A resource field can be an accumulation, pool or group of pools of one or more resources (e.g., oil, gas, oil and gas) in a subsurface environment. A resource field can include at least one reservoir. A reservoir may be shaped in a manner that can trap hydrocarbons and may be covered by an impermeable or sealing rock. A bore can be drilled into an environment where the bore or borehole may be utilized to form a well that can be utilized for injection and/or production. For example, consider a well that can be utilized for producing hydrocarbons from a reservoir.
A rig can be a system of components that can be operated to form a borehole in an environment, to transport equipment and/or materials into and out of a borehole in an environment, etc. As an example, a rig can include a system that can be used to drill a borehole and to acquire information about an environment, about drilling, etc. As a resource field may be an onshore field, an offshore field or an on- and offshore field, a rig may include components appropriate for performing operations onshore and/or offshore. A rig may be, for example, vessel-based, offshore platform-based, onshore, etc.
After borehole is drilled, sections of pipe (e.g., casings, etc.) can be placed into the borehole. Casings may be fixed in a borehole using cement. For example, consider a process that includes pumping cement into an annulus between a casing and a formation (e.g., a wall of a borehole). In such an example, cement can provide structural integrity for a casing and can isolate one or more zones in an earth formation such that they are not in fluid communication with each other via the borehole. Insertion and placement of casings can be part of a completions process that includes performing various events and using various equipment to “complete” a well such that the completed well can be utilized for injection, production, etc. As an example, a completions process can include making perforations in casing through which fluid communication can be established between a wellbore and a formation.
Field planning and/or development can occur over one or more phases, which can include an exploration phase that aims to identify and assess an environment (e.g., a prospect, a play, etc.), which may include drilling of one or more bores (e.g., one or more exploratory wells, etc.). As explained, development can include drilling a borehole and performing a completions process to complete a well where the well can include a wellbore that is to be utilized to produce fluid from a reservoir. As appropriate, various types of equipment may be utilized to improve production of fluid from a reservoir. For example, one or more of artificial lift technology, hydraulic fracturing technology, injection technology, etc., may be utilized.
As explained, a well may be planned and developed for purposes of one or more of injection and production. Depending on one or more factors, a decision may be made to perform a plugging operation to plug a well, a branch of a well, etc. For a production well, such a decision may depend on sustainable production levels, which may consider characteristics of reservoir fluid, resource utilization, etc. A decision may depend on one or more other factors such as, for example, safety, which can consider one or more of equipment safety, human safety, and environmental safety. A plugging operation may be part of a decision to plug and abandon (P&A) a well or a portion of a well (e.g., a branch, etc.). For example, a P&A process can including performing a plugging operation to form a plug in a wellbore to shut-in and permanently isolate the wellbore. In such an example, the plug can be a seal element that aims to form a seal that hinders flow of fluid from one side of the plug to another side of the plug. For one or more reasons, a plug may leak. As such, a P&A process can include performing leak detection. Where a leak is detected and determined to be unacceptable, one or more actions may be performed to address the leak.
A method can include receiving pressure data with respect to time acquired via a pressure sensor disposed in an uphole region of a bore of a well, where a plug is disposed in the bore to define the uphole region to one side of the plug and a corresponding downhole region to the other side of the plug; using physical properties of liquid in the uphole region and thermal information, computing a temperature induced density variation of the liquid in the uphole region; and, based at least in part on at least a portion of the pressure data and the temperature induced density variation of the liquid, determining a state of the plug and the bore from a plurality of states. A system can include a processor; memory accessible by the processor; processor-executable instructions stored in the memory and executable to instruct the system to: receive pressure data with respect to time acquired via a pressure sensor disposed in an uphole region of a bore of a well, where a plug is disposed in the bore to define the uphole region to one side of the plug and a corresponding downhole region to the other side of the plug; using physical properties of liquid in the uphole region and thermal information, compute a temperature induced density variation of the liquid in the uphole region; and, based at least in part on at least a portion of the pressure data and the computed temperature induced density variation of the fluid, determine a state of the plug and the bore from a plurality of states. One or more computer-readable storage media can include processor-executable instructions to instruct a computing system to: receive pressure data with respect to time acquired via a pressure sensor disposed in an uphole region of a bore of a well, where a plug is disposed in the bore to define the uphole region to one side of the plug and a corresponding downhole region to the other side of the plug; using physical properties of liquid in the uphole region and thermal information, compute a temperature induced density variation of the liquid in the uphole region; and, based at least in part on at least a portion of the pressure data and the computed temperature induced density variation of the fluid, determine a state of the plug and the bore from a plurality of states. Various other apparatuses, systems, methods, etc., are also disclosed.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
Features and advantages of the described implementations can be more readily understood by reference to the following description taken in conjunction with the accompanying drawings.
The following description includes the best mode presently contemplated for practicing the described implementations. This description is not to be taken in a limiting sense, but rather is made merely for the purpose of describing the general principles of the implementations. The scope of the described implementations should be ascertained with reference to the issued claims.
The equipment 170 includes a platform 171, a derrick 172, a crown block 173, a line 174, a traveling block assembly 175, drawworks 176 and a landing 177 (e.g., a monkeyboard). As an example, the line 174 may be controlled at least in part via the drawworks 176 such that the traveling block assembly 175 travels in a vertical direction with respect to the platform 171. For example, by drawing the line 174 in, the drawworks 176 may cause the line 174 to run through the crown block 173 and lift the traveling block assembly 175 skyward away from the platform 171; whereas, by allowing the line 174 out, the drawworks 176 may cause the line 174 to run through the crown block 173 and lower the traveling block assembly 175 toward the platform 171. Where the traveling block assembly 175 carries pipe (e.g., casing, etc.), tracking of movement of the traveling block 175 may provide an indication as to how much pipe has been deployed.
A derrick can be a structure used to support a crown block and a traveling block operatively coupled to the crown block at least in part via line. A derrick may be pyramidal in shape and offer a suitable strength-to-weight ratio. A derrick may be movable as a unit or in a piece by piece manner (e.g., to be assembled and disassembled).
As an example, drawworks may include a spool, brakes, a power source and assorted auxiliary devices. Drawworks may controllably reel out and reel in line. Line may be reeled over a crown block and coupled to a traveling block to gain mechanical advantage in a “block and tackle” or “pulley” fashion. Reeling out and in of line can cause a traveling block (e.g., and whatever may be hanging underneath it), to be lowered into or raised out of a bore. Reeling out of line may be powered by gravity and reeling in by a motor, an engine, etc. (e.g., an electric motor, a diesel engine, etc.).
As an example, a crown block can include a set of pulleys (e.g., sheaves) that can be located at or near a top of a derrick or a mast, over which line is threaded. A traveling block can include a set of sheaves that can be moved up and down in a derrick or a mast via line threaded in the set of sheaves of the traveling block and in the set of sheaves of a crown block. A crown block, a traveling block and a line can form a pulley system of a derrick or a mast, which may enable handling of heavy loads (e.g., drillstring, pipe, casing, liners, etc.) to be lifted out of or lowered into a bore. As an example, line may be about a centimeter to about five centimeters in diameter as, for example, steel cable. Through use of a set of sheaves, such line may carry loads heavier than the line could support as a single strand.
As an example, a derrickman may be a rig crew member that works on a platform attached to a derrick or a mast. A derrick can include a landing on which a derrickman may stand. As an example, such a landing may be about 10 meters or more above a rig floor. In an operation referred to as trip out of the hole (TOH), a derrickman may wear a safety harness that enables leaning out from the work landing (e.g., monkeyboard) to reach pipe in located at or near the center of a derrick or a mast and to throw a line around the pipe and pull it back into its storage location (e.g., fingerboards), for example, until it a time at which it may be desirable to run the pipe back into the bore. As an example, a rig may include automated pipe-handling equipment such that the derrickman controls the machinery rather than physically handling the pipe.
As an example, a trip may refer to the act of pulling equipment from a bore and/or placing equipment in a bore. As an example, equipment may include a drillstring that can be pulled out of a hole and/or placed or replaced in a hole. As an example, a pipe trip may be performed where a drill bit has dulled or has otherwise ceased to drill efficiently and is to be replaced.
In the example system of
As shown in the example of
The wellsite system 200 can provide for operation of the drillstring 225 and other operations. As shown, the wellsite system 200 includes the platform 211 and the derrick 214 positioned over the borehole 232. As mentioned, the wellsite system 200 can include the rotary table 220 where the drillstring 225 pass through an opening in the rotary table 220.
As shown in the example of
As to a top drive example, the top drive 240 can provide functions performed by a kelly and a rotary table. The top drive 240 can turn the drillstring 225. As an example, the top drive 240 can include one or more motors (e.g., electric and/or hydraulic) connected with appropriate gearing to a short section of pipe called a quill, that in turn may be screwed into a saver sub or the drillstring 225 itself. The top drive 240 can be suspended from the traveling block 211, so the rotary mechanism is free to travel up and down the derrick 214. As an example, a top drive 240 may allow for drilling to be performed with more joint stands than a kelly/rotary table approach.
In the example of
In the example of
The mud pumped by the pump 204 into the drillstring 225 may, after exiting the drillstring 225, form a mudcake that lines the wellbore which, among other functions, may reduce friction between the drillstring 225 and surrounding wall(s) (e.g., borehole, casing, etc.). A reduction in friction may facilitate advancing or retracting the drillstring 225. During a drilling operation, the entire drill string 225 may be pulled from a wellbore and optionally replaced, for example, with a new or sharpened drill bit, a smaller diameter drill string, etc. As mentioned, the act of pulling a drill string out of a hole or replacing it in a hole is referred to as tripping. A trip may be referred to as an upward trip or an outward trip or as a downward trip or an inward trip depending on trip direction.
As an example, consider a downward trip where upon arrival of the drill bit 226 of the drill string 225 at a bottom of a wellbore, pumping of the mud commences to lubricate the drill bit 226 for purposes of drilling to enlarge the wellbore. As mentioned, the mud can be pumped by the pump 204 into a passage of the drillstring 225 and, upon filling of the passage, the mud may be used as a transmission medium to transmit energy, for example, energy that may encode information as in mud-pulse telemetry.
As an example, mud-pulse telemetry equipment may include a downhole device configured to effect changes in pressure in the mud to create an acoustic wave or waves upon which information may modulated. In such an example, information from downhole equipment (e.g., one or more modules of the drillstring 225) may be transmitted uphole to an uphole device, which may relay such information to other equipment for processing, control, etc.
As an example, telemetry equipment may operate via transmission of energy via the drillstring 225 itself. For example, consider a signal generator that imparts coded energy signals to the drillstring 225 and repeaters that may receive such energy and repeat it to further transmit the coded energy signals (e.g., information, etc.).
As an example, the drillstring 225 may be fitted with telemetry equipment 252 that includes a rotatable drive shaft, a turbine impeller mechanically coupled to the drive shaft such that the mud can cause the turbine impeller to rotate, a modulator rotor mechanically coupled to the drive shaft such that rotation of the turbine impeller causes said modulator rotor to rotate, a modulator stator mounted adjacent to or proximate to the modulator rotor such that rotation of the modulator rotor relative to the modulator stator creates pressure pulses in the mud, and a controllable brake for selectively braking rotation of the modulator rotor to modulate pressure pulses. In such example, an alternator may be coupled to the aforementioned drive shaft where the alternator includes at least one stator winding electrically coupled to a control circuit to selectively short the at least one stator winding to electromagnetically brake the alternator and thereby selectively brake rotation of the modulator rotor to modulate the pressure pulses in the mud.
In the example of
The assembly 250 of the illustrated example includes a logging-while-drilling (LWD) module 254, a measuring-while-drilling (MWD) module 256, an optional module 258, a roto-steerable system and motor 260, and the drill bit 226. Such components or modules may be referred to as tools where a drillstring can include a plurality of tools.
The LWD module 254 may be housed in a suitable type of drill collar and can contain one or a plurality of selected types of logging tools. It will also be understood that more than one LWD and/or MWD module can be employed, for example, as represented at by the module 256 of the drillstring assembly 250. Where the position of an LWD module is mentioned, as an example, it may refer to a module at the position of the LWD module 254, the module 256, etc. An LWD module can include capabilities for measuring, processing, and storing information, as well as for communicating with the surface equipment. In the illustrated example, the LWD module 254 may include a seismic measuring device.
The MWD module 256 may be housed in a suitable type of drill collar and can contain one or more devices for measuring characteristics of the drillstring 225 and the drill bit 226. As an example, the MWD tool 254 may include equipment for generating electrical power, for example, to power various components of the drillstring 225. As an example, the MWD tool 254 may include the telemetry equipment 252, for example, where the turbine impeller can generate power by flow of the mud; it being understood that other power and/or battery systems may be employed for purposes of powering various components. As an example, the MWD module 256 may include one or more of the following types of measuring devices: a weight-on-bit measuring device, a torque measuring device, a vibration measuring device, a shock measuring device, a stick slip measuring device, a direction measuring device, and an inclination measuring device.
As an example, a drilling operation can include directional drilling where, for example, at least a portion of a well includes a curved axis. For example, consider a radius that defines curvature where an inclination with regard to the vertical may vary until reaching an angle between about 30 degrees and about 60 degrees or, for example, an angle to about 90 degrees or possibly greater than about 90 degrees.
As an example, a directional well can include several shapes where each of the shapes may aim to meet particular operational demands. As an example, a drilling process may be performed on the basis of information as and when it is relayed to a drilling engineer. As an example, inclination and/or direction may be modified based on information received during a drilling process.
As an example, deviation of a bore may be accomplished in part by use of a downhole motor and/or a turbine. As to a motor, for example, a drillstring can include a positive displacement motor (PDM).
As an example, a system may be a steerable system and include equipment to perform a method such as geosteering. As an example, a steerable system can include a PDM or a turbine on a lower part of a drillstring which, just above a drill bit, a bent sub can be mounted. As an example, above a PDM, MWD equipment that provides real time or near real time data of interest (e.g., inclination, direction, pressure, temperature, real weight on the drill bit, torque stress, etc.) and/or LWD equipment may be installed. As to the latter, LWD equipment can make it possible to send to the surface various types of data of interest, including for example, geological data (e.g., gamma ray log, resistivity, density and sonic logs, etc.).
The coupling of sensors providing information on the course of a well trajectory, in real time or near real time, with, for example, one or more logs characterizing the formations from a geological viewpoint, can allow for implementing a geosteering method. Such a method can include navigating a subsurface environment, for example, to follow a desired route to reach a desired target or targets.
As an example, a drillstring can include an azimuthal density neutron (ADN) tool for measuring density and porosity; a MWD tool for measuring inclination, azimuth and shocks; a compensated dual resistivity (CDR) tool for measuring resistivity and gamma ray related phenomena; one or more variable gauge stabilizers; one or more bend joints; and a geosteering tool, which may include a motor and optionally equipment for measuring and/or responding to one or more of inclination, resistivity and gamma ray related phenomena.
As an example, geosteering can include intentional directional control of a wellbore based on results of downhole geological logging measurements in a manner that aims to keep a directional wellbore within a desired region, zone (e.g., a pay zone), etc. As an example, geosteering may include directing a wellbore to keep the wellbore in a particular section of a reservoir, for example, to minimize gas and/or water breakthrough and, for example, to maximize economic production from a well that includes the wellbore.
Referring again to
As an example, one or more of the sensors 264 can be provided for tracking pipe, tracking movement of at least a portion of a drillstring, etc.
As an example, the system 200 can include one or more sensors 266 that can sense and/or transmit signals to a fluid conduit such as a drilling fluid conduit (e.g., a drilling mud conduit). For example, in the system 200, the one or more sensors 266 can be operatively coupled to portions of the standpipe 208 through which mud flows. As an example, a downhole tool can generate pulses that can travel through the mud and be sensed by one or more of the one or more sensors 266. In such an example, the downhole tool can include associated circuitry such as, for example, encoding circuitry that can encode signals, for example, to reduce demands as to transmission. As an example, circuitry at the surface may include decoding circuitry to decode encoded information transmitted at least in part via mud-pulse telemetry. As an example, circuitry at the surface may include encoder circuitry and/or decoder circuitry and circuitry downhole may include encoder circuitry and/or decoder circuitry. As an example, the system 200 can include a transmitter that can generate signals that can be transmitted downhole via mud (e.g., drilling fluid) as a transmission medium.
As an example, one or more portions of a drillstring may become stuck. The term stuck can refer to one or more of varying degrees of inability to move or remove a drillstring from a bore. As an example, in a stuck condition, it might be possible to rotate pipe or lower it back into a bore or, for example, in a stuck condition, there may be an inability to move the drillstring axially in the bore, though some amount of rotation may be possible. As an example, in a stuck condition, there may be an inability to move at least a portion of the drillstring axially and rotationally.
As to the term “stuck pipe”, this can refer to a portion of a drillstring that cannot be rotated or moved axially. As an example, a condition referred to as “differential sticking” can be a condition whereby the drillstring cannot be moved (e.g., rotated or reciprocated) along the axis of the bore. Differential sticking may occur when high-contact forces caused by low reservoir pressures, high wellbore pressures, or both, are exerted over a sufficiently large area of the drillstring. Differential sticking can have time and financial cost.
As an example, a sticking force can be a product of the differential pressure between the wellbore and the reservoir and the area that the differential pressure is acting upon. This means that a relatively low differential pressure (delta p) applied over a large working area can be just as effective in sticking pipe as can a high differential pressure applied over a small area.
As an example, a condition referred to as “mechanical sticking” can be a condition where limiting or prevention of motion of the drillstring by a mechanism other than differential pressure sticking occurs. Mechanical sticking can be caused, for example, by one or more of junk in the hole, wellbore geometry anomalies, cement, keyseats or a buildup of cuttings in the annulus.
In
In the example of
A liner may be a casing (e.g., a completion component) that may be installed via a liner hanger system. As an example, a liner hanger system may include various features such as, for example, one or more of the features of the assembly 350 and/or the assembly 450 of
As shown in
As shown in
As an example, a method can include setting a liner hanger, releasing a running tool, cementing a liner and setting a liner top packer. As an example, a method can include pumping heavy fluid (e.g., cement) down an annulus from a point above a liner hanger and a liner top packer. In such an example, stress on a formation may be reduced when compared to a method that pumps heavy fluid (e.g., cement) up such an annulus. For example, stress may be reduced as back pressure developed during pumping may be contained in between a casing and a landing string.
As mentioned, a production well may experience a decline in production (e.g., production rate as a fluid flow rate). In such an example, one or more techniques, technologies, etc., may be utilized to assist and/or enhance production (e.g., consider one or more enhance oil recovery (EOR) approaches, etc.). As an example, artificial lift technology may be utilized to assist production of fluid(s) from a well that is in fluid communication with a reservoir. Artificial lift technology can add energy to fluid to enhance production of the fluid. Artificial lift systems can include rod pumping systems, gas lift systems and electric submersible pump (ESP) systems. As an example, an artificial lift pumping system can utilize a surface power source to drive a downhole pump assembly. As an example, a beam and crank assembly may be utilized to create reciprocating motion in a sucker-rod string that connects to a downhole pump assembly. In such an example, the pump can include a plunger and valve assembly that converts the reciprocating motion to fluid movement (e.g., lifting the fluid against gravity, etc.). As an example, an artificial lift gas lift system can provide for injection of gas into production tubing to reduce the hydrostatic pressure of a fluid column. In such an example, a resulting reduction in pressure can allow reservoir fluid to enter a wellbore at a higher flow rate. A gas lift system can provide for conveying injection gas down a tubing-casing annulus where it can enter a production train through one or more gas-lift valves (e.g., a series of gas-lift valves, etc.). As an example, an electric submersible pump (ESP) can include a stack of impeller and diffuser stages where the impellers are operatively coupled to a shaft driven by an electric motor. As an example, an electric submersible pump (ESP) can include a piston that is operatively coupled to a shaft driven by an electric motor, for example, where at least a portion of the shaft may include one or more magnets and form part of the electric motor.
Examples of artificial lift equipment can include a gas lift (GL) system, a rod pumping (RP) system, and an ESP system. Such equipment may be disposed at least in part in a downhole environment to facilitate production of fluid; noting that a pump system (e.g., RP and/or ESP) may be utilized to move fluid to a location other than a surface location (e.g., consider injection to inject fluid into a subterranean region, etc.). A gas lift system operates at least in part on buoyancy as injected gas may be expected to rise due to buoyancy in a direction that is opposite gravity; whereas, a RP or an ESP may operate via mechanical movement of physical components to drive fluid in a desired direction, which may be with or against gravity.
As explained, various types of equipment can be utilized for performing completions operations that aim to complete a well such that it is in an operable state for purposes of injection and/or production. As explained, where a well is a production well, over the course of time, when the production of fluid declines to an extent that it is deemed impractical for further operation of the well (e.g., with or without assist, EOR, etc.), a decision can be made to perform a plugging operation. As explained, one or more other factors may be considered in deciding whether or not to perform a plugging operation. A plugging operation can be a “plug cementing” operation that aims to form a plug that can be or include a substantially cylindrical portion that aims to hinder flow or fluid (e.g., be a barrier to fluid communication in a bore).
Where a decision has been made to perform a plugging operation, production tubing, if present, can be removed, and a determination can be made regarding condition of cement in one or more annuli. If cement is not deemed to be an acceptable condition, a process can include casing removal and cement removal. Where casing and annulus cement have been removed, a plugging operation can be utilized to fill or plug a portion of a borehole with cement in an effort to prevent inter-zonal and/or surface communication of the borehole (e.g., or at least a portion thereof). Removal of casing and annulus cement can be resource intensive and time consuming, particularly in offshore wellbores. Removal of casing and annulus cement can be relatively complicated and demand use of rig equipment for pulling the casing out of the wellbore.
As to a cement plug, a material such as Portland cement may be utilized, which can be placed in a well as a slurry that hardens in due time. A cement plug includes a volume of cement that fills a certain length of casing or open hole in an effort to hinder migration of fluid, which can be migration in a direction that is from downhole to uphole. Cement can satisfy criteria for an adequate plug as it tends to be durable with a low permeability. Furthermore, as slurry it tends to be relatively straightforward to pump into place while having a reasonable setting time. Cement tends to form a relatively tight bond to a formation and/or a casing surface. Cement can also has a sufficient mechanical strength under compression; noting that it tensile characteristics tend to be substantially weaker.
As an example, cement may be rated to perform over a range of temperatures, which may include temperatures from below freezing in permafrost zones to temperatures exceeding 400 degrees C. in geothermal wells. Cement manufacturers can produce special versions of Portland cement for use in wells. As an example, cement may include more than 100 cement additives to adjust cement performance, such that cement can be customized for a particular well environment. A suitable cement may be formulated that is pumpable for a time sufficient for placement and development of strength within a suitable amount of time (e.g., within a number of hours after placement). As explained, a plug may be expected to be durable throughout its lifetime.
As to additives, they may be classified according to function. For example, accelerators can reduce cement setting time and increase rate of compressive strength development. Retarders can delay setting time and extend the time during which cement slurry is pumpable. Extenders can lower the cement slurry density, reduce the amount of cement per unit volume of set product, or both. Weighting agents can increase the density of the cement. Fluid loss control agents can aim to control leakage of water from the cement slurry into porous formations, thereby helping to preserve a designed cement slurry properties. Lost circulation control agents can aim to limit flow of cement slurry out of a wellbore into weak, cracked or vugular formations and help ensure that the cement slurry is able to fill a particular space. Dispersants can aim to reduce the viscosity of cement slurry, which may allow for a lower pumping pressure during placement. Specialty additives can include, for example, antifoam agents, fibers and flexible particles.
As an example, where the plug is to be set in a non-permeable portion of a formation (e.g., a shale layer, etc.), a formation-wellbore wall interface may be prepared by carving grooves into the wall that can permit liquid to escape as a material sets. As explained, a material may be cement or another suitable material such as, for example, a bismuth alloy, etc. As an example, a process can include forming helical grooves and/or vertical grooves connected by horizontal or angled grooves using, for example, a laser or other tool. As to length of a plug, consider a plug of the order of meters (e.g., consider 5 meters, etc.). As an example, one or more techniques, types of equipment, types of materials described in International Publication No. WO 2019/194844 A1, published 10 Oct. 2019, which is incorporated by reference herein, may be utilized for plugging operations and/or plug formation.
As an example, where a plug is to be set in a porous layer of a formation (e.g., a sandstone, etc.), the location of a cap rock (e.g., an impermeable layer) for that porous layer may be identified. In such an example, a barrier or shot-catcher may then be installed at a location in the porous layer and material deployed and set. As an example, a process can include applying pressure (e.g., through a setting mechanism, etc.) that can force material into the pores of a porous layer of a formation, which may aim to displace fluid such as, for example, brine at the formation-borehole interface into the formation.
As explained, a plug may be of a length that is of the order of meters while having a diameter that is less. For example, consider a plug that has a diameter that is less than a meter, which may be less than half of a meter. As an example, a plug can include a dendritic web portion that may extend one, two, or even a few centimeters away from its substantially cylindrical portion. As explained, a plug may be formed that aims to seal a portion of a borehole in a manner that can resist movement of fluid driven by a differential pressure.
A mentioned, as a reservoir matures and output levels change, oil and gas operators can reassess performance as to production. Depending on one or more factors, a decision may be made to plug a well using one or more plugs. For example, consider one or more of a log data-based determination that there is likely insufficient hydrocarbon potential to complete the well, a production-based determination that production operations have drained at least a portion of a reservoir (e.g., a drainage area), a safety-based determination that a risk may exist as to safe operation of the well, etc.
Performance of a plugging operation may aim to adhere to one or more standard operating procedures (SOPs), regulations, etc. To prepare a wellbore to be shut in and permanently isolated, there can be various regulatory demands associated with a plug and abandonment (P&A) process to ensure that various strata (e.g., freshwater aquifers, etc.) are adequately isolated. As an example, a process may include setting one or more cement plugs in a wellbore. Such a process can include performing an inflow or integrity test, which may be performed at one or more stages and aim to confirm hydraulic isolation.
As an example, regulations, SOPs, etc., may demand that cement plugs be placed and tested across one or more open hydrocarbon-bearing formations, across one or more casing shoes, across one or more freshwater aquifers, one or more areas near the surface (e.g., top 20 to 50 ft [6 to 15 m] of the wellbore), etc.
As an example, a process can include a plan that calls for setting one or more bridge plugs in conjunction with cement slurries to help assure that higher density cement does not fall in a wellbore. For example, a bridge plug can be set and cement pumped on top of the bridge plug, for example, through drillpipe where the drillpipe can be withdrawn before cement slurry thickens.
As an example, a workflow can include preparing a well for P&A by circulating high density drilling fluid and installing a deep set mechanical plug, before barriers towards a reservoir are installed. In the North Sea, a workflow can include two independent barriers towards the reservoir (NORSOK D-010, 2013), where the primary and secondary barriers are not to have common well barrier elements. In such an example, fluid-bearing formations in the overburden, such as high-pressure zones and one or more hydrocarbon-containing formations can also be isolated, for example, with two independent barriers. In such an example, an openhole-to-surface plug (e.g., an environmental barrier) can be installed below a seabed, which aims to prevent residual fluid contamination to the environment. As an example, a workflow can include removal of the conductor and wellhead.
According to Oil & Gas UK, a workflow can include an operational sequence of P&A operations that include three phases where: Phase 1 is defined as “reservoir abandonment” and includes installing primary and secondary barriers towards the reservoir; Phase 2 is defined as “intermediate abandonment” and includes installing potential barriers towards flow zones in the overburden and the surface plug; and Phase 3 is defined as “wellhead and conductor removal” and includes cutting and retrieval of casing strings and conductor, as well as wellhead removal. In addition to these three phases, a fourth phase may be included, which may be a Phase 0 “preparatory work”, which includes pre-P&A work such as killing the well and installing deep set mechanical plugs.
As explained, a plug can be installed to perform one or more tasks of one or more workflows, which may include a P&A workflow or another type of workflow. As an example, a method can be utilized for quantifying a leak rate across an impermeable plug placed in a well prior to abandonment of the well. In such an example, data may be acquired from a deployable pressure sensor above a plug.
As to such a method, three example scenarios can include: (i) liquid column rests below a gas column in communication with atmosphere, (ii) liquid column is below a sealed gas column, and (iii) substantially the entire length of the wellbore is filled with liquid, which may be brine (e.g., primarily brine).
As an example, a method can account for the influence of temperature and pressure on one or more gas properties, which can be or include density as a gas property. For liquid, there can be an effect due to temperature. As to pressure and temperature effects in liquid, both of these can be relevant particularly for long liquid-column wells with a minimal geothermal gradient. As an example, a method can include assessing thermal information to determine how a geothermal gradient may affect a determination that may not account for pressure effects in liquid in addition to temperature effects. As an example, where geothermal gradients are less than a particular level (e.g., 10 degrees C. per km or less), density variation due to a liquid column's gravitational head may be comparable to that due to temperature or even exceed it.
As an example, a method can, from measured pressure above a plug, compute a leak rate and, for example, permeability of one or more leakage pathways. As an example, a method can include computing a pressure below a plug and, as appropriate, a time dependency of pressure below the plug.
At the end of the life cycle of an oil or gas well, which may depend on one or more factors, a P&A process can include robust plug placement. In various examples, where the original cement isolation is deemed to be imperfect, after removing the tubing and casing, a long column of cement of more than approximately 200 m may be placed. Such a process can be relatively expensive as it involves use of a rig and does not guarantee that the cement plug remains pristine (e.g., of sufficient integrity). Additionally, as the tensile strength of cement tends to be relatively low, deformation of a wellbore that places a plug under tension may lead to cracking (e.g., crack formation). For various reasons, a substitute for deploying reliable and strong plugs can be desirable. As an alternative to cement, a P&A workflow may utilize one or more bismuth based alloys.
As an example, a method can provide for monitoring leak rates into a fluid column of a wellbore by acquiring sensor-based measurements of pressure in a location above a plug. As an example, a method may address one or more scenarios, which can include: (i) a partially liquid filled wellbore with the gas column in pressure communication with the atmosphere; (ii) a partially filled wellbore with the gas column isolated from the atmosphere; and (iii) a substantially fully liquid filled wellbore. The behavior and the requisite models for interpretation of pressure and leakage rates in the three scenarios tend to be different from each other.
As mentioned, a method can aim to quantify a leak rate for a plug (e.g., or plugs). Such a method may also provide an estimate of a pressure drive below a plug, which may be obtained from measurements above the plug. Such a method may also determine variation in pressure such as, for example, determining that a slowly varying bottom pressure exists, which may be characterized. As an example, output from a method (or methods) can allow for making one or more determinations as to plug integrity, for example, for instances where the bottom pressure varies slowly, compared to the time scales above the plug.
As an example, where a leak rate is sufficiently small with respect to a plug in a wellbore, a method may aim to quantify influx through the plug in the wellbore. Such a method may be carried out from a limited set of measurements, as the integrity of the plug can be paramount in that cable based communication to a fluid region below the plug can compromise plug integrity. In various instances, wireless transfer of data from a transducer below the plug through a 5 m conductive plug may be impractical for one or more reasons (e.g., placement, duration of operation, ability to communicate, etc.). As an example, a method can include positioning a single-station pressure measurement unit above a plug and acquiring measurements from the single-station pressure measurement unit where the acquired measurements can be utilized to computer a leak rate and, optionally, pressure below the plug. As mentioned, leak rate and/or pressure below a plug may be computer with respect to time to understand time varying behavior.
In
In the example configurations 810, 830 and 850, a method or methods may be implemented to make one or more determinations as to leakage and optionally variations in pressure below the respective plugs. In the configurations, 810, 830 and 850, the governing equations can differ. As an example, a method can allow for temperature induced density variation in a liquid column (e.g., as a sole type of variation in the liquid column) and include temperature and pressure effects for the gas column (e.g., more effects in the gas column than in the liquid column). As an example, over a 1000 m column height, a temperature change may be approximately about 25 degrees C. In such an example, the corresponding decrease in brine density is about 1.25 percent at a mean temperature of about 55 degrees C. Over the same liquid column, the pressure change is about 10 MPa. In such an example, the density increase is about 0.4 percent; therefore, as a first approximation, pressure influence may be dropped.
As to a communicating borehole, neglecting variations in atmospheric pressure, a wellbore air column can be at a substantially constant pressure at the top. As noted, a method can take into account the variation of density with respect to pressure and temperature for the air column; whereas, for a liquid column, a method may optionally be limited to temperature related variations as to liquid density determinations.
Various examples of computations can be described using various parameters, which may be notated as follows: top of the plug is the vertical coordinate's origin (z=0). The height of the wellbore from that point is L. The height of a liquid column at a given time t is h, which is a function of time {tilde over (h)}(t; ·) that may be represented as {tilde over (h)}(t). At z=h, pressure is Pi. Gas pressure is Pg and liquid pressure is Pl. Pressure at the top of the plug is Pt. The liquid pressure Pt changes with h, and therefore can vary with t. At z=h, Pg=Pl=Pi. Atmospheric pressure is P0. Additionally, the cross-sectional area of the wellbore is A. Liquid and gas densities are ρl and ρg.
Since a leakage rate tends to be of a relatively small magnitude, leak induced flow can cause a pressure gradient to be substantially smaller than that of ρlg or ρgg, g being the acceleration due to gravity. Gradient in pressure, can therefore be dictated by statics. Then, for an ideal gas,
where Mw is the molecular weight of the gas in the column, R is the gas constant, and T is the temperature. As the flow rate tends to be relatively small, temperature may be fixed by a geothermal profile. For example, let
T=T
0+α(L−z). (2)
Above, note that T0 is not the physical temperature at z=L, but that obtained by extrapolation of the wellbore seasonally invariant temperature to the surface. A geothermal gradient can provide a value or values for α.
From Eqs. 1 and 2,
Above, note that Pg is independent of t, since other variables are taken to be independent of t, and Pg is separable with P0 being held constant (e.g., where atmospheric pressure variations may be relatively small in comparison to relevant pressure variations).
Integrating, from z to L, for z>h,
or explicitly,
As indicated, the pressure at the top of the plug (Pt) can be a liquid pressure, for example, as an entirely gas column above the plug can be considered infeasible. For that reason, the subscript can be left out.
From statics,
where within the relevant assumptions ρl varies with temperature alone, and therefore varies with z.
The following expression may be provided for ρl:
=+βz. (7)
The density can be that of the liquid at a representative pressure, but at temperature Tt, corresponding to the temperature at the top of the plug. In such a scenario, then:
Above, the parameter β is included in the third term for Pt. For linearized liquid density, consider:
=(T)=±γ(T−T0), (9)
where for temperatures of interest, γ<0, and =(T0). Given that the volume expansivity at a fixed pressure can be defined through
where, for a linearized density dependence and therefore
=−(T−T0), (11)
and therefore
γ=−. (12)
Using Eq. 2 in Eq. 9, we have
=+γα(L−z). (13)
But since =+γαL
=−γαz (14)
or
β=−αγ=. (15)
As to below the plug pressure Pt, from Eq. 8, the variables that are time dependent are Pt and h. Thus, let h=ĥ(Pt; T0, α, β)={tilde over (h)}(t; ·). And, thus,
Therefore, Pt data can be sufficient to calculate {tilde over (h)}(t) and, for example, its time rate of change.
Knowing Pt and h variation with t, a method can include computing the leakage rate through a plug. In such an example, consider the mass of the liquid column of height h from z=0:
from which the leak rate
Denoting the plug permeability as kp, its area for flow as ap, height of the plug as lp, the following can be determined:
where Pb is the pressure at the bottom. Note that the height of the plug lp can be relatively small compared to h, and therefore density variations in the liquid phase over the plug height can be irrelevant. As it may be expected that Pb is to be nearly a constant over a period of time, and possibly, a slowly varying function of time, consider the following:
P
b
=P
b0
+P
b1, (20)
where Pb0 is a constant and Pb1 is a slowly varying component.
Consider letting
and then, by combining Eqs. 18 to 20, consider
Also, consider defining:
From the t→0 data, as an example, a straight-line tangent to Pt vs.
can have an intercept I of Pb0−. Thus,
P
b1
=P
t
−P
t0. (23)
As to a sealed borehole, a difference from the previous case is that the top of the borehole is isolated from atmosphere. Thus, where isolated, a leakage can compress a gas column (e.g., leakage from below a plug to above a plug). As before, pressure at the top of the plug is Pt, but can be assumed to be available for multiple times over a span of time. The gas-liquid interface pressure is Pi, and at the top, pressure is PL. In such an example, let the mass of gas in the well be Mg. Then, consider:
[Pi(t)−PL(t)]A=Mgg. (24)
And, for example:
And, also:
M
g
=A∫
h
Lρgdz. (26)
For an ideal gas, then:
Given the foregoing, consider:
Note that in this example, Pg varies with z and t. Non-ideality may be accounted for by including a compressibility factor varying with Pg and T. As an example, integration may be performed using one or more numerical techniques (e.g., finite difference, finite element, etc.) or, for example, an analytical solution or approximation may be utilized. Using a geothermal gradient for temperature and integrating, consider:
where F(t) arises from an integration constant. Applying the foregoing at z=L, consider the following:
Note above, that PL(t) is a gas phase pressure, as a borehole gas column length can be greater than zero. Thus,
From above, and applying Eq. 25, consider:
and therefore from Eq. 31 and 32
As to a liquid column, a method can include relating Pt(t), a measurement, to h={tilde over (h)}(t), so that mass of liquid, and therefore its rate of change or in turn leak rate may be computed using one or more instruments.
As an example, consider:
P
t(t)=Pi(t)+∫0hdz. (34)
From Eqs. 7, and 33, consider:
Eq. 35 relates Pt(t) and {tilde over (h)}(t) and therefore
can be determined.
As a gradient in pressure within a liquid can be affected primarily (e.g., or assumed solely) by the liquid density fixed by temperature, Eqs. 17 to 23 can be applied. In such an example, {tilde over (h)}(t), in this case however can be computed from Eq. 35 rather than Eq. 8. Thus, Pb0 and a slowly time varying Pb1 may be computed.
As to an example for a filled borehole (e.g., a filled wellbore), it may be a more common scenario, particularly in off-shore wells (see, e.g., the example of
As an example, a known volume Vi of liquid can be injected into a borehole over a short period of time where a change in pressure ΔP can be measured at a fixed z. In such an example, the injection of liquid may occur before deployment of a sensor unit (e.g., a pressure sensor unit) or, for example, via one or more types of equipment that may include a sensor unit (see, e.g.,
as a leakage volume over a short period of time may be negligible.
In a converse application, consider measuring Pt(t) over a time Δt, and measuring the increase in ΔPt. In such an example, if a rate of change of Pt with respect to t is computed, then, realizing that the flow rate is equivalent to
consider:
The foregoing approach can lead to:
Thus, a downhole measurement of Pt can be sufficient to compute Pb and C, for example, from an intercept and a slope. In such an example, cl can be the measured compressibility from an injection process at t=0 and not the actual property of the liquid.
As an example, a fourth scenario may be addressed where a liquid-filled borehole is allowed to bleed to the atmosphere. In such an example, the flow rate out of the borehole may be translated to a downhole leak rate. As the volumetric reduction and increase due to temperature and pressure may be considered to be relatively small, the order of the surface rate may be expected to be approximately the same as the bottom hole rate. In such an example, a first order refinement of the top rate may be performed, for example, as follows.
Let the top rate be q00. Let the surface temperature be T00. Since T0 can be an extrapolated surface temperature, T00 can be a separate input. In such an example, if the mean volume expansivity is
and a mean temperature of
and similarly for isothermal compressibility , then, consider:
q≈q
00[1+
From Eq. 19, from known q and Pt, consider:
As explained, a method can provide for quantifying a leak rate through a plug. As an example, a method can include acquiring time evolving pressure measurements at a single location, which can be above the plug and relatively close to the plug. From such measurements, a leak rate through the plug to the top of the plug and the pressure drive below the plug may be computed, which may be computed for one or more of a plurality of difference scenarios, which can include: (i) borehole communicating to atmosphere with a gas and liquid column; (ii) borehole isolated from atmosphere but having a gas and liquid column; and (iii) a fully filled wellbore. As mentioned, a fourth scenario may be considered and/or refined.
As explained, a method can include acquiring pressure measurements using a pressure sensor positioned in a wellbore above a plug where acquired measurements can allow for computation of one or more characteristics of the plug as positioned in the wellbore (e.g., as a system) with respect to one or more scenarios. As explained, leakage may be a characteristic of a system and, for example, a slowly varying magnitude of a pressure drive may be a characteristic, which can be determined without a pressure sensor installed below the plug, as long as a small amount of leakage is present. In the absence of such leakage, a plug in a wellbore (e.g., as a system) may be deemed to be of sufficient integrity without detectable leakage. Where detectable leakage is not present, in various instances, the value of knowing the bottom pressure may be diminished.
As an example, the system 1010 may include a pump 1030, which may operate to pump fluid (e.g., in one or more directions). As an example, the pump 1030 may be operatively coupled to the coil tubing 1020 for purposes of pumping fluid into or out of the coil tubing 1020. As an example, fluid may be a material that can form a plug, for example, cement slurry, etc.
As an example, the coil tubing 1020 may include one or more wires, for example, to carry power, signals, etc. For example, one or more wires may operatively couple to the tool 1025 for purposes of powering a sensor, receiving information from a sensor, etc. As shown in the example of
As an example, a sensor or sensors may provide for sensing a plug and/or a distance from a plug. For example, consider sensing a distance from a plug for adjusting a position of a sensor that can sense pressure. As an example, a method can include sensing pressure during movement of coiled tubing, wireline, etc. In such an example, a calibration process may utilize acquired present sensor measurements with respect to a vertical depth, which may correspond to a head pressure (e.g., a pressure that varies with respect to a z coordinate). As an example, where coiled tubing is utilized that can pump fluid, a method can include pumping an amount of fluid and measuring pressure. For example, where fluid causes an increase in a head above a pressure sensor, a pressure reading may increase correspondingly and/or, for example, where fluid is pumped out of a bore, a head may decrease and be expected to cause a corresponding decrease in a pressure reading.
As an example, a sensor can be a temperature sensor. For example, a tool may include a pressure sensor, a temperature sensor and optionally one or more other sensors. As an example, a tool may provide for making temperature measurements to acquire temperature information, which may be utilized to determine a geothermal gradient (e.g., a geothermal profile) of at least a portion of a bore (e.g., geothermal profile of a formation, etc.). As explained, a geothermal gradient (e.g., a geothermal profile, etc.) may be utilized to make one or more computations as to state of a plug and a bore (e.g., a plug in a bore of a formation as a system that is intended to seal the bore). As an example, a geothermal acquisition process may utilize a tool that can pump fluid into and/or out of a bore where acquired data, together with flow information, may help to compute a geothermal profile. As an example, a method can include utilizing an ESP for pumping where the ESP can include various sensors (e.g., pressure, temperature, etc.).
A geothermal gradient can be a rate of increase in temperature per unit depth in the Earth. Although the geothermal gradient can vary from place to place, in various types of formations, regions, etc., it may tend to average from approximately 25 degrees C. to approximately 30 degrees C. per km. However, it may be less than 25 degrees C. per km in one or more regions. For example, it may be less than 20 degrees C. per km, less than 15 degrees C. per km, less than 10 degrees C. per km, etc. As an example, a method can include determining that the geothermal gradient in an uphole region is greater than a certain value and, in response, utilizing an approach that may not account for gravitational head induced density variation in liquid as, for example, a temperature induced density variation can be greater than the gravitational head induced density variation. As an example, a method can include determining that the geothermal gradient in an uphole region is less than a certain value and, in response, utilizing an approach that may account for gravitational head induced density variation in liquid as, for example, a temperature induced density variation can be of the same order or less than the gravitational head induced density variation. Temperature gradients may at times increase dramatically around volcanic areas. As an example, an estimate of a geothermal gradient can be determined by temperature measurements at two points. As an example, a downhole temperature at one location may be estimated using a geothermal profile and a temperature at another location. As explained, one or more techniques, tools, etc., may be utilized to determine a geothermal gradient (e.g., a geothermal profile, etc.).
While various aspects of the system 1010 of
As an example, a tool that is deployable in a bore can include one or more sensors that can detect a gas-fluid interface. For example, consider the scenario 810 of
As explained, a tube or tubing can include a pressure sensor where the tube or tubing may be utilized to deliver material as part of a plugging operation. In such an example, the pressure sensor may be utilized to acquire pressure data before flow of material, during flow of material and/or after flow of material. For example, consider a pressure sensor that can acquire a baseline pressure, a during material delivery pressure, a post-material delivery pressure and a post-setting pressure. As explained, pressure data can be utilized for computations indicative of leakage and, optionally, below plug pressure.
As an example, a method can include receiving pressure data with respect to time acquired via a pressure sensor disposed in an uphole region of a bore of a well, where a plug is disposed in the bore to define the uphole region to one side of the plug and a corresponding downhole region to the other side of the plug; using physical properties of liquid in the uphole region and thermal information, computing a temperature induced density variation of the liquid in the uphole region; and, based at least in part on at least a portion of the pressure data and the temperature induced density variation of the liquid, determining a state of the plug and the bore from a plurality of states. In such an example, the plurality of states can include a no leakage state and a leakage state.
As an example, a method can include determining presence of liquid or liquid and gas in the uphole region and, responsive to the presence of liquid or liquid and gas, selecting a relationship for computing the temperature induced density variation of the liquid or of the liquid and gas in the uphole region. In such an example, the method can include determining presence of liquid communication with atmospheric pressure or gas communication with atmospheric pressure.
As an example, a method can include determining a presence of one of: gas in a portion of the uphole region uphole the liquid where the gas is in pressure communication with atmosphere; gas in a portion of the uphole region uphole the liquid where the gas is not in pressure communication with atmosphere; and the liquid extending to a top of the uphole region without a separate gas region therein where the liquid is not in pressure communication with atmosphere. In such an example, the method can include, responsive to the determining, selecting a relationship that relates at least a portion of the pressure data to flow rate.
As an example, a method can include, in a leakage state of a plug and a bore, using a height parameter of liquid in an uphole region that is a function with respect to time.
As an example, a height of liquid in an uphole region can be more than ten times greater than a height of a plug.
As an example, a method can include determining that gas exists in a portion of an uphole region that is uphole from a liquid in the uphole region. In such an example, a method can include, using physical properties of the gas and at least a portion of thermal information, computing an environmentally induced density variation of the gas in the portion of the uphole region. In such an example, the computing an environmentally induced density variation can include accounting for pressure effect on the gas in the portion of the uphole region.
As an example, a method can include assessing temperature information for a temperature gradient, which may be a geothermal gradient (e.g., a geothermal profile).
As an example, a method can include estimating pressure with respect to time for a downhole region proximate to a plug.
As an example, a method can include estimating a flow rate from a downhole region to an uphole region using a computed relationship and at least a portion of the pressure data. In such an example, the computed relationship can include a slope that relates pressure and flow rate. For example, consider the slope being:
As an example, a method can include utilizing a relationship of pressure with respect to time versus a height parameter with respect to time for liquid in an uphole region. In such an example, a method can include determining the height parameter with respect to time for the liquid in the uphole region using at least a portion of the pressure data, where the relationship can be represented as:
and where the relationship includes an intercept, represented as:
P
b0
−
gl
p.
As an example, a system can include a processor; memory accessible by the processor; processor-executable instructions stored in the memory and executable to instruct the system to: receive pressure data with respect to time acquired via a pressure sensor disposed in an uphole region of a bore of a well, where a plug is disposed in the bore to define the uphole region to one side of the plug and a corresponding downhole region to the other side of the plug; using physical properties of liquid in the uphole region and thermal information, compute a temperature induced density variation of the liquid in the uphole region; and, based at least in part on at least a portion of the pressure data and the computed temperature induced density variation of the fluid, determine a state of the plug and the bore from a plurality of states.
As an example, one or more computer-readable storage media can include processor-executable instructions to instruct a computing system to: receive pressure data with respect to time acquired via a pressure sensor disposed in an uphole region of a bore of a well, where a plug is disposed in the bore to define the uphole region to one side of the plug and a corresponding downhole region to the other side of the plug; using physical properties of liquid in the uphole region and thermal information, compute a temperature induced density variation of the liquid in the uphole region; and, based at least in part on at least a portion of the pressure data and the computed temperature induced density variation of the fluid, determine a state of the plug and the bore from a plurality of states.
A method can be associated with various computer-readable media (CRM) blocks. Such blocks generally include instructions suitable for execution by one or more processors (or cores) to instruct a computing device or system to perform one or more actions. While various blocks are shown, a single medium may be configured with instructions to allow for, at least in part, performance of various actions of a method. As an example, a CRM block can be a computer-readable storage medium that is non-transitory, not a carrier wave and not a signal. As an example, such blocks can include instructions that can be stored in memory and can be executable by one or more of processors.
As an example, a method may be implemented in part using computer-readable media (CRM), for example, as a module, a block, etc. that include information such as instructions suitable for execution by one or more processors (or processor cores) to instruct a computing device or system to perform one or more actions. As an example, a single medium may be configured with instructions to allow for, at least in part, performance of various actions of a method. As an example, a computer-readable medium (CRM) may be a computer-readable storage medium (e.g., a non-transitory medium) that is not a carrier wave.
According to an embodiment, one or more computer-readable media may include computer-executable instructions to instruct a computing system to output information for controlling a process. For example, such instructions may provide for output to sensing process, an injection process, drilling process, an extraction process, an extrusion process, a pumping process, a heating process, etc.
In some embodiments, a method or methods may be executed by a computing system.
As an example, a system can include an individual computer system or an arrangement of distributed computer systems. In the example of
As an example, a module may be executed independently, or in coordination with, one or more processors 1204, which is (or are) operatively coupled to one or more storage media 1206 (e.g., via wire, wirelessly, etc.). As an example, one or more of the one or more processors 1204 can be operatively coupled to at least one of one or more network interface 1207. In such an example, the computer system 1201-1 can transmit and/or receive information, for example, via the one or more networks 1209 (e.g., consider one or more of the Internet, a private network, a cellular network, a satellite network, etc.).
As an example, the computer system 1201-1 may receive from and/or transmit information to one or more other devices, which may be or include, for example, one or more of the computer systems 1201-2, etc. A device may be located in a physical location that differs from that of the computer system 1201-1. As an example, a location may be, for example, a processing facility location, a data center location (e.g., server farm, etc.), a rig location, a wellsite location, a downhole location, etc.
As an example, a processor may be or include a microprocessor, microcontroller, processor module or subsystem, programmable integrated circuit, programmable gate array, or another control or computing device.
As an example, the storage media 1206 may be implemented as one or more computer-readable or machine-readable storage media. As an example, storage may be distributed within and/or across multiple internal and/or external enclosures of a computing system and/or additional computing systems.
As an example, a storage medium or storage media may include one or more different forms of memory including semiconductor memory devices such as dynamic or static random access memories (DRAMs or SRAMs), erasable and programmable read-only memories (EPROMs), electrically erasable and programmable read-only memories (EEPROMs) and flash memories, magnetic disks such as fixed, floppy and removable disks, other magnetic media including tape, optical media such as compact disks (CDs) or digital video disks (DVDs), BLUERAY® disks, or other types of optical storage, or other types of storage devices.
As an example, a storage medium or media may be located in a machine running machine-readable instructions, or located at a remote site from which machine-readable instructions may be downloaded over a network for execution.
As an example, various components of a system such as, for example, a computer system, may be implemented in hardware, software, or a combination of both hardware and software (e.g., including firmware), including one or more signal processing and/or application specific integrated circuits.
As an example, a system may include a processing apparatus that may be or include a general purpose processors or application specific chips (e.g., or chipsets), such as ASICs, FPGAs, PLDs, or other appropriate devices.
According to an embodiment, components may be distributed, such as in the network system 1310. The network system 1310 includes components 1322-1, 1322-2, 1322-3, . . . 1322-N. For example, the components 1322-1 may include the processor(s) 1302 while the component(s) 1322-3 may include memory accessible by the processor(s) 1302. Further, the component(s) 1322-2 may include an I/O device for display and optionally interaction with a method. The network may be or include the Internet, an intranet, a cellular network, a satellite network, etc.
As an example, a device may be a mobile device that includes one or more network interfaces for communication of information. For example, a mobile device may include a wireless network interface (e.g., operable via IEEE 802.11, ETSI GSM, BLUETOOTH®, satellite, etc.). As an example, a mobile device may include components such as a main processor, memory, a display, display graphics circuitry (e.g., optionally including touch and gesture circuitry), a SIM slot, audio/video circuitry, motion processing circuitry (e.g., accelerometer, gyroscope), wireless LAN circuitry, smart card circuitry, transmitter circuitry, GPS circuitry, and a battery. As an example, a mobile device may be configured as a cell phone, a tablet, etc. As an example, a method may be implemented (e.g., wholly or in part) using a mobile device. As an example, a system may include one or more mobile devices.
As an example, a system may be a distributed environment, for example, a so-called “cloud” environment where various devices, components, etc. interact for purposes of data storage, communications, computing, etc. As an example, a device or a system may include one or more components for communication of information via one or more of the Internet (e.g., where communication occurs via one or more Internet protocols), a cellular network, a satellite network, etc. As an example, a method may be implemented in a distributed environment (e.g., wholly or in part as a cloud-based service).
As an example, information may be input from a display (e.g., consider a touchscreen), output to a display or both. As an example, information may be output to a projector, a laser device, a printer, etc. such that the information may be viewed. As an example, information may be output stereographically or holographically. As to a printer, consider a 2D or a 3D printer. As an example, a 3D printer may include one or more substances that can be output to construct a 3D object. For example, data may be provided to a 3D printer to construct a 3D representation of a subterranean formation. As an example, layers may be constructed in 3D (e.g., horizons, etc.), geobodies constructed in 3D, etc. As an example, holes, fractures, etc., may be constructed in 3D (e.g., as positive structures, as negative structures, etc.).
Although only a few examples have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the examples. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures.
This application claims priority to U.S. Provisional Application Ser. No. 63/059,377, filed on Jul. 31, 2020, entitled “BORE PLUG ANALYSIS SYSTEM.” The entirety of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/043666 | 7/29/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63059377 | Jul 2020 | US |