The present application relates generally to pulsed control of electric machines to selectively deliver a desired output in a more energy efficient manner, and more particularly, to a boosted converter circuit with improved rise and fall times for pulsing the electric machine.
The term “machine” as used herein is intended to be broadly construed to mean both electric motors and generators. Electric motors and generators are structurally very similar. Both include a stator having a number of poles and a rotor. When a machine is operating as a motor, it converts electrical energy into mechanical energy. When operating as a generator, the machine converts mechanical energy into electrical energy.
Electric machines can operate using either direct current (DC) or alternating current (AC).
Representative DC machines include brushless, electrically excited, permanent magnet, series wound, shunt, brushed, compound, and others.
With AC machines, there are two general varieties, asynchronous and synchronous. An example of an asynchronous electric machine is a three-phase induction motor.
Modern electric machines have relatively high energy conversion efficiencies. The energy conversion efficiency of most electric machines, however, can vary considerably based on their operational load. With many applications, a machine is required to operate under a wide variety of different operating load conditions. As a result, machines typically operate at or near the highest levels of efficiency at certain times, while at other times, they operate at lower efficiency levels.
Battery powered electric vehicles provide a good example of an electric machine operating at a wide range of efficiency levels. During a typical drive cycle, an electrical vehicle will accelerate, cruise, de-accelerate, brake, corner, etc. Within certain rotor speed and/or torque ranges, the electric machine operates at or near is most efficient operating point, i.e. its “sweet spot”. Outside these ranges, the operation of electric machine is less efficient. As driving conditions change, the machine transitions between high and low operating efficiency levels as the rotor speed and/or torque changes. If the electric machine could be made to operate a greater proportion of a drive cycle in high efficiency operating regions, the range of the vehicle for a given battery charge level would be increased. Since the limited range of battery powered electric vehicles is a major commercial impediment to their use, extending the operating range of the vehicle is highly advantageous.
A need therefore exists to operate electric machines, such as motors and generators, at higher levels of efficiency.
The present application is directed toward pulsed control of electric machines, such as motors and generators, to improve operational efficiency. In a non-exclusive embodiment, such a pulsed-controlled machine includes a power supply, a stator with windings, a rotor of design dependent upon the motor topology, a machine controller configured to selectively operate the machine in a pulsed mode, and a power converter coupled between the power supply and the electric machine. The power converter is arranged to provide pulsed input power to the windings of the stator of the machine in response to the machine controller. In addition, the power converter may include a boost circuit. The boost circuit is arranged to reduce rise and fall times of the pulsed power relative to the rise and fall times of the pulsed power without the boost circuit. The boost circuit extracts at least some of a magnetic energy present in the electric machine at the end of a pulse to reduce the pulse fall time, stores at least some of the energy, and applies at least some of the energy at the beginning of a subsequent pulse to reduce the rise time. By reducing the rise and fall times of the pulsed power, the efficiency of the electric machine and overall electrical system is improved.
The invention and the advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings in which:
In the drawings, like reference numerals are sometimes used to designate like structural elements. It should also be appreciated that the depictions in the figures are diagrammatic and not to scale.
The present application relates generally to pulsed control of a wide variety of electric machines (e.g., electric motors and generators) that would otherwise be operated in a continuous manner By pulsed control, the machine is intelligently and intermittently pulsed on and off to both (1) meet operational demands while (2) improving overall efficiency. More specifically, under selected operating conditions, an electric machine is intermittently pulse-driven at more efficient energy conversion operating levels to deliver the desired average output more efficiently than would be attained by conventional continuous machine operation. Pulsed operation results in deliberate modulation of the electric machine torque; however, the modulation is managed in such a manner such that levels of noise or vibration are minimized for the intended application.
For the sake of brevity, the pulsed control of a wide variety of electric machines as provided herein is described in the context of a three-phase induction electric motor in a vehicle. This explanation, however, should not be construed as limiting in any regard. On the contrary, the pulse control as described herein can be used for many types of electric machine, meaning both electric motors and generators. For instance, the machine pulsed control as described herein may be used with any type of machine regardless if AC (e.g., induction, synchronous, any number of poles, etc.) or DC (e.g., brushless, electrically excited, permanent magnet, series wound, shunt brushed, compound, etc.). In addition, pulsed control of such electric machines may be used in any application, not just limited to electric vehicles. In particular, pulsed control may be used in systems that require lower acceleration and deceleration rates than vehicle applications, such as electric motors for heating, cooling, and ventilating systems.
Pulsed engine control is described in U.S. patent application Ser. No. 16/353,159 filed on Mar. 14, 2019, and U.S. Provisional Patent Application Nos. 62/644,912, filed on Mar. 19, 2018; 62/658,739, filed on Apr. 17, 2018; and 62/810,861 filed on Feb. 26, 2019. Each of the foregoing applications is incorporated herein by reference in their entirety.
An induction machine includes two main components, a stationary stator and a rotating rotor. In a three-phase machine, the stator may include a three-coil winding that is excited by a three-phase AC input. When the three-phase AC input is passed through the three-phase winding, a rotating magnetic field (RMF) is generated. The rotational rate of the RMF is known as the synchronous speed (Ns) of the electric machine. The rotor is typically either a “squirrel cage” or a “wound” type rotor, both having a plurality of electrically conductive elements that are electrically shorted at their ends. In accordance with Faraday's law, the RMF induces a current within the conductive elements of the rotor. The induced current establishes an induced magnetic field, which interacts with the magnetic field produced in the stator coils. The interaction of the rotor and stator magnetic fields generates an electromagnetic force (EMF) causing the rotor rotation. This type of motor is called an induction motor because electrical current is induced on the rotor conductive elements by electromagnetic induction, as opposed to a direct electrically conductive path.
Three-phase induction motors provide a number of advantages. First, they are inherently self-starting. Second, the rotational speed of the rotor is easy to control. The rotational speed of the rotor (Nr) is always slightly less than the synchronous speed (Ns). This difference is known as slip, which may be expressed in terms of a percentage:
Slip %=(Ns−Nr)/Ns Eq. (1)
The frequency of the three-phase AC power energizing the stator windings controls the RMF rotational rate and thus the synchronous frequency. In turn, the rotational speed of the rotor can be controlled based on Eq. (1) defined above.
While the frequency provided to the three-phase winding controls the synchronous speed (Ns), the amplitude of the applied AC controls the output torque of the electric machine. When the amplitude is higher or lower, the output of the machine is higher or lower, respectively.
Referring to
The area under the peak-torque/speed curve 12 is mapped into a plurality of regions, each labeled by an operational efficiency percentage. For the particular motor shown, the following characteristics are evident:
The map 10 as illustrated was derived from an electric motor used in a 2010 Toyota Prius. Map 10 is for an internal permanent magnet synchronous motor. It should be understood that this map 10 is merely illustrative and should not be construed as limiting in any regard. A similar map can be generated for just about any electric motor, for example a 3-phase induction motor, regardless if used in a vehicle or in some other application.
As can be seen from the map 10, the motor is generally most efficient when operating within the speed and torque ranges of the sweet spot 14. If the operating conditions can be controlled so that the motor operates a greater proportion of time at or near its sweet spot 14, the overall energy conversion efficiency of the motor can be significantly improved.
From a practical point of view, however, many driving situations dictate that the motor operate outside of the speed and torque ranges of the sweet spot 14. In electric vehicles it is common to have no transmission and as such have a fixed ratio of the electric motor rotation rate to the wheel rotation rate. In this case, the motor speed may vary between zero, when the vehicle is stopped, to a relatively high RPM when cruising at highway speeds. The torque requirements may also vary widely based on factors such as whether the vehicle is accelerating or decelerating, going uphill, going downhill, traveling on a level surface, braking, etc.
As can be seen in
Referring to
During conventional operation, the motor would continuously generate 10 N*m so long as the desired torque remained at this value. With pulsed-control operation, the motor is pulsed, as represented by pulses 24, to deliver 50 N*m of torque for 20% of the time. The remaining 80% of the time, the motor is off. The net output of the motor therefore meets the operational demand of 10 N*m. Since the motor operates more efficiently when it is delivering 50 N*m than when it delivers 10 N*m, the motor's overall efficiency can thus be improved by pulsing the motor using a 20% duty cycle while still meeting the average torque demand.
In the above example, the duty cycle is not necessarily limited to 20%. As long as the desired motor output, does not exceed 50 N*m, the desired motor output can be met by changing the duty cycle. For instance, if the desired motor output changes to 20 N*m, the duty cycle of the motor operating at 50 N*m can be increased to 40%; if the desired motor output changes to 40 N*m, the duty cycle can be increase to 80%; if the desired motor output changes to 5 N*m, the duty cycle can be reduced to 10% and so on. Generally, pulsed motor control can potentially be used advantageously any time that the desired motor torque falls below the maximum efficiency curve 16 of
On the other hand, when the desired motor torque is at or above the maximum efficiency curve 16, the motor may be operated in a conventional (continuous or non-pulsed) manner to deliver the desired torque. Pulsed operation offers opportunity for efficiency gains when the motor is required to deliver an average torque below the average torque corresponding to its maximum operating efficiency point.
It should be noted that current and torque values and time scale provided in
The vast majority of current motor converters are typically designed for continuous, not pulsed operation. Such motors generally transition from the unenergized to an energized state relatively infrequently. As a result, little design effort is made in managing such transitions. To the extent any design effort is made in managing the transition, it is typically directed to achieving a smooth transition as opposed to a fast transition. The transition from the energized to energized states for most motors is therefore often rate limited (i.e., relatively not fast).
The Applicant has discovered that for a motor system that regularly transitions from an unenergized motor state to peak efficiency state such as with pulsed operation, even further efficiency improvements can be realized when the transitions occur as fast as possible. With fast transitions, for example from zero torque to the peak efficiency torque, the overall average motor efficiency is improved because the motor spends less time in transition where efficiency is less than the peak. This relationship is depicted in
Referring to
Referring to
By substituting time in place of torque along the horizontal axis and then integrating the area under the curve 29, the energy consumed by the motor can be calculated for a given transition time. For instance, the Applicant found that with an exemplary motor, 7234.5 Joules of energy was used with a transition time of 0.5 seconds, while only 723.4 Joules of energy were used a transition time of 0.05 second. This comparison demonstrates that the faster the transition time from zero to peak efficiency torque, the lower the energy consumed in losses. It should be noted that with this example, it is assumed that no acceleration of the load has taken place, so no energy has been added to the load inertia.
For different motors, the transition of the motor from zero to peak efficiency torque, the peak efficiency torque and the work losses will all vary. The maps of
Power inventers are known devices that are used with electric motors for converting a DC power supply, such as that produced by a battery or capacitor, into three-phase AC input power applied to motor stator windings. In response, the stator windings generate the RMF as described above.
Referring to
The pulse controller 38 is responsible for selectively pulsing the three-phased input power. During conventional (i.e., continuous) operation, the three-phased input power is continuous or not pulsed. On the other hand, during pulsed operation, the three-phased input power is pulsed. Pulsed operation may be implemented, in non-exclusive embodiments, using any of the approaches described herein, such as but not limited to the approaches described with regard to
Referring to
With any given motor, physics ultimately limits how fast a zero to peak efficiency torque transition can be. In general, the transition speed is based on the physics of how fast the electric fields can be built up in the motor, which in turn, are limited by the applied voltage, electric motor back emf (“BEMF”) and the inductance of the motor windings.
If we assume that the set point of the power converter 32 is incremented at time zero and the feedback is zero, then the control to the output stages of each phase will be saturated. As a result, either the low or high output power devices for each motor phase will be turned on hard. This results in six possible combinations, including:
With each of these six possible combinations, the current flow in the motor 36 at time zero will be (a) the full current in one phase and (b) while the other two phases split the current. The ratio of these currents will depend, as further described below, by the rotor position at time zero.
Referring to
Each phase A, B and C is represented by its self inductance (“LS”), it mutual inductance (“LM”), its resistance (“R”) and its BEMF.
In the case shown, Ic=Ia+Ib. The sum of the currents flowing in the mutual inductance is zero, and therefore, the mutual inductance has no effect on the current flow. The resulting reduced equivalent circuit assuming the BEMF of the motor is zero as illustrated in
If the BEMF is not zero, then the applied voltage to each phase will differ. Because the phase impedances and phase currents are balanced, the neutral point of the winding is for this case=Vbus*2/3. If winding B was connected to the negative rail then the neutral voltage would be=Vbus/3. This defines the currents Ia, Ib, and Ic for phases A, B and C as:
As all the values above are the instantaneous, the values at time zero are dependent upon the instantaneous value of the BEMF of each phase, which in turn is dependent upon the location of the rotor within one electrical cycle or pole pair pitch. It must also be noted that as time progresses, so does the instantaneous BEMF voltage per phase, the voltage applied to the motor inductance and the rate of rise of the motor phase current.
The intent is for the current to reach its desired value and phase to provide the demanded torque. The current is normally controlled using Field Oriented Control or “FOC”, and hence, the phase currents are transposed to the rotating frame values of “iq” (quadrature current) and “id” (direct current) where the vector sum of id and iq equals the peak magnitude of the phase current and Arc Tan id/iq is the angle. The cosine of the angle is the power factor. So deducing the values of id and iq using the Direct Quadrature Zero transform gives:
When inspecting the above formulae, the BEMF waveform Vpk only influences iq (quadrature current), both are influenced by the bus voltage, Vbus, and the angular position of the rotor, θ. Neither the angle nor the motor BEMF can be changed without a change of motor so the only parameter that can be controlled to affect the rate of rise of the phase currents, and hence the motor torque, is the applied bus voltage, Vbus. One aspect of this invention, therefore, proposes that the bus voltage be temporarily increased or “boosted” to a higher value than the normal operating bus voltage for the duration of transit time from zero to the peak efficiency torque during pulsing, thereby reducing that transit time.
It should be noted that when the converter is turned off the energy stored in the electric motor windings is returned to the bus voltage supply. If the supply cannot absorb this energy, then the bus voltage will rise as the bus capacitance absorbs this energy. Due to the amount of capacitance across the bus supply, this normal process will typically only increase the bus voltage by a small percentage, generally not enough to be considered as boosting the bus voltage. However, if this energy is captured independently, for example captured and stored in a storage device such as a capacitor or battery, then it could be recycled back to the motor in the form of a boost voltage.
Alternatively, during the “OFF” period the bus voltage could be augmented by a separate boost voltage source using a charge pump or separate voltage source. This boost supply should not be designed to charge the main bus capacitance but a separate capacitance that can be discharged into the motor over the on-transition time from zero to the demanded torque.
The inherent inductance of the motor can thus transitorily delay/slow the voltage/power steps between the on and off motor states. During continuous (non-pulsed) operation, these transitory effects tend to have a relatively minimal impact on overall motor operation. However, when rapid pulsing is used as contemplated herein, the transitory effects can have a larger net impact, and therefore, there is an incentive to reduce the leading and falling edge pulse transition times.
Referring to
The diodes also provide a path for recycling current which the switch may block. This is especially important when the electric machine 36 is used as a generator. The switches S1-S6 may be each be a MOSFET (metal-oxide semiconductor field-effect transistor) switch with integrated diodes. Alternatively, other types of transistors, such as, but not limited to, insulated gate bipolar transistors (IGBT) may be used.
A connection to a stator coil winding of the electric machine 36 is made between each switch pair. For phase A, the connection is between switch pair S1-S2 and is designated as 37a. For phase B, the connection is between switch pair S3-S4 and is designated as 37b. For phase C, the connection is between switch pair S5-S6 and is designated as 37c.
Within the electric machine 36, each phase stator winding may be modeled as an inductor 31, a resistor 33, and a mutual inductance 35. These elements are only labeled in
The switches S1-S6 may be collectively referred to as a switching network that controls power to and from the electric machine 36.
When the electric machine 36 is operated as a motor, the switches S1-S6 operate in a conventional manner to apply current to each of the stator windings. For example, the switches may be operated as a six-step inverter, which provides AC power to the electric machine 36.
Similarly,
It should be appreciated that electric machine 36 may be operated as a generator as well as a motor. When operating as a generator, the energy flow is from the electric machine 36 to the DC supply 34. The power converter 32 acts as a 3-phase rectifier rather than an inverter.
In typical prior art systems, the switching network is used to control the power flowing to the electric motor by pulse width modulation (PWM) control. PWM control reduces the time that the switching network is in an active configuration of the switches S1-S6 where power can flow to the electric motor. That is, the fraction of time that the switches S1-S6 are in an inactive configuration, either S1, S3, and S5 or S2, S4, and S6 are all turned off, increases as the desired electric motor torque output decreases.
During operation, the pulse controller 38 operates to selectively turn switches SA or SB on and off by applying a pulsed waveform to signal line 41, which electrically connects pulsed controller 38 to switches SA and SB. When switch SA and SB are turned on, current may be delivered to the electric machine 36. Conversely, when SA and/or SB are turned off, no current, or only a transient current, is delivered to the electric machine 36.
The power converter circuit 132 also includes a capacitor C1, which has one conductive plate coupled to (+VBUS) and the other conductive plate coupled to (−VBUS). Collectively the switches SA and SB and the capacitor C1 may be referred to as a boost circuit, since their purpose is to increase the initial voltage on the +VBUS and −VBUS buses at the beginning of an “on” pulse as described below. In various embodiments, boost circuit may be incorporated into the switching network or may include elements distinct from the switching network.
As previously noted, the goal of pulsed motor control is to operate the electric machine 36 at substantially its most efficient level for the current machine speed during “on” periods and to cut-off power (provide zero or negligible power) during the “off” periods. For example, the power supplied during the off periods may be less than 10%, 5%, 1%, 0.5%, or 0.1% of the power supplied during the “on” period. The operating point while operating during the “on” period may have an efficiency within 5%, 2%, or 1% of a maximum operating efficiency point of the motor at the current motor speed. The transitions thru the low efficiency operating region between the “off” and “on” periods should be as fast as possible to maximize efficiency. Thus, the power transitions between the machine power “on” and “off” states ideally have a leading edge that transitions vertically straight up and a following edge that vertically transitions straight down. Such “perfect” pulses 60 are diagrammatically illustrated in
In the real-world, a number of practical limitations make generation of such perfect pulses difficult to achieve. For instance, inductive aspects of both the electric machine 36 and the power converter 32 circuitry slow down the current rise and fall times. The actual response of a particular machine will vary with the electrical characteristics of the electric machine 36, the rotational speed of the electric machine and the available bus voltages. In general, the actual rise and fall of pulses occur more gradually, meaning the transitions occur over time. The nature of the rise and fall in the real-world is diagrammatically illustrated in
During the power ramp-up and ramp-down periods, the electric machine 36 continues to consume or generate power. However, the machine operates less efficiently during these transition periods. In general, the machine efficiency will drop as the operating current drops from its maximum efficiency condition (curve 16
It should be appreciated that the transitory effects shown in
The capacitor C1 included in the power converter circuit 132 of
To better understand operation of the power converter 132, assume the power converter 132 is initially in an “on” state and the electric machine 36 is operating as a motor. This implies that, the switches SA and SB are turned on so that current can flow from the positive terminal of the DC supply 34 thru the power converter 132 to the electric machine 36 and return to the negative terminal of the DC supply 34. The switches S1 thru S6 will oscillate in the configurations shown in
To terminate motor operation the switches SA and SB may be turned off, allowing the +VBUS and −VBUS buses to have a different potential than their respective terminals of the DC power source 34. Since the circuit is now open, current must cease to flow thru the circuit; however, there may be significant energy associated with current generated magnetic fields in the electric machine 36. At least some of this energy may be extracted from the electric machine 36 and is captured in capacitor C1 where it is stored. This will increase the electrical potential difference between the positive voltage bus and negative voltage bus. For example, the potential on line +VBUS may increase above that of the positive terminal of the DC power source, +VDC, and the potential on line −VBUS may decrease below that of the negative terminal of the DC power source, −VDC. Note that the switches S1-S6 all have bypass diodes, which allow unidirectional current to flow from the electric machine 36 to the +VBUS line and from the −VBUS line to the electric machine 36 independent of the switch position. Coincident with, or nearly coincident with, the turning off of switches SA and SB any of the switches S1-S6 that may have been turned on when switches SA and SB opened are turned off, so that current does not flow through any of these switches between the +VBUS and −VBUS lines to the electric machine 36.
When motor operation is once again desired, the switches S1-S6 may be turned on in one of the patterns shown in
While the exemplary power converter with boost circuit is shown in
The switches SA and SB in conjunction with the capacitor C1 can thus be used to reduce the power rise and fall times, in some cases by factors of 2, 5, 10 or more. The voltage across capacitor C1 can be increased above that of the power supply by storing energy recovered from the motor during its ramp down. The magnitude of the voltage increases with the amount of magnetic energy that can be extracted and captured. This can significantly reduce potential deleterious transitory switching effects associated with pulsed operation.
Examples of improved rise and fall times are schematically shown in
It should be appreciated that the appropriate pulsing frequency implemented by the pulse controller 38 for different machines may be very different based on the machine's construction, operating environment and operational range. For some electric machines, switching frequencies on the order of 10-50 kHz may be appropriate—whereas for other machines much lower switching frequencies, as for example 10-500 Hz range may be more appropriate. The most appropriate pulsing frequency for any particular machine will depend on a wide variety of circumstances, such as the type of machine, the load of the machine, and/or the application of the machine.
It should be appreciated that the details of the boost circuit used to shorten the rise and fall times of the power to or from an electric machine may vary depending on the type of electric machine and its operating regime. For example, in some cases the one of the switches SA or SB can be deleted from the power converter circuit 132. Other types of power converter circuits and control strategies may be used. For example, a Z-source inverter, where a diode, two inductors, and two capacitors are situated between the power supply and switching network may be used in some situations.
The voltage boost level and size of capacitor C1 can be chosen appropriately for the electric machine and its inductive and resistive characteristics to shorten the transient rise/fall times associated with pulsing the machine on and off. Preferably, the respective capacitance and boost voltage levels are also selected to maximize overall machine efficiency during pulsing, including inefficiencies associated with the transients themselves and the effects of any overshoot that may occur due to use of the capacitor C1. Since the capacitor C1 is used to improve transient response, it may be opportunistically recharged in the periods when the motor is not being supplied power—as for example during the electric machine off periods. This mode of operation is explained in more detail in the description below regarding
Depending on the motor speed and load there may be insufficient energy stored in the magnetic fields of the motor to adequately boost the +VBUS and −VBUS voltages for sharp rise and fall times. In such cases it may be desirable to boost the potential difference across the electric machine during the off periods between pulses. An exemplary voltage waveform showing two boost cycles 73a and 73b is shown in
Referring to
The boost circuit 202 includes a boost supply 204, switch 206, a capacitor C1, a battery and a control signal 208 generated by the pulse controller 38. As the pulse controller 38 was previously described, a detailed explanation is not repeated herein for the sake of brevity.
In various embodiments, the boost supply 204 can be a dedicated circuit (e.g., charge pump or separate voltage source) capable of generating a boost voltage and/or a storage device such as another capacitor and/or battery. With the later embodiments, at least some of the energy stored by the storage device may be derived from the motor 38 itself. For example, when the machine 36 is operating as a generator, or when the machine 36 is acting as a motor and transitions from on to off states, such as during pulsing, the produced energy can be diverted to and saved certain components in the boost circuit 202, such the capacitor C1 and/or the battery. The saved energy can then be used to “boost” the positive rail (+VBUS) during positive transitions as described below.
The switch 206 can be any type of switch that is capable of switching between the positive (+) and negative (−) electrodes of the boost supply 204. It is anticipated that this switch will be constructed using semiconductor devices. In a specific but non-exclusive embodiment, the switch 206 is a single pull double throw switch.
During continuous motor operation, phased power is provided to the stator windings of the machine 36 via the switches S1 and S2 for phase A, switches S3 and S4 for phase B and switches S5 and S6 for phase C as is well known in the art. The net result is a continuous torque output of the motor as previously described.
During pulsed operation, the pulsed controller 38 controls the switch 206 via the control signal 208 to control the boost circuit 202. With a positive pulse transition, the switch 206 is activated to connect the positive rail (+VBUS) to the positive (+) terminal of the boost supply 204. As a result, the boost supply 204, operating in cooperation with the capacitor C1 and battery, act to boost the voltage on the positive rail (+VBUS). With the Increased or Boosted Voltage on the Positive Rail, the transition time is reduced. Once the stored energy in the boost circuit has diminished or the peak torque level has been achieved the control signal 208 directs the switch to connect the positive rail (+VBUS) to the negative (−) terminal of the boost supply 204. As a result, the boost voltage is effectively removed from the positive rail (+VBUS).
The effect of the boost circuit 202 is also illustrated in
With the
In the initial step 72, the current motor output and current motor speed are ascertained.
In decision step 74, a determination is made based on the current motor output and current motor speed if the motor should be operated in a continuous mode or a pulsed mode. In other words, a determination is made if the desired motor torque is above or below the most efficient output torque for the current motor speed (i.e., the maximum efficiency curve 16 of the motor map illustrated in
In step 76, the motor is operated in the continuous mode 76 if the current motor torque is above the most efficient output torque for the current motor speed.
In step 78, the power output or magnitude of the “on” pulses that provide for substantially maximum efficiency operation at the current motor speed is determined.
In step 80, the desired pulse duty cycle for operation in the pulsed mode is determined so that the average output power or torque matches the desired output.
In step 82, the motor is operated in the pulsed mode using the determined pulse duty cycle and pulsed power output. The use of the power controller 30 with the boosted power converter circuits 132 or some other power converter circuit capable of storing and releasing magnet energy from the electric machine reduces, often significantly, the rise and fall times of the pulses, further improving motor efficiency.
The above steps 72-82 are continuously performed while the motor is in operation. At any particular motor speed, there will be a corresponding most efficient output torque which is diagrammatically illustrated by maximum efficiency curve 16 in
During operation of the system 300, the torque modulation decision module 302 receives a torque demand. In response, the torque modulation decision module 302 makes a determination if the requested torque is less than the peak efficiency torque of the machine 36 when operating as a motor.
If not, meaning the torque demand is larger than the peak efficiency torque, the machine 36 is operated as a motor in the continuous mode. In which case, the torque demand waveform 310 provided to the power converter 32 is indicative of continuous operation of the machine 36 operating as a motor.
On the other hand if the torque demand is less than the peak efficiency torque of the machine 36, then the machine 36 is operated as a motor in the pulsed mode. In which case, the torque modulation decision module 302 produces a modulated waveform 310 for the power converter 32, causing the machine 36 operating as a motor to switch or pulse between the peak efficiency torque of the motor and a lower torque, the average of which is substantially equal to the demanded torque. In various embodiments, the lower torque can be zero, but it is not necessarily zero. The lower torque can be some other torque value above zero, provided the average of the lower and peak efficiency torque is substantially equal to the demanded torque.
The power converter 32 includes a switching network including pairs of switches S1-S2 for phase A, switches S3-S4 for phase B and switches S5-S6 for phase C, all of which are not shown in the figure for the sake of simplicity. As previously noted, the switches S1-S6 are controlled by the power converter 32 to operate the machine 36 either (1) continuously as a motor resulting in generating a continuous torque output when the torque demand is greater than the peak efficiency torque or (2) in the pulse mode when the torque demand is less than the peak efficiency torque. The power converter 32 can control the energy supplied to the machine 36 using any of a number of different protocols, such as Pulse Width Modulation (PWM), Direct Torque Control (DTC), hysteresis, or “dead beat” control, which is a form of current modulation.
In alternative embodiments, a boosted power converter such as 132 of
The feedback sensor 304 generates the feedback signal 306, which is indicative of the angular position of the rotor of the machine 36. The feedback signal is provided to each of the power converter 32 and the torque and speed estimator 308. With the angular position of the rotor known, the torque and speed estimator 308 can provide accurate estimates of the torque and speed of the motor to the torque modulation decision module 302. In response, the waveform 310 can be adjusted as necessary so that the timing of switching network (i.e., the timing of turning the switches S1-S6 on/off) within the power converter 32 can be precisely controlled so that each of the phases A, B and C of energy are timed to coincide with the current position of the rotor. As a result, the operation of the machine 36 as a motor is both smooth and efficient. It should be noted that the use of a feedback sensor 304 is not mandatory and that other techniques can be used for measuring or estimating the angular position of the rotor of the machine 36. For instance, any of a number of sensorless approaches may be used as well.
There are a wide variety of machines, both electric motor and generator, that are known and commercially available, including both DC and AC motors/generators. Although the structure, control and energy conversion efficiency of the various types of electric motors and generators vary significantly, most electric motors and generators are designed to operate over a range of operating conditions and their energy conversion efficiency will vary over that operating range, often significantly. In general, the control principles described herein can be applied to any type of machine to improve efficiency, provided the operating range includes regions below the equivalent of the maximum efficiency curve 16 illustrated in
Some prior art motors are currently operated using pulse width modulation (PWM) control. However, such motors are driven without consideration of what might be their most efficient energy conversion level. As such, the described approach can also be used to improve the energy conversion efficiency of such motors as well.
Many types of motors, including brushless DC motors, induction motors, synchronous AC motors, switched reluctance motors, etc. are traditionally driven by a continuous, albeit potentially varying, drive current to deliver the desired torque output. Frequently, the drive current is controlled by controlling the output voltage of an inverter and/or converter (which serves as the voltage input to the motor). Generally, by changing the relative phasing between the rotor and stator magnetic fields a motor can be operated as a generator. Thus, circuits and control methods described in terms of a motor are equally applicable to using an electric machine as a generator. The described pulsed control is particularly beneficial when such motors and generators are operated in regions below their respective maximum energy conversion efficiency points.
Therefore, the present embodiments should be considered illustrative and not restrictive and the invention is not to be limited to the details given herein but may be modified within the scope and equivalents of the appended claims.
This application is a continuation of U.S. application Ser. No. 16/818,570, filed on Mar. 13, 2020, which claims priority of U.S. Provisional Application No. 62/819,097, filed on Mar. 15, 2019. U.S. application Ser. No. 16/818,570 is a Continuation-in-Part of U.S. application Ser. No. 16/353,166 filed Mar. 14, 2019 (now U.S. Pat. No. 10,742,155, issued on Aug. 11, 2020), which claims priority to U.S. Provisional Application Ser. No. 62/810,861 filed Feb. 26, 2019; U.S. Provisional Application Ser. No. 62/658,739 filed Apr. 17, 2018; and U.S. Provisional Application Ser. No. 62/644,912 filed Mar. 19, 2018. U.S. application Ser. No. 16/818,570 is further a Continuation of International Application No. PCT/US20/22262, filed Mar. 12, 2020. Each of the above listed provisional and non-provisional applications are incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4441043 | Decesare | Apr 1984 | A |
4989146 | Imajo | Jan 1991 | A |
5099410 | Divan | Mar 1992 | A |
5151637 | Takada et al. | Sep 1992 | A |
5325028 | Davis | Jun 1994 | A |
5483141 | Uesugi | Jan 1996 | A |
5640073 | Ikeda et al. | Jun 1997 | A |
5731669 | Shimizu et al. | Mar 1998 | A |
6291960 | Crombez | Sep 2001 | B1 |
6308123 | Ikegaya et al. | Oct 2001 | B1 |
6370049 | Heikkila | Apr 2002 | B1 |
6424799 | Gilmore | Jul 2002 | B1 |
6493204 | Glidden et al. | Dec 2002 | B1 |
6528964 | Schulz | Mar 2003 | B2 |
6534948 | Ohura | Mar 2003 | B2 |
6605912 | Bharadwaj et al. | Aug 2003 | B1 |
6829515 | Grimm | Dec 2004 | B2 |
6829556 | Kumar | Dec 2004 | B2 |
6906485 | Hussein | Jun 2005 | B2 |
6940239 | Iwanaga | Sep 2005 | B2 |
7190143 | Wei et al. | Mar 2007 | B2 |
7259664 | Cho et al. | Aug 2007 | B1 |
7327545 | Konishi | Feb 2008 | B2 |
7411801 | Welchko et al. | Aug 2008 | B2 |
7453174 | Kalsi | Nov 2008 | B1 |
7558655 | Garg et al. | Jul 2009 | B2 |
7577511 | Tripathi et al. | Aug 2009 | B1 |
7616466 | Chakrabarti et al. | Nov 2009 | B2 |
7768170 | Tatematsu et al. | Aug 2010 | B2 |
7852029 | Kato et al. | Dec 2010 | B2 |
7960888 | Ai et al. | Jun 2011 | B2 |
7960930 | Sato | Jun 2011 | B2 |
7969341 | Robbe et al. | Jun 2011 | B2 |
8099224 | Tripathi et al. | Jan 2012 | B2 |
8643316 | Kono | Feb 2014 | B2 |
8768563 | Nitzberg et al. | Jul 2014 | B2 |
8773063 | Nakata | Jul 2014 | B2 |
9046559 | Lindsay et al. | Jun 2015 | B2 |
9050894 | Banerjee et al. | Jun 2015 | B2 |
9308822 | Matsuda | Apr 2016 | B2 |
9407181 | Furukawa | Aug 2016 | B2 |
9419551 | Pietromonaco | Aug 2016 | B2 |
9495814 | Ramesh | Nov 2016 | B2 |
9512794 | Serrano et al. | Dec 2016 | B2 |
9630614 | Hill et al. | Apr 2017 | B1 |
9702420 | Yoon | Jul 2017 | B2 |
9758044 | Gale et al. | Sep 2017 | B2 |
9948173 | Abu Qahouq | Apr 2018 | B1 |
10060368 | Pirjaberi et al. | Aug 2018 | B2 |
10081255 | Yamada et al. | Sep 2018 | B2 |
10256680 | Hunstable | Apr 2019 | B2 |
10273894 | Tripathi | Apr 2019 | B2 |
10291168 | Fukuta | May 2019 | B2 |
10291174 | Irie et al. | May 2019 | B2 |
10320249 | Okamoto et al. | Jun 2019 | B2 |
10344692 | Nagashima et al. | Jul 2019 | B2 |
10381968 | Agirman | Aug 2019 | B2 |
10476421 | Khalil et al. | Nov 2019 | B1 |
10550776 | Leone et al. | Feb 2020 | B1 |
10944352 | Mazda et al. | Mar 2021 | B2 |
11077759 | Srinivasan | Aug 2021 | B1 |
11088644 | Carvell | Aug 2021 | B1 |
11133763 | Islam | Sep 2021 | B1 |
11133767 | Serrano et al. | Sep 2021 | B2 |
11167648 | Carvell et al. | Nov 2021 | B1 |
11228272 | Tripathi | Jan 2022 | B2 |
11433770 | El Khawly et al. | Sep 2022 | B2 |
20010039926 | Kobayashi et al. | Nov 2001 | A1 |
20020043954 | Hallidy et al. | Apr 2002 | A1 |
20050127861 | McMillan et al. | Jun 2005 | A1 |
20050151437 | Ramu | Jul 2005 | A1 |
20050160771 | Hosoito et al. | Jul 2005 | A1 |
20070216345 | Kanamori | Sep 2007 | A1 |
20070287594 | DeGeorge et al. | Dec 2007 | A1 |
20080129243 | Nashiki | Jun 2008 | A1 |
20080179980 | Dawsey et al. | Jul 2008 | A1 |
20090045691 | Ichiyama | Feb 2009 | A1 |
20090121669 | Hanada | May 2009 | A1 |
20090128072 | Strong et al. | May 2009 | A1 |
20090146615 | Zillmer et al. | Jun 2009 | A1 |
20090179608 | Welchko et al. | Jul 2009 | A1 |
20090306841 | Miwa et al. | Dec 2009 | A1 |
20100010724 | Tripathi et al. | Jan 2010 | A1 |
20100201294 | Yuuki et al. | Aug 2010 | A1 |
20100296671 | Khoury et al. | Nov 2010 | A1 |
20110029179 | Miyazaki et al. | Feb 2011 | A1 |
20110089774 | Kramer | Apr 2011 | A1 |
20110101812 | Finkle et al. | May 2011 | A1 |
20110130916 | Mayer | Jun 2011 | A1 |
20110208405 | Tripathi et al. | Aug 2011 | A1 |
20120056569 | Takamatsu et al. | Mar 2012 | A1 |
20120112674 | Schulz et al. | May 2012 | A1 |
20120169263 | Gallegos-Lopez et al. | Jul 2012 | A1 |
20120217921 | Wu et al. | Aug 2012 | A1 |
20130134912 | Khalil et al. | May 2013 | A1 |
20130141027 | Nakata | Jun 2013 | A1 |
20130226420 | Pedlar et al. | Aug 2013 | A1 |
20130241445 | Tang | Sep 2013 | A1 |
20130258734 | Nakano et al. | Oct 2013 | A1 |
20140018988 | Kitano et al. | Jan 2014 | A1 |
20140028225 | Takamatsu et al. | Jan 2014 | A1 |
20140130506 | Gale et al. | May 2014 | A1 |
20140176034 | Matsumura et al. | Jun 2014 | A1 |
20140217940 | Kawamura | Aug 2014 | A1 |
20140265957 | Hu et al. | Sep 2014 | A1 |
20140292382 | Ogawa et al. | Oct 2014 | A1 |
20140354199 | Zeng et al. | Dec 2014 | A1 |
20150025725 | Uchida | Jan 2015 | A1 |
20150240404 | Kim et al. | Aug 2015 | A1 |
20150246685 | Dixon et al. | Sep 2015 | A1 |
20150261422 | Den et al. | Sep 2015 | A1 |
20150297824 | Cabiri et al. | Oct 2015 | A1 |
20150318803 | Wu et al. | Nov 2015 | A1 |
20160114830 | Dixon et al. | Apr 2016 | A1 |
20160226409 | Ogawa | Aug 2016 | A1 |
20160233812 | Lee et al. | Aug 2016 | A1 |
20160269225 | Kirchmeier et al. | Sep 2016 | A1 |
20160373047 | Loken et al. | Dec 2016 | A1 |
20170087990 | Neti et al. | Mar 2017 | A1 |
20170163108 | Schencke et al. | Jun 2017 | A1 |
20170331402 | Smith et al. | Nov 2017 | A1 |
20180032047 | Nishizono et al. | Feb 2018 | A1 |
20180045771 | Kim et al. | Feb 2018 | A1 |
20180154786 | Wang et al. | Jun 2018 | A1 |
20180276913 | Garcia et al. | Sep 2018 | A1 |
20180323665 | Chen et al. | Nov 2018 | A1 |
20180334038 | Zhao et al. | Nov 2018 | A1 |
20190058374 | Enomoto et al. | Feb 2019 | A1 |
20190288629 | Tripathi | Sep 2019 | A1 |
20190288631 | Tripathi | Sep 2019 | A1 |
20190341820 | Krizan et al. | Nov 2019 | A1 |
20200212834 | Mazda et al. | Jul 2020 | A1 |
20200262398 | Sato et al. | Aug 2020 | A1 |
20200328714 | Tripathi | Oct 2020 | A1 |
20200343849 | Coroban-Schramel | Oct 2020 | A1 |
20200366223 | Coroban-Schramel | Nov 2020 | A1 |
20210146909 | Serrano et al. | May 2021 | A1 |
20210203263 | Serrano et al. | Jul 2021 | A1 |
20210351733 | Carvell | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
1829070 | Sep 2006 | CN |
102381265 | Mar 2012 | CN |
102381265 | Mar 2012 | CN |
104716754 | Jun 2015 | CN |
204589885 | Aug 2015 | CN |
204589885 | Aug 2015 | CN |
105196877 | Dec 2015 | CN |
205229379 | May 2016 | CN |
205229379 | May 2016 | CN |
106932208 | Jul 2017 | CN |
106932208 | Jul 2017 | CN |
107067780 | Aug 2017 | CN |
107067780 | Aug 2017 | CN |
105196877 | Sep 2017 | CN |
207129052 | Mar 2018 | CN |
207129052 | Mar 2018 | CN |
108216026 | Jun 2018 | CN |
108216026 | Jun 2018 | CN |
108445386 | Aug 2018 | CN |
108445386 | Aug 2018 | CN |
110212725 | Sep 2019 | CN |
102014206342 | Oct 2015 | DE |
2605398 | Jun 2013 | EP |
2989479 | Oct 2013 | FR |
2273212 | Jun 1994 | GB |
2273212 | Aug 1994 | GB |
10243680 | Sep 1998 | JP |
2008-079686 | Apr 2008 | JP |
2009-065758 | Mar 2009 | JP |
2009065758 | Mar 2009 | JP |
201167043 | Mar 2011 | JP |
2014-033449 | Feb 2014 | JP |
2017-011970 | Jan 2017 | JP |
2017011970 | Jan 2017 | JP |
2017-200382 | Nov 2017 | JP |
2017200382 | Nov 2017 | JP |
2018-033250 | Mar 2018 | JP |
10-2010-0021146 | Feb 2010 | KR |
10-2017-0032976 | Mar 2017 | KR |
2017-0060041 | May 2017 | KR |
WO0336787 | May 2003 | WO |
WO2012-010993 | Jan 2012 | WO |
Entry |
---|
Extended European Search Report dated Jun. 29, 2022 for Application No. 20773320.5. |
Mirzaeva et al., “The use of Feedback Quantizer PWM for Shaping Inverter Noise Spectrum”, Power Electronics and Motion Control Conference (EPE/PEMC), 2012 15th International IEEE, Sep. 4, 2012, pp. DS3c. 10-1, XP032311951, DOI: 10.1109/EPEPEMC.2012.6397346, ISBN: 978-1-4673-1970.6. |
Luckjiff et al., “Hexagonal ΣΔ Modulators in Power Electronics”, IEEE Transactions on Power Electronics, Institute of Electrical and Electronics Engineers, USA, vol. 20, No. 5, Sep. 1, 2005, pp. 1075-1083, XP011138680, ISSN: 0885-8993, DOI: 10-1109/TPEL.2005.854029. |
Ramsey, “How This Father and Son's New Electric Turbine Could Revolutionize Electric Cars; Hunstable Electric Turbine can Produce up to Three Times the Torque of Any Other Motor”, https://www.parsintl.com/publication/autoblog/, Mar. 8, 2020. |
Srinivasan, U.S. Appl. No. 17/158,230, filed Jan. 26, 2021. |
Cai et al., “Torque Ripple Reduction for Switched Reluctance Motor with Optimized PWM Control Strategy”, https://www.mdpi.com/1996-1073/11/11/3215, Oct. 15, 2018, 27 pages. |
Spong et al., “Feedback Linearizing Control of Switched Reluctance Motors”, IEEE Transactions on Automatic Control, vol. AC-32, No. 5, May 1987, pp. 371-379. |
International Search Report and Written Opinion dated Jul. 3, 2020 from International Application No. PCT/US2020/022262. |
Wikipedia page, “Switched Reluctance Motor”, https://en.wikipedia.ord/wiki/switched_reluctance_motor, available Oct. 21, 2008, downloaded from the internet on Jun. 21, 2023. |
Number | Date | Country | |
---|---|---|---|
20210159836 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62819097 | Mar 2019 | US | |
62810861 | Feb 2019 | US | |
62658739 | Apr 2018 | US | |
62644912 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16818570 | Mar 2020 | US |
Child | 17166646 | US | |
Parent | PCT/US2020/022262 | Mar 2020 | US |
Child | 16818570 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16353166 | Mar 2019 | US |
Child | PCT/US2020/022262 | US |