 16 may only extend along the metaphyseal portion 12 or diaphyseal portion 14. In other embodiments, there may be multiple fixation prominences 16 extending along void filler 10 in various locations. For example, a fixation prominence 16 may extend along void filler 10 in an anterior, posterior, lateral, and medial position.


Fixation prominence 16 generally includes an intermediate elongate segment 18 and flanking elongate segments 20 (best shown in FIG. 1). Intermediate segment 18 protrudes from the outer surface of void filler 10 further than at flanking segments 20 such that the thickness of void filler 10 at intermediate segment 18 is thicker than at flanking segments 20. This helps maximize the depth of threaded openings 22 extending into intermediate segment 18, while minimizing the amount of space taken up by void filler 10 in the bone.


Intermediate and flanking segments 18 and 20 are generally curved to form cylindrical geometries, which may be complementary to a reaming tool. However, in some embodiments flanking segments 20 may blend into intermediate segment 18 to give the appearance of a single segment. In other, embodiments, segments 18 and 20 may have other geometries, such as square or triangular geometries. At the distal end of fixation prominence 16, intermediate and flanking segments 18 and 20 are tapered to facilitate impaction into an end of bone.


Fixation prominence 16 includes fixation apertures that may be utilized to affix bone to bone and tissue to bone via various fixation means, such as threaded fasteners, cerclage wires, and sutures, for example. One such fixation aperture is a threaded opening 22 located in intermediate segment 18. Intermediate segment 18 includes a plurality of these threaded openings, which extend in a direction transverse to a longitudinal axis of void filler 10 and toward the sidewall/channel of void filler 10. The depth of threaded openings 22 is such that a threaded fastener, such as a bone screw, can be inserted through a segment of bone and into the threaded portion to create solid fixation.


Another fixation aperture is a passageway 24 that extends through fixation prominence 16 in a direction transverse to threaded openings 22. In some embodiments, the transverse direction may be substantially perpendicular with the extent of threaded openings 22. These passageways may be smooth in order to safely house a fixation wire, suture, or other flexible fixation device. Passageways 24 are generally situated or positioned through fixation prominence 16 at locations that are between each of the plurality of threaded openings so that threaded openings 22 and passageways 24 do not intersect.


While fixation prominence 16 is described and depicted as generally elongate and extending along and between diaphyseal and metaphyseal portions 12 and 14, fixation prominence 16 may be another configuration, including, but not limited to, a plurality of bumps extending outwardly from the sidewall of void filler 10 at various locations about void filler 10. Each of these bumps may be square or circular and may each include threaded opening 22 and/or passageway 24 as described above.


Also, it is contemplated that void filler 10 may not include a fixation prominence, but rather threaded openings 22 extending into sidewall 30. In such an embodiment, sidewall 30 may be thicker in order to accommodate a threaded fastener.


In some embodiments, void filler 10 may be implanted into the bone such that fixation prominence 16 faces posteriorly. In such an embodiment, void filler 10 may include circumferential grooves (not shown) within metaphyseal and diaphyseal portions 12 and 14 that allow for a wire or suture to be retained therein, when the wire is wrapped around a portion of void filler 10 from a posterior to anterior direction.


Void filler 10 can be made from any biocompatible material including stainless steel, titanium, cobalt-chromium, tantalum, niobium, or polymeric material such as PEEK. In addition, the void filler's bone contacting surfaces may be made from a porous metal such as titanium foam, and the void filler's non-bone contacting surfaces, such as inner surface 26, may be made from solid or nonporous metal. The porosity of the bone contacting surfaces allows for bony ingrowth therein. In some embodiments, the entire thickness of void filler 10 may be porous, while in other embodiments, the entire thickness of void filler 10 may be solid.


With particular regard to the construction of fixation prominence 16, fixation prominence 16 may be entirely porous while the interior of threaded apertures 22 and passageways 24 may be coated with a solid material. In some embodiments, threaded openings 22 may be lined with a material softer than that of a threaded fastener, which deforms to conform to the threaded fastener upon insertion therein. In other embodiments, fixation prominence 16 may be primarily solid while the outer surface is treated to provide the requisite porosity. As an example, such treatment may be performed by high energy beam processing, such as Selective Laser Melting (“SLM”) and Electron Beam Melting (“EBM”), or other additive manufacturing processes. Examples of high energy beam processing are disclosed in U.S. Pat. Nos. 7,537,664 and 8,728,387 and U.S. Publication Nos. 2006/0147332 and 2013/0268085, the disclosures of which are hereby incorporated-by-reference herein in their entireties.



FIG. 3 depicts a reamer assembly 100 for preparing a bone to receive void filler 10, which includes a trial 130, a reamer guide 120, a bushing 140, and a reamer 110. When implanting void filler 10, it is preferable to have the bone prepared to create a press-fit between void filler 10 and the bone such that compression of the bone promotes bony ingrowth into void filler 10. Such bone preparation can be reproducibly performed by reamer assembly 100.


Trial 130 includes a head 136 and a shaft 132. Head 136 is frustoconical to match the profile or shape of metaphyseal portion 12. Head 136 includes indicia 138, such as laser lines, to indicate the depth of head 136 in the bone. Head 136 also includes a groove 139 extending along its length to create space for cutting head 112 during the reaming process.


Reamer 110 includes a cutting head 112, a bushing 140, and a depth stop 114. Cutting head 112 is slidable within and guided by bushing 140. Depth stop 114 is located proximal to bushing 140 and during use contacts bushing 140 to indicate that cutting head 112 has reached the appropriate depth.


Reamer guide 120 includes a retaining sleeve 124 that is configured to slide over shaft 132 of trial 130. Reamer guide 120 also includes a guide collar 126 attached to retaining sleeve 124 by a flange 122 such that guide collar 126 has a longitudinal axis that is angled with respect to a longitudinal axis of retaining sleeve 124.


Guide collar 126 generally includes a slot 127 extending through a sidewall in guide collar 126. Slot 127 is in communication with a retaining channel that extends through guide collar 126. The retaining channel is sized to slidingly receive and retain bushing 140, and slot 127 is sized to allow reamer head 112, but not bushing 140, to be passed therethrough.


Reamer 100 is mounted to guide collar 126 by holding bushing 140 against depth stop 114 and passing cutting head 112 though slot 127 and into the retaining channel. Once cutting head 112 is in the retaining channel, bushing 140 is slid into the retaining channel where it is retained during the reaming process in which cutting head 112 is guided by bushing 140 into bone.



FIG. 4 depicts an aiming device 200 that can be used when securing a threaded fastener to void filler 10 through bone and/or tissue. Once void filler 10 is implanted, bone and tissue may obscure the operator's view of fixation apertures 22 and 24. Aiming device 200 allows the operator to locate threaded openings 22 through such bone and tissue. Aiming device 200 generally includes a body 210 and aiming arm 220.


Body 210 may be cylindrical or frustoconical such that it fits within the channel of the metaphyseal portion. Alignment tabs 212 extend radially outwardly from body 210 so that they can engage with or slide within notches 28 within void filler 10. This engagement aligns aiming arm 220 with fixation prominence 16.


Aiming arm 220 can be connected to body 210 or in some embodiments may be integral with body 210, and generally includes a first guide portion 222 and a second guide portion 224. First guide 222 portion extends from body 210 and curves or turns in a distal direction. In one embodiment, first guide portion 222 may include an offset segment (not shown) that would be located adjacent to the aiming arm's connection to body 210. The offset segment may be offset laterally or medially to provide a clearance space for the patella and patella tendon during fixation.


First guide portion 222 also includes a plurality of guide apertures 226 that are aligned with threaded openings 22 when aiming device 200 is engaged with void filler 10. The second guide portion 224 is offset anteriorly from first guide portion 222 and also includes a plurality of guide apertures 226 that are also aligned with threaded openings 22 of void filler 10. This offset relationship helps stabilize a driving device when driving a threaded fastener into threaded opening 22.


In a wire fixation embodiment (not shown), an aiming arm may extend from body 210 in a lateral or medial direction when engaged to void filler 10 and align with passageways 24. In this embodiment, the wires may be passed through guide apertures in the aiming arm and punched or passed through the bone and through passageways 24.


In one embodiment of a method of use, void filler 10 may be utilized to reattach a bone fragment resected during a tibial tubercle osteotomy. Such attachment may be achieved by wire fixation, suture fixation, screw fixation, or the like. In a tibial tubercle osteotomy, a bone fragment underlying the tibial tubercle and patella tendon is at least partially resected so that the extensor mechanism can be moved aside to expose the primary or previously implanted prosthesis. The prosthesis is removed from the tibia, and the bone is assessed for defects. An appropriate void filler is selected based on the size and shape of the defect, and a single reamer or a series of reamers are used to prepare the void for void filler 10. After a generally frustoconical void is formed in the metaphysis with a frustoconical reamer (not shown) that corresponds with head 136 and metaphyseal portion 12, head 136 of trial 130 may be placed into the void. If the proper depth of the head, as indicated by indicia 138, cannot be reached, the bone is successively reamed until the proper depth is achieved.


Thereafter, with head 136 securely placed within the void such that groove 139 generally faces anteriorly, reamer guide 120 is slid over shaft 132 of trial 130 until retaining sleeve 124 abuts abutment surface 134. Cutting head 112 is passed through slot 127 while bushing 140 is in a proximal position about cutting head 112 such that bushing 140 is proximal of guide collar 126 as cutting head 112 is passed through slot 127. Once cutting head 112 is within the retaining channel of guide collar 126, bushing 140 is advanced distally until it is fully seated within guide collar 126. Reamer 110 is then advanced into the bone to form a resected geometry to receive fixation prominence 16.


Depending on the condition of the bone and/or the extent of the bone defect, the tibial tubercle osteotomy may remove so much anterior bone that a slot in the anterior bone extending into the bone canal is exposed. Where this occurs, anterior reaming for fixation prominence 16 may not be warranted since there may be no anterior bone to resect. If this is the case, a rongeur may be used to shape the resected bone fragment to matingly engage fixation prominence 16 when reaffixing the fragment to the tibia.


Once the void has been sufficiently shaped, void filler 10 is inserted into the bone to achieve a press-fit relationship with the bone via impaction or some other means. This impaction or other means may occur until the proximal end of void filler 10 is either flush with or below the proximal end of the tibia.


Aiming device 200 is then attached to void filler 10 by inserting body 210 into metaphyseal portion 12 and by inserting the alignment tabs 212 into the notches 28 of metaphyseal portion 12. At this point aiming arm 220 is oriented in an anterior position external to the bone and aligned with fixation prominence 16. The fragment of bone that was removed by the tibial tubercle osteotomy is placed into a mating position against the tibia and a threaded fastener is advanced through guide apertures 226 of aiming device 200, through the bone, and into threaded openings 22 of void filler 10, thereby affixing the bone fragment to the tibia and void filler 10.


Once the bone fragment and patella tendon are secured, the tibial prosthesis, which preferably includes a baseplate and a stem, is affixed to the tibia. This may be performed by placing cement or some other adhesive into the channel of void filler 10 and or around the stem, and then inserting the stem into and through the channel such that at least a portion of the stem extends from the distal end of void filler 10.


As an alternative to a threaded fastener, cerclage wires may be utilized to fix the bone fragment to the tibia. In this embodiment method of fixation, an aiming device specific to wire or suture fixation is engaged to the implanted void filler 10. Wires are advanced through the guide apertures, through the bone, through passageways 24, and back out through the bone. The free ends of the wires extending from the bone are then used to affix the bone fragment to the tibia in the usual way.


In another method of wire fixation utilizing void filler 10, void filler 10 can be inserted such that fixation prominence 16 faces posteriorly. In this embodiment, wires can be passed through the bone and passageways 24 at a posterior region of the tibia and then wrapped around the tibia to secure the bone fragment. Alternatively, the wires may be wrapped around void filler 10 prior to implantation. This may be achieved by selecting a void filler 10 that is sized to be cemented into the bone, rather than press-fit, or a void filler 10 with channels to house the wires as void filler 10 is impacted into the bone.


Turning to another method embodiment, void filler 10 may be utilized to make other repairs such as the repair of a ruptured patella tendon. In this embodiment void filler 10 is utilized in a similar fashion as with a tibial tubercle osteotomy. For example, where the patella tendon is ruptured, a bone plug and tendon allograft may be harvested and implanted into the tibia. In this embodiment, void filler 10 is implanted into the bone, aiming device 200 engaged to void filler 10, and the bone plug either fixed to void filler 10 and bone via threaded fastener or via wire fixation, as previously described.


Still other types of procedures are possible utilizing void filler 10 described herein. For example, void filler 10 may be used in procedures involving uncontained defects or other bone defects or repairs that require the use of morselized bone graft and metal mesh to contain the bone graft material. In such a procedure, void filler 10 and fixation apertures extending therein may be used to help fix the mesh to void filler 10. In this scenario, fixation prominence 16 may be a plurality of bumps each containing threaded opening 22 or passageway 24 wherein the bumps and fixation apertures may be utilized to help secure the wire mesh to the bone to facilitate a solid containment unit for the morselized bone graft, particularly as the graft material is being impacted into the bone.


Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims
  • 1. A method of replacing a joint at an end of a bone, comprising: inserting a void filling prosthesis into a void at the end of the bone, the void filling prosthesis having an outer surface, at least one opening extending into the outer surface, and a channel extending entirely through the void filling prosthesis along its length from a joint-facing end to an interior-facing end, the channel being configured to receive a stem of a joint prosthesis;driving a fastener through the bone from an outer surface thereof into the opening of the void filling prosthesis to secure the void filling prosthesis to the bone; andimplanting the joint prosthesis onto the end of the bone by initially advancing the joint prosthesis through the joint-facing end of the void filling prosthesis and into the channel.
  • 2. The method of claim 1, wherein the fastener is a threaded fastener, the opening in the outer surface of the void filling prosthesis is a threaded opening, and the driving step includes engaging the threaded opening with the threaded fastener.
  • 3. The method of claim 2, further comprising connecting an aiming device to an end of the void filling prosthesis, the aiming device having a guide aperture aligned with the threaded opening when the aiming device is connected to the void filling prosthesis.
  • 4. The method of claim 3, wherein the driving step includes advancing the threaded fastener through the guide aperture of the aiming device.
  • 5. The method of claim 1, wherein the implanting step includes inserting the stem of the joint prosthesis into and through the channel such that at least a portion of the stem extends from the interior-facing end of the void filling prosthesis.
  • 6. The method of claim 5, further comprising placing cement within the channel of the void filling prosthesis.
  • 7. The method of claim 1, wherein the bone includes a first portion and a second portion separated from the first portion, and the driving step includes driving the fastener through the second portion to secure the second portion to the first portion.
  • 8. The method of claim 1, wherein the bone is one of a tibia, femur, and humerus.
  • 9. The method of claim 1, further comprising forming the void using a reamer received in a guide collar of a guide member, the guide member being attached to a shaft of a trial received in a portion of the void formed prior to use of the reamer, wherein an operational axis of the guide collar is at an oblique angle relative to an insertion axis of the trial.
  • 10. The method of claim 1, wherein at least a portion of the outer surface of the void filling prosthesis includes a porous structure.
  • 11. A method of replacing a joint at an end of a bone, comprising: removing a previously implanted joint prosthesis from an end of a bone;inserting a void filling prosthesis into a void at an end of the bone, the void filling prosthesis having an outer surface and at least one opening in the outer surface;advancing a fastener through the bone from an outer surface thereof into the opening of the void filling prosthesis to secure the void filling prosthesis to the bone; andimplanting a new joint prosthesis onto the end of the bone such that after a leading end of the new joint prosthesis is advanced beyond the end of the bone and into the void filling prosthesis, the leading end advances in a direction away from the end of the bone.
  • 12. The method of claim 11, wherein the fastener is a wire, and the opening of the void filling prosthesis is a through-opening.
  • 13. The method of claim 11, wherein the fastener is a threaded fastener, and the opening is a threaded opening.
  • 14. The method of claim 13, further comprising connecting an aiming device to the void filling prosthesis, and the advancing step includes advancing the threaded fastener through the aiming device.
  • 15. The method of claim 11, further comprising forming the void with a reamer by cutting the bone along an axis at an angle relative to a central longitudinal axis of the joint prosthesis.
  • 16. The method of claim 11, wherein the bone is a tibia.
  • 17. The method of claim 11, wherein the bone is a femur, and the end of the femur is a distal end of the femur.
  • 18. The method of claim 11, wherein the implanting step includes passing a stem of the new joint prosthesis through a channel in the void filling prosthesis.
  • 19. The method of claim 18, wherein the opening in the outer surface of the void filling prosthesis extends in a direction transverse to an axis defined by the channel.
  • 20. The method of claim 15, further comprising positioning a frustoconical head of a trial into a preliminary void at the end of the bone prior to inserting the reamer through a guide collar attached to the trial, the preliminary void being smaller than the void.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 16/380,357, filed Apr. 10, 2019, which is a continuation of U.S. application Ser. No. 14/992,726, filed Jan. 11, 2016, now U.S. Pat. No. 10,299,929, which claims the benefit of the filing date of U.S. Provisional Patent Application No. 62/102,260 filed Jan. 12, 2015, the disclosures of which are hereby incorporated herein by reference.

US Referenced Citations (253)
Number Name Date Kind
3859669 Shersher et al. Jan 1975 A
3924274 Heimke et al. Dec 1975 A
3979778 Stroot Sep 1976 A
3986212 Sauer Oct 1976 A
4045825 Stroot Sep 1977 A
4045826 Stroot Sep 1977 A
4065817 Branemark et al. Jan 1978 A
4158893 Swanson Jun 1979 A
4306550 Forte Dec 1981 A
4341206 Perrett et al. Jul 1982 A
4355427 Schneider Oct 1982 A
4463444 Daniels et al. Jul 1984 A
4549319 Meyer Oct 1985 A
4681589 Tronzo Jul 1987 A
4693721 Ducheyne Sep 1987 A
4714471 Grundei Dec 1987 A
4714475 Grundei et al. Dec 1987 A
4728335 Jurgutis Mar 1988 A
4735625 Davidson Apr 1988 A
4738256 Freeman et al. Apr 1988 A
4751922 DiPietropolo Jun 1988 A
4777942 Frey et al. Oct 1988 A
4790852 Noiles Dec 1988 A
4822366 Bolesky Apr 1989 A
4846839 Noiles Jul 1989 A
4944757 Martinez et al. Jul 1990 A
4997448 Filer Mar 1991 A
5006121 Hafeli Apr 1991 A
5011496 Forte et al. Apr 1991 A
5035717 Brooks Jul 1991 A
5047033 Fallin Sep 1991 A
5049157 Mittelmeier et al. Sep 1991 A
5061287 Feiler Oct 1991 A
5080685 Bolesky et al. Jan 1992 A
5089004 Averill et al. Feb 1992 A
5108398 McQueen et al. Apr 1992 A
5122134 Borzone et al. Jun 1992 A
5152797 Luckman et al. Oct 1992 A
5169402 Elloy Dec 1992 A
5190548 Davis Mar 1993 A
5192283 Ling et al. Mar 1993 A
5342363 Richelsoph Aug 1994 A
5342366 Whiteside et al. Aug 1994 A
5358526 Tornier Oct 1994 A
5387218 Meswania Feb 1995 A
5403320 Luman et al. Apr 1995 A
5411505 Mumme May 1995 A
5441501 Kenyon Aug 1995 A
5445642 McNulty et al. Aug 1995 A
5480453 Burke Jan 1996 A
5489311 Cipolletti Feb 1996 A
5496324 Barnes Mar 1996 A
5507832 Michielli et al. Apr 1996 A
5527316 Stone et al. Jun 1996 A
5534005 Tokish, Jr. et al. Jul 1996 A
5540694 DeCarlo, Jr. et al. Jul 1996 A
5591233 Kelman et al. Jan 1997 A
5634927 Houston et al. Jun 1997 A
5649299 Battin et al. Jul 1997 A
5674223 Cipolletti Oct 1997 A
5702486 Craig et al. Dec 1997 A
5741335 Gerber et al. Apr 1998 A
5755720 Mikhail May 1998 A
5755793 Smith et al. May 1998 A
5766261 Neal et al. Jun 1998 A
5782921 Colleran et al. Jul 1998 A
5824097 Gabriel et al. Oct 1998 A
5906644 Powell May 1999 A
5931841 Ralph Aug 1999 A
5944758 Mansat et al. Aug 1999 A
5951603 O'Neil et al. Sep 1999 A
5957925 Cook et al. Sep 1999 A
5976145 Kennefick, III Nov 1999 A
5976147 LaSalle et al. Nov 1999 A
5984968 Park Nov 1999 A
5989257 Tidwell et al. Nov 1999 A
5989261 Walker et al. Nov 1999 A
5993455 Noble Nov 1999 A
6010534 O'Neil et al. Jan 2000 A
6045556 Cohen Apr 2000 A
6053945 O'Neil et al. Apr 2000 A
6071311 O'Neil et al. Jun 2000 A
6127596 Brown et al. Oct 2000 A
6139584 Ochoa et al. Oct 2000 A
6152963 Noiles et al. Nov 2000 A
6171342 O'Neil et al. Jan 2001 B1
6197065 Martin et al. Mar 2001 B1
6214052 Burkinshaw Apr 2001 B1
6214053 Ling et al. Apr 2001 B1
6228120 Leonard et al. May 2001 B1
6241722 Dobak et al. Jun 2001 B1
6245113 Revie et al. Jun 2001 B1
6264699 Noiles et al. Jul 2001 B1
6283999 Rockwood, Jr. Sep 2001 B1
6398812 Masini Jun 2002 B1
6406496 Ruter Jun 2002 B1
6440171 Doubler et al. Aug 2002 B1
6494913 Huebner Dec 2002 B1
6508841 Martin et al. Jan 2003 B2
6520994 Nogarin Feb 2003 B2
6558425 Rockwood, Jr. May 2003 B2
6592622 Ferguson Jul 2003 B1
6702822 Noiles et al. Mar 2004 B1
6712855 Martin et al. Mar 2004 B2
6887276 Gerbec et al. May 2005 B2
6902583 Gerbec et al. Jun 2005 B2
6905513 Metzger Jun 2005 B1
6945556 Maertens Sep 2005 B2
7001429 Ferguson Feb 2006 B2
7070622 Brown et al. Jul 2006 B1
7074224 Daniels et al. Jul 2006 B2
7090677 Fallin et al. Aug 2006 B2
7108719 Horber Sep 2006 B2
7112203 Le Beguec et al. Sep 2006 B2
7141073 May et al. Nov 2006 B2
7175664 Lakin Feb 2007 B1
7255702 Serra et al. Aug 2007 B2
7291174 German et al. Nov 2007 B2
7297163 Huebner Nov 2007 B2
7338528 Stone et al. Mar 2008 B2
7393355 Tulkis et al. Jul 2008 B2
7462197 Tornier et al. Dec 2008 B2
7476254 White et al. Jan 2009 B2
7481814 Metzger Jan 2009 B1
7481841 Hazebrouck et al. Jan 2009 B2
7507256 Heck et al. Mar 2009 B2
7537664 O'Neill et al. May 2009 B2
7556652 Angibaud et al. Jul 2009 B2
7615080 Ondrla Nov 2009 B2
7632273 Schnieders et al. Dec 2009 B2
7670383 Brown et al. Mar 2010 B1
7722678 Brown et al. May 2010 B2
7785328 Christie et al. Aug 2010 B2
7799085 Goodfried et al. Sep 2010 B2
7806936 Wright Oct 2010 B2
7832405 Schlueter et al. Nov 2010 B1
7833228 Hershberger Nov 2010 B1
7892288 Blaylock et al. Feb 2011 B2
7892290 Bergin et al. Feb 2011 B2
7918892 Huebner Apr 2011 B2
7942879 Christie et al. May 2011 B2
7976545 Hershberger et al. Jul 2011 B2
8029573 Podolsky Oct 2011 B2
8048166 Brown et al. Nov 2011 B2
8052687 Sackett et al. Nov 2011 B2
8105385 Maroney et al. Jan 2012 B2
8118868 May et al. Feb 2012 B2
8147498 Schlueter et al. Apr 2012 B2
8147861 Jones et al. Apr 2012 B2
8157869 Metzger et al. Apr 2012 B2
8167882 Sackett et al. May 2012 B2
8177788 McLean et al. May 2012 B2
8177849 Meyers et al. May 2012 B2
8182542 Ferko May 2012 B2
8187336 Jamali May 2012 B2
8192497 Ondrla Jun 2012 B2
8226725 Ferko Jul 2012 B2
8273091 Elghazaly Sep 2012 B2
8337498 Rasmussen Dec 2012 B2
8350186 Jones et al. Jan 2013 B2
8372157 Petersen et al. Feb 2013 B2
8382849 Thomas Feb 2013 B2
8424183 Thomas Apr 2013 B2
8444699 Metzger et al. May 2013 B2
8460393 Smith et al. Jun 2013 B2
8506645 Blaylock et al. Aug 2013 B2
8535385 Hanssen et al. Sep 2013 B2
8585770 Meridew et al. Nov 2013 B2
8636800 Ferko et al. Jan 2014 B2
8696757 Brown et al. Apr 2014 B2
8715356 Porter et al. May 2014 B2
8728387 Jones et al. May 2014 B2
8790402 Monaghan et al. Jul 2014 B2
8828014 Gross Sep 2014 B2
8900317 Zubok et al. Dec 2014 B2
9011444 Primiano et al. Apr 2015 B2
9149282 Servidio et al. Oct 2015 B2
9204884 Dees et al. Dec 2015 B2
9259257 Bagga et al. Feb 2016 B2
9320527 Kehres et al. Apr 2016 B2
9345523 Segina et al. May 2016 B2
9526513 Collazo et al. Dec 2016 B2
9668758 Collazo et al. Jun 2017 B2
9795392 Zajac Oct 2017 B2
RE47149 Primiano et al. Dec 2018 E
10149763 Krebs et al. Dec 2018 B2
10265083 Servidio et al. Apr 2019 B2
10299929 Collazo May 2019 B2
10335171 Collazo et al. Jul 2019 B2
10524806 Collazo et al. Jan 2020 B2
RE48163 Primiano et al. Aug 2020 E
11172941 Collazo et al. Nov 2021 B2
11173034 Collazo Nov 2021 B2
20010009974 Reisfeld Jul 2001 A1
20020016634 Maroney et al. Feb 2002 A1
20030171756 Fallin et al. Sep 2003 A1
20030171815 Kana et al. Sep 2003 A1
20030187449 McCleary et al. Oct 2003 A1
20040049285 Haas Mar 2004 A1
20040092951 Serra et al. May 2004 A1
20040162619 Blaylock et al. Aug 2004 A1
20040267267 Daniels et al. Dec 2004 A1
20050090902 Masini Apr 2005 A1
20050177241 Angibaud et al. Aug 2005 A1
20050288676 Schnieders et al. Dec 2005 A1
20060041317 Hazebrouck et al. Feb 2006 A1
20060147332 Jones et al. Jul 2006 A1
20060241776 Brown et al. Oct 2006 A1
20070088443 Hanssen et al. Apr 2007 A1
20070118229 Bergin et al. May 2007 A1
20070142914 Jones et al. Jun 2007 A1
20070162033 Daniels et al. Jul 2007 A1
20070225821 Reubelt et al. Sep 2007 A1
20080051908 Angibaud et al. Feb 2008 A1
20080147071 Serra et al. Jun 2008 A1
20080161812 Sackett et al. Jul 2008 A1
20080281428 Meyers et al. Nov 2008 A1
20080306600 Huebner Dec 2008 A1
20090157190 Collazo et al. Jun 2009 A1
20100057212 Thomas Mar 2010 A1
20100076565 Thomas Mar 2010 A1
20100082031 Sackett et al. Apr 2010 A1
20100114323 Deruntz et al. May 2010 A1
20100222891 Goodfried et al. Sep 2010 A1
20100262146 Tulkis Oct 2010 A1
20100286696 Christie et al. Nov 2010 A1
20110009973 Meyers et al. Jan 2011 A1
20110009974 Blaylock et al. Jan 2011 A1
20110015634 Smith et al. Jan 2011 A1
20110130840 Oskouei Jun 2011 A1
20110190899 Pierce et al. Aug 2011 A1
20110213467 Lozier et al. Sep 2011 A1
20110218636 Smith Sep 2011 A1
20120016482 Mooradian et al. Jan 2012 A1
20120035733 Porter et al. Feb 2012 A1
20120089146 Ferko et al. Apr 2012 A1
20120209270 Segina et al. Aug 2012 A1
20120226281 Sackett et al. Sep 2012 A1
20120310361 Zubok et al. Dec 2012 A1
20130053976 Gugler et al. Feb 2013 A1
20130150858 Primiano et al. Jun 2013 A1
20130172892 Servidio et al. Jul 2013 A1
20130211536 Metzger et al. Aug 2013 A1
20130264749 Jones et al. Oct 2013 A1
20130268085 Dong et al. Oct 2013 A1
20140276882 Collazo et al. Sep 2014 A1
20140277528 Mines et al. Sep 2014 A1
20140277567 Collazo et al. Sep 2014 A1
20150105779 Smith et al. Apr 2015 A1
20150190150 Primiano et al. Jul 2015 A1
20150282935 Kuldjanov et al. Oct 2015 A1
20150366567 Servidio et al. Dec 2015 A1
20230233328 Cullum et al. Jul 2023 A1
Foreign Referenced Citations (12)
Number Date Country
2842847 Apr 1980 DE
102010044571 Mar 2012 DE
0016480 Oct 1980 EP
1570812 Sep 2005 EP
2168506 Mar 2010 EP
2168586 Mar 2010 EP
2181672 May 2010 EP
2159416 Dec 1985 GB
03094698 Nov 2003 WO
2006127486 Nov 2006 WO
2008069800 Jun 2008 WO
2009094698 Aug 2009 WO
Non-Patent Literature Citations (13)
Entry
Depuy, S-ROM Noiles Rotating Hinge, Surgical Technique and Reference Guide, 2002, 44 pages.
Extended European Search Report for Application No. EP14159399 dated Jun. 6, 2014.
Extended European Search Report with Written Opinion for Application No. 20173076 completed Aug. 12, 2020, 6 pages.
International Search Report and Written Opinion for Application No. PCT/US2012/068473 dated Mar. 8, 2013.
International Search Report and Written Opinion for Application No. PCT/US2012/072087 dated May 2, 2013.
Jones et al., U.S. Appl. No. 13/441,154, filed Apr. 6, 2012, titled “Surface Modified Unit Cell Lattice Structures for Optimized Secure Freeform Fabrication”.
Knee Revision Product Portfolio, DePuy International Ltd., a Johnson & Johnson Company, Cat. No. 9075-40-000 version 1, Copyright 2009.
Lonner, et al., Impaction Grafting and Wire Mesh for Uncontained Defects in Revision Knee Arthroplasty, Clinical Orthopaedics and Related Research, No. 404, pp. 145-151, Copyright Nov. 2002, Lippincott Williams & Wilkins, Inc.
McQueen, Wichita Fusion Nail Surgical Technique, Oct. 2006, 12 pages, Stryker.
Partial International Search Report dated Mar. 15, 2013 for Application No. PCT/US2012/072087.
Schreurs, et al., Femoral Component Revision with Use of Impaction Bone-Grafting and a Cemented Polished Stem. Surgical Technique, The Journal of Bone & Joint Surgery, Sep. 2006, pp. 259-274.
Stryker Howmedica Osteonics, X-change Revision Instruments System, Copyright Howmedica Osteonics, Sep. 2001.
Zimmer, Trabecular Metal, Tibial and Femoral Cones Surgical Techniques, Copyright 2011.
Related Publications (1)
Number Date Country
20220061994 A1 Mar 2022 US
Provisional Applications (1)
Number Date Country
62102260 Jan 2015 US
Continuations (2)
Number Date Country
Parent 16380357 Apr 2019 US
Child 17501320 US
Parent 14992726 Jan 2016 US
Child 16380357 US