The present disclosure generally relates to mobile agricultural implements, and more particularly to boom assembly joints for mobile agricultural implements.
In order to dispense treatments, mobile agricultural implements commonly include a frame, at least one front wheel, a set of rear wheels, a tank for storing a treatment to be dispensed, and a pair of boom assemblies.
Each boom assembly typically includes a triangular or L-shaped configuration with the base triangle or the lower leg of the L-shaped configuration at the bottom of the boom. Alternatively, each boom assembly may include an inverted right triangle configuration with the base of the triangle at an uppermost portion of the boom as shown in commonly assigned U.S. Pat. No. 6,966,501.
In one embodiment, a boom structure for a mobile agricultural implement includes a first transversely extending beam member having a first protrusion. The boom structure includes a second transversely extending beam member having a second protrusion. The second transversely extending beam member is spatially offset from (e.g., facing or generally parallel to) the first transversely extending beam member. A plurality of first coupling members are coupled to the first protrusion and a plurality of second coupling members coupled to the second protrusion. A plurality of connecting members are coupled to the first and second coupling members to connect the first and second transversely extending beam members.
Other features and aspects will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways.
With reference to
Referring to
The left first transversely extending beam member 45 may be generally parallel to the left second transversely extending beam member 75. The right first transversely extending beam member 50 may be generally parallel to the right second transversely extending beam member 80. The first and second pair of left and right transversely extending beam members (45, 50, 75, 80) may form a parallelogram. The first and second protrusions (55, 60, 85, 90) may be T-shaped, L-shaped, form a retention rail, or form other shapes suitable for mounting. The first and second pair of left and right transversely extending beam members (45, 50, 75, 80) may be fabricated from a metal, an alloy, aluminum, an aluminum alloy, or other light weight material including carbon fiber, composites, a polymer, a plastic, a filler in a resin matrix, or another suitable material. For example, 6061-T6 aluminum may be used, which provides some corrosion resistance.
A first sheet member 102 is received by the first sheet member receiving portions 65, 70 of the first pair of left and right transversely extending beam members 45, 50 and a second sheet member 103 is received by the second sheet member receiving portions 95, 100 of the second pair of left and right transversely extending beam members 75, 80. The first and second sheet members (102, 103) may be fabricated from a metal, an alloy, aluminum, an aluminum alloy, or other light weight material including carbon fiber, composites, a polymer, a plastic, a filler in a resin matrix, or another suitable material. Aluminum provides some corrosion resistance.
With continued reference to
Referring to
With reference to
Referring to
The connecting members 220 are coupled to the first and second coupling members 120, 170 to connect the first left transversely extending beam member 45 to the second left transversely extending beam member 75 and to connect the first right transversely extending beam member 50 to the second right transversely extending beam member 80. The connecting members 220 may be fabricated from a metal, an alloy, aluminum, an aluminum alloy, or other light weight material including carbon fiber, composites, a polymer, a plastic, a filler in a resin matrix, or another suitable material. Aluminum provides some corrosion resistance.
Each boom structure 40 includes a hinge 235. The hinge 235 is coupled to the first and second pair of left and right transversely extending beam members 45, 50, 75, 80 using fasteners 237. The fasteners 237 may be self-tapping fasteners. The hinge 235 couples the boom structure 40 to the mobile agricultural implement 10. The hinge 235 may be fabricated from cast aluminum and extruded aluminum, which provides low manufacturability cost. The hinge 235 may also be fabricated from a metal, an alloy, an aluminum alloy, or other light weight material including carbon fiber, composites, a polymer, a plastic, a filler in a resin matrix, or another suitable material.
Each boom structure 40 includes a first sheet member 240 received by the first sheet member receiving portions 65, 70 of the first pair of left and right transversely extending beam members 45, 50. Each boom structure 40 includes a second sheet member 245 received by the second sheet member receiving portions 95, 100 of the second pair of left and right transversely extending beam members 75, 80. The first and second sheet members (240, 245) may be fabricated from 6061-T6 aluminum, which provides some corrosion resistance. The first and second sheet members (240, 245) may also be fabricated from a metal, an alloy, aluminum, an aluminum alloy, or other light weight material including carbon fiber, composites, a polymer, a plastic, a filler in a resin matrix, or another suitable material.
Advantageously, the boom structure 40 of the disclosure may be assembled without welding or with minimal welding by use of innovative boom assembly joints 37. Reduction of welding in manufacturing of the boom structure 40 reduces skilled labor requirements, energy consumption, and other costs associated with welding, and is well suited for reducing product cost of the boom structure 40. The boom assembly joints 37 facilitate structural integrity of the boom structure 40 by providing sufficient torsional stability for sprayers and other agricultural applications, for example.
Various features are set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5954270 | Rosset | Sep 1999 | A |
5992759 | Patterson | Nov 1999 | A |
6042020 | Weddle | Mar 2000 | A |
6966501 | Wubben et al. | Nov 2005 | B2 |
7413132 | Bogart et al. | Aug 2008 | B1 |
7458526 | Honermann et al. | Dec 2008 | B2 |
Number | Date | Country |
---|---|---|
19905207 | Feb 1999 | DE |
10338380 | Mar 2005 | DE |
1302107 | Apr 2003 | EP |
1302107 | Dec 2007 | EP |
2595205 | Sep 1987 | FR |
2643831 | Sep 1990 | FR |
240309 | Oct 1925 | GB |
Entry |
---|
European Search Report, dated Jan. 4, 2013 (6 pages). |
Number | Date | Country | |
---|---|---|---|
20130062432 A1 | Mar 2013 | US |