1. Technical Field
The present invention, involving bookbinding units that collate sheets conveyed out of a photocopier, printer, or the like, into a bundle and cover the bundle with a cover sheet, relates to improvements in mechanisms for spine-creasing when encasing a bundle of inner-bound leaves with, and binding the bundle into, a cover sheet.
2. Description of the Related Art
With such bookbinding units generally, so-called perfect binding is known, in which sheets that are conveyed out of an imaging apparatus are stacked and collated into a bundle on a tray device, adhesive is applied to the spine part of the sheet bundle and the bundle is joined together with a cover sheet, into its central portion, in the form of an inverted T, and the cover sheet is spine-creased to close it onto the bundle.
In conventional perfect binding techniques of this sort, forming folding scores in the flaps of the cover sheet is known, and is often adopted with thick cover sheets and other in encasing situations in which the cover cannot be readily folded. Traditionally, however, for such folding scores a cover sheet is pressed, as a process prior to bookbinding, to form the folding scores in the cover.
Meanwhile, various bookbinding units which are linked to the discharge outlet of an imaging apparatus and that collate into bundles sheets on which images have been formed, apply adhesive to the bundle spines, and thereafter bind the bundles together with cover sheets have been proposed—such as is disclosed, for example, in Japanese Unexamined Pat. App. Pub. No. 2005-305822 (cf. FIG. 1). This publication discloses an apparatus that stacks and collates into bundles sheets (inner-bound leaves) from an image forming apparatus and applies adhesive to the spine portion of the bundles with an adhesive applicator disposed downstream; the sheet bundles are case-bound into cover sheets readied at (supplied/fed to) the downstream side of the adhesive applicator. Then, the cover sheets are bound on by contacting, in an inverted-T form, the inner-bound sheet bundle onto the central portion of a cover sheet, and spine-creasing the cover sheet with spine-creasing pressing members. Herein, the spine-creasing pressing members (spine-creasing plates in said publication) are configured to fold over and press the cover sheet with a left/right pair of platelike members.
As described above, in bookbinding by collating into bundles sheets conveyed from an image forming apparatus or the like, and applying adhesive to and thereafter binding covers onto the bundles, conventionally, as is the case with the just-cited JP 2005-305822, the shoulder portions of the cover sheet are fold-bended and press-formed. When pressing members for this purpose, such as spine-folding plates, pressure-nip a cover sheet along both shoulders, the adhesive applied to the spine portion can sometimes leak out onto the back side of the cover sheet (the cover rear face). In particular, if excess adhesive is applied to the spine portion, it can leak out to the cover rear face, giving rise to a defectively bound booklet in which inner-bound leaves are adhered to the back side of the cover sheet. Conversely, if an inadequate amount of adhesive is applied to the spine portion, it can become bent along the spine cover when the cover sheet is opened; either case will lead to problems with the quality of the booklet's appearance.
Along with these sorts of difficulties, if paper of thick caliper is used as a cover sheet, with the cover sheet not bending easily in opening a booklet after it has been bound, areas in the spine cover where the adhesive is weak can become bent. To address this, as described above bookbinding techniques whereby folding scores are formed in both flaps of a cover sheet are known. However, this sort of bookbinding technique cannot easily be adopted in a system apparatus such as in the just-cited JP 2005-305822. In particular, conventional folding scores must be press-formed into the cover sheet in advance, which means that in cases where, for example, in a device system for continuous imaging, both the inner-bound leaves and the cover sheets are printed with images, sent to a bookbinding unit downstream, and bound with covers in the bookbinding unit, processing the cover sheets with folding scores in advance places serious restrictions on the device configuration.
Therein, the present inventors arrived at the concept of, when spine-creasing and molding a cover sheet onto an inner-bound sheet bundle onto which adhesive has been applied, at the same time forming folding scores in both flaps to control leakage of excess adhesive, and the position where the cover sheets are folded.
The present invention provides a bookbinding unit that accurately binds a spine portion to a sheet bundle and forms folding scores in sides of a cover sheet simultaneously when binding inner leaves of the sheet bundle formed with images and a cover sheet.
Still further, the present invention provides an image-forming system with a good bookbinding quality using a simple structure for the cover sheet binding mechanism that collates and stacks sheets conveyed from an image-forming system to a cover sheet.
The present invention employs the following configuration to attain the aforementioned objects.
The system is provided stacking tray means that collates and stacks into a sheet bundle sheets sequentially fed; a bookbinding process path that sequentially conveys the sheet bundle from the stacking tray means to an adhesive application position and a cover-sheet binding location; adhesive application means equipped in the adhesive application position, that applies adhesive to the sheet bundle conveyed from the stacking tray means; cover sheet feeding means that feeds a cover sheet to the cover-sheet binding location; and cover-sheet binding means equipped in the cover-sheet binding location, that binds the sheet bundle conveyed from the adhesive application position and the cover sheet. The cover-sheet binding means has shoulder-portion pressing means that fold the spine to form a shoulder on the cover sheet, and flap-portion pressing means that forms folds in sides of the cover sheet. The shoulder-portion pressing means and the flap-portion pressing means are configured to move as one body to press-form the cover sheet, or to move independently to press-form the cover sheet.
The shoulder-portion pressing means and flap-portion pressing means are set to pressing pressures to form predetermined flap glue portions by using the flap-portion pressing means to control the adhesive that leaks to the shoulders of the cover sheet when folding to form the cover sheet with the shoulder-portion pressing means.
The shoulder-portion pressing means and flap-portion pressing means are composed of the same pressing members. These pressing members have a shoulder-portion forming unit that folds the spine of the cover sheet and a flap-portion forming unit that folds grooves into the sides of the cover sheet. The shoulder-portion forming unit is composed to forcibly press the shoulders of the cover sheet with the folding scores formed by the flap-portion forming unit.
In this configuration, the shoulder-portion pressing means and the flap-portion pressing means are composed of a pair of shoulder-portion pressing members and flap-portion pressing members; these are controlled to (1) press and fold the cover sheet simultaneously, (2) the flap-portion pressing members to form the crease in the sides after the shoulder-portion pressing members fold the cover sheet, or (3) the shoulder-portion pressing members form a shoulder after the flap-portion pressing members fold the spine of the cover sheet.
Gripping conveyance means are equipped in the bookbinding path to convey a sheet bundle from the stacking tray means to the cover-sheet binding location. Cover-sheet binding means binds the sheet bundle gripped by the gripping conveyance means to the cover sheet at the cover-sheet binding location.
The cover-sheet binding means is composed of shoulder-portion pressing means, flap-portion pressing means and spine portion pressing means that touches and supports the spine portion of the cover sheet. This spine portion pressing means supports the cover sheet fed to the cover-sheet binding location. After the shoulder-portion pressing means folds the cover sheet supported by the spine portion pressing means, folding scores are formed in the cover sheet using the flap-portion pressing members.
The system is provided a sheet conveyance path that conveys-in a sheet from an image forming apparatus; stacking tray means that collates and stacks into a sheet bundle sheets conveyed from the conveyance path; a bookbinding process path that sequentially conveys the sheet bundle from the stacking tray means to an adhesive application position and a cover-sheet binding location; adhesive application means equipped in the adhesive application position, that applies adhesive to the sheet bundle conveyed from the stacking tray means; a cover sheet feeding path that feeds the cover sheet from the sheet conveyance path to the cover-sheet binding location; and cover-sheet binding means disposed in the cover-sheet binding location, that binds the sheet bundle conveyed from the adhesive application position and the cover sheet. The cover-sheet binding means has shoulder-portion pressing means that fold the spine of the cover sheet to form a shoulder, and flap-portion pressing means that form folding scores in sides of the cover sheet. The shoulder-portion pressing means and the flap-portion pressing means are configured to integratingly move toward the cover sheet, or to move independently to press and fold the cover sheet.
Also, the image-forming system according to the present invention is composed of an image-forming apparatus that sequentially forms images on sheets, and a bookbinding apparatus that collates into sheet bundles sheets conveyed from the image-forming apparatus and binds them to a cover sheet; the bookbinding apparatus is composed as described above.
The present invention produces the following effects when binding inner leaves of the sheet bundle applied with adhesive to a cover sheet because the spine is folded and formed using shoulder-portion pressing means that fold shoulders of the cover sheet and flap-portion pressing means that form grooves in the sides of the cover sheet.
The flap-portion pressing means (members) prevent leakage of adhesive to the inner sides of the cover sheet (the backside of the cover sheet) so the spine portion of the cover sheet is bound more precisely and does not cause a poor binding of the booklet.
Also, because grooves are formed in the front and back covers of the booklet after the bookbinding process, it is possible to fold the predetermined sides even if the cover sheet is a thick sheet. This prevents damage of the spine portion of the cover sheet when the cover is opened.
Still further, the shoulder-portion pressing members and flap-portion pressing members can be integrated pairs of pressing members on the left and right sides, for example and that structure is simple and does not increase the size of the apparatus. Also, the shoulder-portion pressing members and flap-portion pressing members are separate bodies. By properly varying the timing to fold the cover sheet it is possible to ensure the effects of the invention to prevent the leakage of adhesive and to properly form grooves in the sides of the cover sheet.
A preferred embodiment of the present invention will now be explained based on the drawings provided.
Configuration of the Image-forming Apparatus
First, the image-forming unit A can adopt a variety of structures of a copier, printer or printing machine. The drawing shows an electrostatic printing system. A sheet feeder 2, a printing unit 3, a discharge unit 4 and a control unit are installed inside the casing 1 on the image-forming apparatus A. A plurality of cassettes 5 that correspond to sheet sizes is prepared at the sheet feeder 2. Sheet sizes specified by the control unit are fed to the sheet feeding path 6. A registration roller 7 is equipped at the sheet feed path 6. After the leading edge of the sheet is registered by this roller, it is fed at a predetermined timing to the downstream printing unit.
A static electric drum 10 is equipped at the printing unit 3. A print head 9, a developer 11 and a transfer charger 12 are disposed around this drum 10. The print head 9 is composed of a laser emitter, for example, to form electrostatic latent images on the electrostatic drum 10. Toner ink adheres to the latent image at the developer 11, and this is transferred and printed on the sheet at the transfer charger 12. The printed sheet is the fixed at the fixer 13 and discharged to the discharge path 17. A discharge outlet 14 formed in the casing 1 and a discharge roller 15 are disposed at the discharge unit 4. Note that the symbol 16 in the drawing represents a recirculation path. A printed sheet from the discharge path 17 is turned over from front to back at the switchback path and fed to the registration roller 7 to be formed with images on its backside. In this way, a sheet formed with images on one side or both sides is conveyed from the discharge outlet 14 by the discharge roller 15.
Note that the symbol 20 in the drawings is a scanner unit. This optically reads images on an original to printed using the print head 9. As is generally known in the art, the scanner is composed of a platen 23 where an original sheet is set; a carriage 21 that scans the original image along the platen 23; and an optical reading means (for example, a CCD device) 22 that photo-electrically converts optical images received from the carriage 21. The drawing shows an original feeding apparatus 25 that automatically feeds the original sheet to the platen, installed over the platen 23.
Bookbinding Unit Configuration
The following will now explain the bookbinding unit B that is attached to the image-forming apparatus A. The bookbinding unit B is composed of a stacker 40 that stacks and aligns printed sheets into bundles; an adhesive applicator means 55 that applies adhesive to the sheet bundle conveyed from the stacker 40; and cover-sheet binding means 60 that binds the cover sheet to the sheet bundle applied with adhesive, in the casing 30.
Conveyance Path Configuration
A conveyance path 31 having a conveyance inlet 31a linked to the discharge outlet 14 of the image-forming unit A is provided in the casing 30, and the intermediate sheet conveyance path 32 and cover sheet conveyance path 34 are linked from this conveyance path 31 via the path switching flapper 36. The bookbinding path 33 is linked to the cover sheet conveyance path 34 via the stacker 40, and a finishing path 38 is connected to the cover sheet conveyance path 34. The bookbinding path 33 is disposed to traverse the apparatus longitudinally in a substantially vertical direction, and the cover sheet conveyance path 34 is disposed in a direction to traverse the apparatus in a horizontal direction.
The bookbinding path 33 and the cover sheet conveyance path 34 mutually intersect (orthogonally); the cover-sheet binding means 60, described below, is disposed in the intersection. The conveyance path 31 configured as described above is linked to the discharge outlet 14 of the image-forming unit A to receive printed sheets from the image-forming unit A. Sheets printed with content information (the leaves of sheets) and sheets printed with a title and the like to be used as a cover sheet (hereinafter referred to as a cover sheet) are conveyed out from the image-forming apparatus A. This conveyance path 31 is branched into the intermediate sheet conveyance path 32 and the cover sheet conveyance path 34, and sort printed sheets to convey them into each path by the use of a path switching flapper 36.
An inserter unit 26 is connected to the conveyance in path 31. This is configured to separate one cover sheet at a time that will not be printed at the image-forming apparatus A from feeder tray 26a and feed it to the conveyance in path 31. The inserter unit 26 is equipped with one or a plurality of feeder trays 26a. Feeding means that separates stacked sheets into single sheets, and sheet feeding path 27 downstream of the feeding means are disposed on the leading edge of the tray. The sheet feeding path 27 is connected to the conveyance in path 31 interposed by a path switching piece 28. The conveyance roller 31b is disposed in the convey-in path 31; the conveyance roller 32a is disposed in the inner-sheet conveyance path 32; the gripping conveyance means 47, the sheet bundle posture changing means 64, and the discharge roller 66 (discharge means) are disposed in the bookbinding path 33.
A conveyance roller 34a is disposed in the cover sheet conveyance path 34 and a conveyance roller 38a is disposed in a finishing path 38; each of these is connected to a drive motor. Note that 34g shown in
Stacker Configuration
The stacking tray 41 arranged at the discharge outlet 32b of the inner sheet conveyance path 32 stacks and stores sheets from the discharge outlet 32b in a bundle. As shown in
Configuration of the Sheet Bundle Conveyance Means
Gripping conveyance means 47 are furnished in the bookbinding path 33 to convey a sheet from the stacking tray 41 to a downstream adhesive application position F. As shown in
Adhesive Application Unit Configuration
An adhesive application means 55 is disposed in the adhesive application position E of the bookbinding path 33. As shown in
The adhesive container 56 as described above has a reciprocating motion along the sheet bundle.
Therefore, drive motor MS reciprocates the adhesive container 56 between a home position HP and a return position RP where the return operation is started along the sheet bundle. Each position is set to the positional relationships shown in
Configuration of the Cover-Sheet Binding Means
The cover-sheet binding means 60 is disposed in the cover-sheet binding location F of the bookbinding path 33. The cover-sheet binding means 60 is composed of a shoulder-portion pressing means 60p, flap-portion pressing means 60q, and spine portion pressing means 60r. These fold the cover sheet abutted into alignment in an upside-down T shape at the cover-sheet binding location F over the inner leaves of sheets in the sheet bundle. This shoulder-portion pressing means (pressing members) 60p is disposed to fold the shoulders connected to the spine binding of the cover sheet; the flap-portion pressing means (pressing members) 60q is disposed to form folding grooves in the sides separated a distance from the cover sheet shoulder portions. The shoulder-portion pressing means 60p and flap-portion pressing means 60q are either 1) composed of integrated members to pressingly move simultaneously, or 2) of separate members to pressingly move independently.
First Embodiment of Cover-Sheet Binding Means
(See
Both pressing members 62 are equipped with shoulder portion pressing projections (the shoulder-portion pressing means; hereinafter this is the same) 60p and side portion pressing projections (hereinafter referred to as flap-portion pressing means) 60q. Shoulder portion pressing projections 60p are disposed in positions shown in the drawing adjacent to the cover-sheet binding location F and are formed to flat-face-shaped projections so that they do not damage the cover sheet. The side portion pressing projections 60q are formed to sharp projections to press in a folded groove (see gL shown in
Spine pressing means 60r is disposed downstream of the pressing members 62. The spine portion pressing means 60r is configured to project into and out of the bookbinding path 33, and is composed of a plate-shaped member that supports the cover sheet Sh when pushing the inner leaves of sheets in the sheet bundle Sn to the cover sheet Sh. The pressing members 62 press with the spine portion of the cover sheet touching the spine portion pressing means 60p. Also the spine portion pressing means 60r supports the spine portion of the cover sheet when the spine is being pressed and has a cooling effect on the adhesive thereby hardening it at the same time as supporting the cover sheet so that it does not become wrinkled or uneven.
The following will now explain the cover sheet Sh binding operations in the first embodiment of the cover-sheet binding means 60. First,
Next, the control means (cover-sheet binding means control unit) 75c, described below, controls the drive of the control motors Mp1 and Mp2. With that, the pressing members 62 start bending the shoulder portions of the cover sheet Sh, as shown in
When the cover sheet Sh is folded over the inner leaves of the sheet bundle Sn, as illustrated in
In this way, the folding scores (or folded lines) gL are formed on both sides of the cover sheet Sh as shown
Note that the flap-portion pressing means 60q that compose the pressing members 62 can be configured to adjust the positions of the folding grooves that form the cover sheet in up and down directions. As shown in
Second Embodiment of Cover-Sheet Binding Means
(See
The left and right pair of shoulder-portion pressing members 68a, and 68b are supported by guide rails, not shown, of the apparatus frame to allow the left and right sides to mutually approach and separate. Also, the flap-portion pressing members 61a and 61b are matingly supported to slide on the guide rail 61g formed on the shoulder-portion pressing members 68a, and 68b. Micro-motors Mp3 and Mp4 are installed under and supported by these shoulder-portion pressing members 68a and 68b; eccentric cams 61w linked to these micro-motors causes the flap-portion pressing members 61a and 61b to approach the cover-sheet binding location F. The flap-portion pressing members 61 a and 61 b are urged to eccentric cams 61w by return springs, not shown.
On the other hand, rack gears 68L are integrated to the shoulder-portion pressing members 68a, 68b, and drive pinions 68p linked to the control motors Mp1 and Mp2 mesh with these gears. Note that spine portion pressing means 60r is disposed in the same way as was described in relation to the first embodiment. Its configuration is also the same as was described. Therefore, an explanation thereof will be omitted.
In this configuration, the shoulder-portion pressing members 68 and the flap-portion pressing members 61 are controlled to (1) press and fold the cover sheet simultaneously, (2) the flap-portion pressing members to form the crease in the sides after the shoulder-portion pressing members fold the cover sheet, or (3) the shoulder-portion pressing members 68 forming a shoulder after the flap-portion pressing members 61 fold the spine of the cover sheet.
The simultaneous pressing operation is the same as the first embodiment shown in
When the flap-portion pressing members 61a, 61b are used to fold and crease the cover sheet Sh first, then the shoulder-portion pressing members 68a, 68b are used to press the shoulders of the cover sheet Sh of (3), the cover sheet binding control unit 75c touches the inner leaves of the sheet bundle Sn to the cover sheet Sh with the pressing members 68 and 61 positioned at their idle positions, as shown in
The control means rotatingly drives the control motors Mp1 and Mp2 predetermined amounts. This causes the shoulder portions to be pressed and formed by the shoulder-portion pressing members 68a and 68b while the side portions of the cover sheet Sh are being pressed by the flap-portion pressing members 61a and 61b, as shown in
Folding rollers 63 are disposed downstream of the cover-sheet binding means 60 described above. These folding rollers comprise a pair of rollers that pressure-nip the sheet bundle formed with the cover sheet to provide a finish to the booklet.
Configuration of Bundle-Posture Changing Means and Trimming Means
A bundle-posture changing means 64 that turns the sheet bundle over from top to bottom, and trimming means 65 that cuts the edges of the sheet bundle are disposed in the trimming position G positioned downstream of the folding rollers 63. The bundle-posture changing means 64 turns the covered sheet bundle fed from the cover-sheet binding location F to a predetermined direction (or posture) and conveys the sheet bundle downstream to the trimming means 65 or the storage stacker 67. The trimming means 65 trims the fringes of the sheet bundle to align the edges. Therefore, the bundle-posture changing means 64 is equipped with rotating tables 64a, 64b that grip and turn the sheet bundle fed from the folding rollers 63. As shown in
Therefore, the sheet bundle guided to the bookbinding path 33 is gripped by the pair of left and right rotating tables 64a, 64b, then the posture of the sheet bundle is changed by the turning motors Mt1, Mt2. For example, the sheet bundle with its spine portion conveyed downward is rotated 180 degrees and fed to downstream discharge rollers 66 with the fore-edge portion facing downward. The sheet bundle is sequentially rotated 90 degrees to turn the sheet bundle's top and bottom and front end portion at a downstream trimming position G to enable the trimming of three edge directions of the sheet bundle. Note that a grip sensor (not shown) is provided on the rotating table 64b of the movable side. This detects that the sheet bundle has been securely gripped between the left and right side rotating tables 64a, 64b. After detection, the rotating tables 64a, 64b are configured to revolvingly drive. Also, the unit frame 64x raises and lowers the sheet bundle along the bookbinding path 33 using an elevator motor MA. This is to configure a jog mechanism to offset a predetermined amount the sheet bundle fed by the discharge rollers 66 and convey the sheet bundle to a trimming position G when trimming edges of the sheet bundle, and to set the trimming width at the trimming position G by that feed amount.
Configuration of Trimming Means
Trimming means 65 are provided downstream of the bundle posture changing means 64. As shown in
A discharge roller (discharge means) 66 and storage stacker 67 are disposed downstream of the trimming position G. This storage stacker 67 stores sheet bundles in an inverted manner as shown in
Finishing Unit Configuration
The finishing unit C is arranged in the bookbinding unit B. The finishing path 38 is equipped to be connected to cover sheet conveyance path 34 for the finishing unit C and a finisher, such as a staple unit, punch unit, and stamp unit or the like, is disposed in the finishing path 38. Printed sheets are received from the image-forming apparatus A via the cover sheet conveyance path 34 and stapled, punched or applied with a mark, then conveyed to the discharge tray 37. It is also possible not to apply any finishing process on printed sheets and to store them in the discharge tray 37 directly from the image-forming apparatus A.
Configuration of Control Means
The configuration of the control means in the apparatus described above will now be explained with reference to
This control CPU75 receives a finishing mode instruction signal, job end signal, sheet size information, and other information and command signals required in the bookbinding process from the control CPU70 of the image-forming unit A. On the other hand, sheet sensors Se1 to Se6 are arranged in the positions shown in
Explanation of Bookbinding Operation
Next, the bookbinding process operations using the control CPU75 will now be explained with reference to the flowchart block diagram of
With the bookbinding mode, sheets formed images are aligned and stacked, then joined with a cover sheet and stored in the storage stacker 67. Also, in the staple mode, sheets formed with images are stapled by a stapling unit equipped in the finishing unit C; in the marking mode, a mark is applied; in the hole-punching mode, holes are punched in the sheets; and in the jog mode, sheets are sorted. Each of these modes is executed by the finishing unit C, and then the finished sheets are stored in the discharge tray 37.
When the bookbinding mode is selected and the finishing mode, an image forming operation is executed by the image-forming unit A, and the sheet formed with images is conveyed out from the discharge outlet 14. (St002) With the bookbinding unit C, this sheet is received in the conveyance path 31. At this time the CPU75 positions the path switching flapper 36 in the state shown in
There, when the job end signal (St004) is received from the image-forming unit A, the control CPU75 conveys the sheet bundle on the stacking tray 41 by the gripping conveyance means 47 to turn the sheet bundle posture 90 degrees. This changes the posture of the sheet bundle collated on the stacking tray 41 from a horizontal orientation to a vertical orientation to be conveyed over the bookbinding path 33 to the downstream adhesive application position E (St005).
The control CPU75 conveys a cover sheet from the cover sheet conveyance path 34 at the time the sheet bundle is conveyed to and set at the adhesive application position E (St006). This cover sheet can be fed after being formed with an image at the image-forming unit A, or fed from the inserter unit 26. When supplying a cover sheet from the inserter unit 26, the control CPU75 activates feeding means, not shown, to convey one sheet at a time from the tray 26a to the sheet feeding path 27.
After the conveyance and setting of the cover sheet at the binding position, the control CPU75 drives the adhesive application means 55 to apply adhesive to the sheet bundle set at the adhesive application position E (St007). The adhesive container 56 equipped with the applicator roller 57 moves along the bottom edge S1 of the sheet bundle (the direction to the right in
After finishing the adhesive application operation, the control CPU75 conveys the sheet bundle to the downstream cover-sheet binding location F using the gripping conveyance means 47. When this happens, the cover sheet is set at that position so the cover sheet is backed up by the spine support plate 61 and joined to the sheet bundle in an upside-down T-shape. Next, the sheet bundle covered by the folding plates 62 press-forming the backside of the cover sheet.
After the covering process above, the control CPU75 determines whether a trimming mode has been selected (St009). For the trimming mode, the gripping conveyance means 47 releases from the sheet bundle and returns to its default position. A trimming blade 65x is positioned at the trimming position G and stops the descending sheet bundle (St010). In this state, the movable rotating table 64b moves from the idle position to a sheet gripping position to nip-retain the sheet bundle between itself and the rotating table 64a (St011). Next, after the control CPU75 moves the trimming blade 65x to the idle position, it revolves the rotating tables 64a, 64b 90° to turn the sheet bundle so that its top is at the bottom side (St012).
After the covered sheet bundle is turned to a predetermined posture, the control CPU75 drives the elevator motor MA of the bundle posture changing means 64 to set the covered sheet bundle at the trimming position G. (St013) This feeding and setting convey the covered sheet bundle gripped by the rotating tables 64a, 64b downstream by activation of the elevator motor MA.
There, the trimming edge pressing member 65b pressingly holds the sheet bundle and the trimming blade 65x cuts a predetermined amount (St014). Next, the control CPU75 retracts the trimming edge pressing member 65b to the idle position, then turns the covered sheet bundle 180 degrees so that the other side is at the bottom to trim the bottom portion. Next, the control CPU75 retracts the trimming edge pressing member 65b to the idle position, then turns the sheet bundle 90 degrees so that the other side is at the bottom to cut the bottom portion. After the sides of the sheet bundle are cut and aligned in this way, the control CPU75 ends trimming the three directions of the sheet bundle and shifts to the discharge operation (St015).
On the other hand, at step St009 above, if there is no trimming mode selected, the control means 75 shift to the next discharge operation. At the discharge operation, the control CPU75 activates the discharge roller 66 to store the sheet bundle in the stacker 67.
Number | Date | Country | Kind |
---|---|---|---|
2007-167946 | Jun 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2200345 | Schramm | May 1940 | A |
4987267 | Takaoka et al. | Jan 1991 | A |
5314283 | Zoltner | May 1994 | A |
6726424 | Voss | Apr 2004 | B2 |
7658585 | Brommer et al. | Feb 2010 | B2 |
7845890 | Sasamoto et al. | Dec 2010 | B2 |
20040141830 | Yoshie et al. | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
2005-305821 | Nov 2005 | JP |
2007147815 | Jun 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20090035093 A1 | Feb 2009 | US |