Logging tools have long been used in wellbores to make, for example, formation evaluation measurements to infer properties of the formations surrounding the borehole and the fluids in the formations. Common logging tools include electromagnetic tools, nuclear tools, and nuclear magnetic resonance (NMR) tools, though various other tool types are also used.
Early logging tools were run into a wellbore on a wireline cable, after the wellbore had been drilled. Modern versions of such wireline tools are still used extensively. However, the need for information while drilling the borehole gave rise to measurement-while-drilling (MWD) tools and logging-while-drilling (LWD) tools. By collecting and processing such information during the drilling process, the driller can modify or correct key steps of the operation to optimize performance.
MWD tools typically provide drilling parameter information such as weight on the bit, torque, temperature, pressure, direction, and inclination. LWD tools typically provide formation evaluation measurements such as resistivity, porosity, and NMR distributions. MWD and LWD tools often have components common to wireline tools (e.g., transmitting and receiving antennas), but MWD and LWD tools must be constructed to not only endure but to operate in the harsh environment of drilling. The terms MWD and LWD are often used interchangeably, and the use of either term in this disclosure will be understood to include both the collection of formation and wellbore information, as well as data on movement and placement of the drilling assembly.
Logging tools can also be used to image a wellbore. For example, measurements of resistivity, density, the photoelectric factor, natural gamma ray radiation, the dielectric constant, and acoustic impedance (e.g., ultrasonics) have been used to form wellbore images. Most, if not all, of those imaging methods are dependent on the type of drilling fluid (“mud”) used.
A logging tool having a plurality of different sensor types having close spacings mounted on an articulated or extendible pad, a sleeve, a mandrel, a stabilizer, or some combination of those is provided and used to make measurements in a wellbore in a single logging run. Those measurements are used to create images of the wellbore and the images are used to deduce the local geology, optimize well placement, perform geomechanical investigation, optimize drilling operations, and perform formation evaluation. The logging, tool includes a processor capable of making those measurements, creating those images, performing those operations, and making those determinations. The plurality of different sensors may be one or more resistivity sensors, dielectric sensors, acoustic sensors, ultrasonic sensors, caliper sensors, nuclear magnetic resonance sensors, natural spectral gamma ray sensors, spectroscopic sensors, cross-section capture sensors, and nuclear sensors, and they may be “plug-and-play” sensors. This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
Embodiments of a borehole imaging and formation evaluation logging-while-drilling tool are described with reference to the following figures. The same numbers are generally used throughout the figures to reference like features and components.
It should be understood that the drawings are not to scale and that the disclosed embodiments are sometimes illustrated diagrammatically and in partial views. In certain instances, details that are not necessary for an understanding of the disclosed method and apparatus or that would render other details difficult to perceive may have been omitted. It should be understood that this disclosure is not limited to the particular embodiments illustrated herein.
Some embodiments will now be described with reference to the figures. Like elements in the various figures may be referenced with like numbers for consistency. In the following description, numerous details are set forth to provide an understanding of various embodiments and/or features. However, it will be understood by those skilled in the art that some embodiments may be practiced without many of these details and that numerous variations or modifications from the described embodiments are possible. As used here, the terms “above” and “below”, “up” and “down”, “upper” and “lower”, “upwardly” and “downwardly”, and other like terms indicating relative positions above or below a given point or element are used in this description to more clearly describe certain embodiments. However, when applied to equipment and methods for use in wells that are deviated or horizontal, such terms may refer to a left to right, right to left, or diagonal relationship, as appropriate.
A drill string 12 is suspended within the borehole 11 and has a bottom hole assembly 100 which includes a drill bit 105 at its lower end. The surface system includes platform and derrick assembly 10 positioned over the borehole 11, the assembly 10 including a rotary table 16, kelly 17, hook 18 and rotary swivel 19. The drill string 12 is rotated by the rotary table 16, energized by means not shown, which engages the kelly 17 at the upper end of the drill string. The drill string 12 is suspended from a hook 18, attached to a traveling block (also not shown), through the kelly 17 and a rotary swivel 19 which permits rotation of the drill string relative to the hook. As is well known, a top drive system could alternatively be used.
In the example of this embodiment, the surface system further includes drilling fluid or mud 26 stored in a pit 27 formed at the well site. A pump 29 delivers the drilling fluid 26 to the interior of the drill string 12 via a port in the swivel 19, causing the drilling fluid to flow downwardly through the drill string 12 as indicated by the directional arrow 8. The drilling fluid exits the drill string 12 via ports in the drill bit 105, and then circulates upwardly through the annulus region between the outside of the drill string and the wall of the borehole, as indicated by the directional arrows 9. In this well known manner, the drilling fluid lubricates the drill bit 105 and carries formation cuttings up to the surface as it is returned to the pit 27 for recirculation.
The bottom hole assembly 100 of the illustrated embodiment includes a logging-while-drilling (LWD) module 120, a measuring-while-drilling (MWD) module 130, a roto-steerable system and motor 150, and drill bit 105.
The LWD module 120 is housed in a special type of drill collar, as is known in the art, and can contain one or a plurality of known types of logging tools. It will also be understood that more than one LWD and/or MWD module can be employed, e.g. as represented at 121. (References, throughout, to a module at the position of 120 can alternatively mean a module at the position of 121 as well.) The LWD module includes capabilities for measuring, processing, and storing information, as well as for communicating with the surface equipment. In the present embodiment, the LWD module includes a resistivity measuring device.
The MWD module 130 is also housed in a special type of drill collar, as is known in the art, and can contain one or more devices for measuring characteristics of the drill string and drill bit. The MWD tool further includes an apparatus (not shown) for generating electrical power to the downhole system. This may typically include a mud turbine generator powered by the flow of the drilling fluid, it being understood that other power and/or battery systems may be employed. In the present embodiment, the MWD module includes one or more of the following types of measuring devices: a weight-on-hit measuring device, a torque measuring device, a vibration measuring device, a shock measuring device, a stick/slip measuring device, a direction measuring device, and an inclination measuring device.
An example of a tool which can be the LWD tool 120, or can be a part of an LWD tool suite 121, is shown in
Recent electromagnetic (EM) logging tools use one or more tilted or transverse antennas, with or without axial antennas. Those antennas may be transmitters or receivers, A tilted antenna is one whose dipole moment is neither parallel nor perpendicular to the longitudinal axis of the tool. A transverse antenna is one whose dipole moment is perpendicular to the longitudinal axis of the tool, and an axial antenna is one whose dipole moment is parallel to the longitudinal axis of the tool. A triaxial antenna is one in which three antennas (i.e., antenna coils) are arranged to be mutually orthogonal. Often one antenna (coil) is axial and the other two are transverse. Two antennas are said to have equal angles if their dipole moment vectors intersect the tool's longitudinal axis at the same angle. For example, two tilted antennas have the same tilt angle if their dipole moment vectors, having their tails conceptually fixed to a point on the tool's longitudinal axis, lie on the surface of a right circular cone centered on the tool's longitudinal axis and having its vertex at that reference point. Transverse antennas obviously have equal angles of 90 degrees, and that is true regardless of their azimuthal orientations relative to the tool.
A method and tool to provide an image of a borehole while drilling is provided. Such an image can be used, for example, to ascertain the local geology; for well placement, for geomechanical investigation, and for drilling optimization. The method and tool can also be used for formation evaluation. The image may be of high resolution and may be obtained in various wellbore hole diameters. The tool and method do not depend on the type of drilling fluid (mud) used.
Most sensors provide better measurements when the standoff distance (distance from sensor to wellbore wall) is minimized. To minimize standoff, sensors may be deployed, for example, on extendible or articulated pads, or they may be placed on a fixed portion of a stabilizer such as near the outer periphery of a stabilizer blade. The sensors may also be mounted on a sleeve or mounted directly on a mandrel. Certain sensor types (e.g., microsonic sensors) are less sensitive to standoff distance than others, so the maximum acceptable standoff distance will depend on the type of measurement being made. In some cases the articulated pad may try to keep the sensor or set of sensors pressed up against the wellbore wall with the least pressure possible, while in other embodiments sensors are in fixed locations on a tool such that the sensors come near, but do not contact the wellbore wall. Minimal pressure from the articulated pad is used when the potential for wear or damage to the sensor is a concern.
One or more sensors 304 and one or more sensor types can be used. The sensors may be interchangeable, or what is referred to as “plug-and-play” type sensors, in that they fit in all collar sizes, or are easily scalable to fit other tool sizes. The sensors may, for example, measure the dielectric constant, perform ultrahigh resistivity imaging using current measurements, perform oil-base mud imaging using voltage measurements, measure the variation of formation conductivity using microinduction, make microsonic or ultrasonic measurements, or make nuclear magnetic resonance measurements. Sensors may be placed according to their standoff needs, and various sensor types may be deployed on the same pad or otherwise proximate one another. Sensors of the same type may also be deployed to provide measurement redundancy. In addition, a sensor such as an angle encoder (not shown) may measure the articulation angle for hinged pad 302 to provide a mechanical caliper measurement.
In the embodiment shown in
The mandrel 404 may also carry a neutron section 406 to extend its application to petrophysics and reservoir description (see
The neutron section is totally scalable; that is, it is common to all (normal) tool sizes. Measurements may be single or multiple depths of investigation and may include the thermal neutron porosity, the best phi neutron porosity, pulsed neutron density, the cross section for absorption of thermal neutrons (i.e., capture cross section), and the thermal-neutron capture spectroscopy. The carbon oxygen ratio may be determined by performing a fast neutron inelastic scattering analysis.
A “single logging run” is meant to include one round trip of the logging platform in and out of a wellbore. Logging may occur while tripping in, while stationary within the wellbore, while tripping out, or any combination of those.
In one embodiment, all desired measurement types for geomechanical investigation may be included in a single platform. The combination of high resolution borehole images, hole size and hole shape measurements, stress anisotropy measurements, shale/rock evaluation, and clay-typing while drilling and in time-lapsed mode provides what is generally considered complete information for geological/geomechanical interpretation.
Two possible geomechanical applications are to determine pore pressure (600) (see
Another possible geomechanical application is to determine one or more components of the stress tensor for a formation (700), as shown in
in another embodiment, all desired measurement types for geological investigation may be included in a single platform. One may simultaneously (i.e., at the same time or during the same logging run) acquire the desired data, thereby enabling unsurpassed geological interpretation from all the images. Examples of desired data include a resistivity image for conductivity contrast, an acoustic image for impedance contrast, a microsonic image for compliance contrast, and a dielectric image for fluids contrast.
For a geological structural investigation (800) (
Similarly, for a geological stratigraphic, sedimentary, or fracture investigation (900) (
Another embodiment includes all desired imaging and clay-typing technology and multi-arm caliper measurements in a single tool. The combination of high resolution borehole images and hole size and hole shape while drilling and in time-lapsed mode enable allows for estimation of borehole damage and stress unloading during drilling. Being able to perform clay-typing while drilling allows an operator to avoid, for example, the hazard of drilling into the overpressured zones associated with smectite to illite transformation.
To determine borehole size and shape (1000) (
For clay-typing (1100) (
in another embodiment, all desired measurement types for formation evaluation may be included in a single platform. One may simultaneously (i.e., at the same time or during the same logging run) acquire the desired data, thereby enabling formation evaluation even under difficult conditions. Examples of desired data include (micro) resistivity dielectric, density, neutron, GR, spectroscopy, microsonic and NMR measurements. Useful information may be had when measurements are made pre-invasion (i.e., while drilling) or post-invasion while tripping or reaming.
For example, porosity and water saturation may be determined independent of water salinity (1200) (
A further example involves determining the formation factor and using that factor to determine the rock tortuosity (1300) (
Similarly, wettability can be determined (1400) (
An alternative formation evaluation embodiment to locate thin beds (1500) uses (micro) resistivity, dielectric, acoustic, ultrasonic, and NMR sensors in conjunction with pad- or sleeve-mounted buttons, transmitters, transducers, and/or receivers having close spacings (1502). An NMR short-length antenna may serve as a measurement sensor. The resistivity, dielectric, acoustic, and ultrasonic measurements can yield high resolution wellbore images (1504). The NMR measurements provide echo trains from which inverse Laplace processing yields a T2 distribution (1506). Interpretation of the images gives an estimate of the sand/shale ratio, as does the NMR free fluid to bound fluid ratio (1508). The high resolution images allow one to identify thin beds, and an NMR bimodal T2 distribution may also indicate the presence of thin beds (1510).
A further formation evaluation embodiment allows for the estimation of residual oil saturation (ROS) (1600) (
A further formation evaluation embodiment allows for the evaluation of low contrast pay (1700) (
A further formation evaluation embodiment allows for the evaluation of complex lithology (1800) (
Advanced formation fluid typing and saturation interpretation under a variety of scenarios commonly encountered in practice is possible using one or more combinations of the measurements discussed. Some of those analyses may exploit time-lapse data acquisition. For example, one may determine, in wells drilled with either water-base mud or oil-base mud, variable water salinity, low salinity, unknown salinity, or the presence of low-resistivity-pay. Those analysis techniques may also apply to other scenarios in which conventional deep-reading resistivity techniques break down (e.g., high-angle wells or wells with significant bed-boundary effects). The measurements will generally be azimuthal and measurements from various measurement types may be combined to allow for further interpretation.
While only certain embodiments have been set forth, alternatives and modifications will be apparent from the above description to those skilled in the art. These and other alternatives are considered equivalents and within the scope of this disclosure and the appended claims. Although only a few example embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from this invention. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. It is the express intention of the applicant not to invoke 35 U.S.C. §112, paragraph 6 for any limitations of any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function.
This application is a Continuation-in-part of U.S. application Ser. No. 11/421,945, filed Jun. 2, 2006, entitled System And Method For Reducing The Borehole Gap For Downhole Formation Testing Sensors; the entire contents of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11421945 | Jun 2006 | US |
Child | 13298938 | US |