1. Field of the Invention
The present invention relates to a boot shape keeper for holding boots in a fixed shape.
2. Description of the Related Art
With long boots or the like put off and left at a main entrance or the like, the shaft part of the boot bends easily. If the boots are left in this state for a long time, a crease is formed at the bent part of the shaft part, and, further, shape off-set may occur. It is therefore necessary to maintain boots in such a way that the shaft part is not bent when the boots are not used for a long time.
In the past, in order to prevent such bending at the shaft part of a boot, a boot keeper is proposed (for example, refer to Japanese Patent Application Laid-Open No. 2005-6915 (Patent Document 1)). This boot keeper fits in the shaft part of a boot to hold the shape of the shaft part, and has a crease-smoothing member for smoothing a crease formed near the ankle joint of the shaft part. Further, Japanese Patent Application Laid-Open No. 2002-223813 (Patent Document 2) discloses a technique on a shape holder formed by a transparent plastic bag having an outer shape which can expand inside the shaft part of the boot as air is fed from a compressed air feeding/discharging valve. According to the technique disclosed in Patent Document 2 can expand the bag by filling compressed air therein, so that with the shape holder fitted in the shaft part of the boot, the boot is not bent and stands upright, thus significantly contributing in holding the shape of the boot.
By the way, the insole part of the boot from the heel to the tiptoe where the leg is to be fitted absorbs the sweat from the sole. If a person keeps walking on the boots, friction is added to raise the temperature in the boots, making the environment where sweat-oriented germs are easy to breed. In order to prevent breeding of such germs, the humidity of the insole part must be discharged.
However, the boot keeper according to the technique disclosed in Patent Document 1 is configured as a column in which a cloth bag longer than the shaft part is enclosed. When the boot keeper with the above configuration is fitted in the shaft part of the boot, the insole part is sealed from the outside air. Because the technique disclosed in Patent Document 2 is also configured to expand the cloth bag in the shaft part of the boot, the insole part of the boot is likewise sealed from the outside air.
As a result, humidity in the insole part of the boot cannot be discharged, causing breeding of germs and releasing an offensive odor.
Accordingly, the present invention has been devised in view of the foregoing problems, and it is an object of the invention to provide a boot shape keeper capable of holding a boot in a fixed shape, removing malodor from the insole part of the boot by allowing the insole part of the boot to be opened to outside air while the boot is held.
A boot shape keeper according to a first aspect of the invention is a boot shape keeper to be inserted into a shaft part of a boot to keep a shape of the shaft part of a boot, the boot shape keeper comprising a cylindrical body part made by forming a plastic sheet having a gas pre-encapsulated into a cylindrical shape; and a through hole provided at a lower portion of a side wall surface of the body part, or a groove portion formed at a lower end of the side wall of the body part, wherein the body part has a fixed shape provided by the encapsulated gas.
The boot shape keeper according to a second aspect of the invention is characterized in that at least one small through hole is further formed in a side surface of the body part according to the first aspect of the invention.
Since the invention with the above-described configuration ensures a fixed shape, the shaft part does not bend but stands still, making it possible to keep the upright shape of the boot keeper. With the boot keeper being formed cylindrical and the presence of the groove portion and through hole, an offensive odor can be removed from the insole part of the boot by making the insole part communicatable with the outside air.
A boot shape keeper for holding boots in a fixed shape will be explained in detail below as the best mode for carrying out the invention, referring to the accompanying drawings.
The plastic sheet 10 is a thermoplastic resin sheet, such as non-permeable polyethylene. The thermoplastic resin may be adequately selected from polypropylene, polyethylene terephthalate, nylon, vinyl chloride, polycarbonate, etc. in addition to polyethylene.
The plastic sheet 10 has strip air chambers 11 elongated in an up-down direction y and arranged in columns in a widthwise direction x as shown in
After producing such a plastic sheet 10, the plastic sheet 10 is rolled in the widthwise direction x. At this time, as shown in
At this time, the air chambers 11 have not been formed at a rear surface 10a of the plastic sheet 10 yet, and the rear surface 10a is a smooth surface. Accordingly, the plastic sheet 10 can be easily rolled into a cylinder form so that the rear surface 10a becomes outside, and the top surface 10b becomes inside.
At the time of actually using the boot shape keeper 1 formed into a cylindrical shape, the boot shape keeper 1 is fitted in a shaft part 21 of the boot 2 as shown, for example, in
The volumes, sizes, positions, pitches, quantity, shapes, etc. of the air chambers 11 are adjusted beforehand so that the desired expansion force f is applied by the pressure among the air chambers 11. It is desirable that the individual dimensions, such as the sizes and volumes, should be uniform in order to exert stable expansion force f. The air chambers 11 may be formed as mutually-independent spaces, or may be formed as mutually continuous spaces. In case of making the air chambers 11 continuous, a bypass or the like may be provided to interconnect the air chambers 11.
As shown in
The through hole 13 is formed by rolling the boot shape keeper 1 in the widthwise direction x into a cylindrical shape. As shown in
This allows the humidity in the insole part 23 of the boot 2 to be discharged to prevent breeding of germs, thus suppressing an offensive odor.
The foregoing description of the embodiment has been given of the case where the air chambers 11 explained are formed at the top surface 10b of the plastic sheet 10. As the plastic sheet 10 is formed into a cylindrical shape so that the top surfaces 10b of the air chambers 11 form the inner wall, it is possible to enhance the degree of pressure between the air chambers 11 which project inward. This makes it possible to exert the expansion force f.
However, the air chambers 11 should not necessarily be formed at the top surface 10b of the plastic sheet 10. For example, regardless of whether or not the air chambers 11 are formed at the top surface 10b, the air chambers 11 may simply be formed in a string.
The plastic sheet is a thermoplastic resin sheet, such as non-permeable polyethylene. The thermoplastic resin may be adequately selected from polypropylene, polyethylene terephthalate, nylon, vinyl chloride, polycarbonate, etc. in addition to polyethylene.
The body part 30 can maintain the fixed shape with the air enclosed therein. The projecting part 32 has a gas enclosed therein beforehand, and is configured so as to feed the gas at least between the body part 30 and the projecting part 32 or discharge the gas therefrom. That is, the internal spaces of the projecting parts 32 and the internal space of the body part 30 are connected mutually.
The projecting part 32 can be elastically contracted up and down. Since the internal spaces of the projecting parts 32 are connected to the internal space of the body part 30, pressing the projecting part 32 from the bottom causes the projecting parts 32 to elastically contract as shown in
According to the invention, particularly, the provision of the projecting parts 32 smaller in volume than the body part 30 can allow the projecting parts 32 to be easily and elastically contracted.
The body part 30 and the projecting part 32 may be made of an elastic material with a fixed form, such as urethane. As the projecting parts 32 are formed with a smaller area than the body part 30, the projecting parts 32, when pressed, can easily and elastically be contracted.
At the time of actually using the boot shape keeper 3 formed into a cylindrical shape, the boot shape keeper 3 is fitted in the shaft part 21 of the boot 2 as shown, for example, in
At the time of displaying the boots 2 as an exhibit, therefore, it is also possible to give the image that the boots 2 naturally stand still by making each boot shape keeper 3 not visible from the customer's field of view. Regardless of whether the boot 2 is a long boot with a long shaft parts 21 or a half boot, etc. with a short shaft part 21, i.e., regardless of the length of the shaft part of the boot, the height can be adjusted with the boot shape keeper 3 whose projecting parts 32 are configured to be elastically contractable, so that the boot shape keeper 3 cannot be seen from the customer's field of view.
The through hole 31 is formed by making the boot shape keeper 3 into a cylindrical shape. As shown in
The boot shape keeper 7 has strip air chambers 11 elongated in the up-down direction y and arranged in columns in the widthwise direction x with a gas sealed in the air chambers 11 beforehand. The air chambers 11 are formed by placing two rectangular sheets constituting the plastic sheet 10 one on the other and thermocompression bonding the rectangular sheets in the up-down direction. Some air chambers 11 are elongated by a length corresponding to the projecting part 32. These air chambers 11 are continual to one another via the bypass (not shown), so that air can be fed to the entire boot via at least one air feeding inlet.
The plastic sheet 10 with the flat shape is rolled in the widthwise direction x into a cylindrical shape, thus providing the boot shape keeper 7 with such a shape as shown in
In this boot shape keeper 7, outward expansion force can be applied by the pressure from the adjacent air chambers 11. In addition, as the projecting part 32 is provided to be elastically contractable, the height can be adjusted. Further, the expansion force f may be exerted by the gas fed into the body part 30 by contracting the projecting part 32 with pressure.
At the time of actually using the boot shape keeper 4 formed into a cylindrical shape, the boot shape keeper 4 is fitted in the shaft part 21 of the boot 2 as shown, for example, in
As shown in
As shown in
Of course, at least two groove portions 42a may be provided to demonstrate a function similar to that of the projecting parts 32 in the second embodiment.
Furthermore, according to this embodiment, at least one small through hole may be further formed in the side surface of the body part 40. Multiple small through holes may be formed in the side surface of the body part 40 which faces the inner wall of the shaft part 21, thereby improving the permeability and ventilatory.
According to the third embodiment, of course, the body part 30 may be formed of an elastic material with a fixed shape, such as urethane, in place of a plastic sheet.
Number | Date | Country | Kind |
---|---|---|---|
2007-092411 | Mar 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/055533 | 3/25/2008 | WO | 00 | 9/29/2009 |