The present invention relates generally to the field of locating underground objects, and in particular to locating and tracking a beacon within the field of operation of a horizontal drilling machine.
The present invention is directed to a method for tracking a beacon. The method comprises the steps of placing a tracker at a first location, measuring an amount of interference present at each of a plurality of different frequencies at the first location, and determining a preferred frequency based on the amount of interference. The method further comprises the steps of programming the beacon to emit a beacon signal at the preferred frequency, placing the beacon below ground, and determining a location of the beacon relative to the tracker by detecting the beacon signal at the preferred frequency.
The present invention is also directed to a method for analyzing a plurality of different frequencies present along a borepath. The method comprises the steps of measuring an amount of interference at each of the plurality of different frequencies at a first location using a tracker, measuring the amount of interference present at each of the plurality of different frequencies at a second location using the tracker, averaging the amount of interference present at each of the plurality of different frequencies at the first location and at the second location in order to determine a preferred frequency to tune the tracker to during a horizontal drilling operation, and tuning the tracker to the preferred frequency during the horizontal drilling operation.
The present invention is also directed to a tracker for locating a beacon. The tracker comprises a first antenna to detect a beacon signal at a plural of different frequencies, and a processor configured to determine a preferred frequency based on a summary of interference present at each of the plurality of different frequencies. The processor is also configured to tune the antenna to the preferred frequency. The beacon emits the beacon signal at the preferred frequency, and the processor is adapted to process the beacon signal emitted at the preferred frequency detected by the first antenna and determine a location of the beacon relative to the tracker.
The present invention is further directed to a horizontal boring system. The system comprises a rotary drilling machine, a drill string, a downhole tool, and a tracker. The drill string has a first end and a second end, the first end is operatively connectable to the rotary machine to drive rotation of the drill string. The second end of the drill string is connected to the downhole tool. The downhole tool comprises a beacon that emits a beacon signal at a plurality of different frequencies. The tracker is used for location of the beacon. The tracker comprises a first antenna to detect the beacon signal, and a processor configured to determine a preferred frequency for the beacon signal based on a summary of interference present at each of the plurality of different frequencies. The processor is adapted to process the beacon signal detected by the first antenna and determine a location of the beacon relative to the tracker.
The horizontal directional drilling industry traditionally uses walk-over tracking techniques to follow the progress of a bore, to find the surface location immediately above the drill bit, and to determine the depth of the drill bit from that surface location. The primary tracking tools are a subsurface transmitter, also called a beacon, and a hand-carried surface receiver assembly. The beacon, located in or very near a downhole boring tool, generally emits a beacon signal at a specific frequency. The beacon signal can be used for both location and communication with the above ground receiver assembly. However, there may be instances where interference from outside sources emitting signals interrupts this communication.
Turning now to the figures, and first to
Continuing with
Turning now to
The antennas 36 and 40 shown in
The antennas 36 and 40 are also adapted to detect alternative magnetic field sources being emitted at one of the plurality of different frequencies within range of the tracker 32. Objects emitting magnetic field sources within range of the tracker 32, such as power lines, gas lines, railroads, etc., may interrupt the communication between the beacon 28 and the tracker. This interruption is referred to as interference. The amount of interference present at the different frequencies may vary depending on what frequency the alternative magnetic field source is emitting its signal. One frequency may have a much greater amount of interference present while a second frequency may have a much lower amount of interference present. The lower the amount of interference present, the more effectively the tracker 32 can communicate with the beacon 28. Thus, one frequency may be more effective than other frequencies at certain locations along the desired borepath 16 for the beacon 28 and the tracker 32 to communicate during drilling operations. Based on this, the tracker 32 of the present invention is configured to analyze the amount of interference present at the plurality of different frequencies along the course of the desired borepath 16 prior to starting boring operations and determine the preferred frequency at which the beacon 28 (
Turning back to
Referring now to
Referring now to both
Continuing with
Turning now to
Continuing with
After the operator 30 determines the preferred frequency or frequencies, the operator will program the beacon 28 to emit the preferred frequency or frequencies (step 116). The beacon 28 is then placed underground (step 118) and the boring machine 12 may begin boring operations (step 120). While boring, the beacon 28 will emit the preferred frequency based on the preferred frequency at the location of the beacon (step 122). Once the beacon 28 emits the preferred frequency, the operator 30 may detect the location of the beacon relative to the tracker 32 (step 124). After locating the beacon 28, the operator 30 will ensure that the downhole tool 20 is continuing along the desired borepath 16, and if necessary, the operator 30 will make steering corrections before continuing to bore (step 126). The operator 30 may continue detecting the beacon 28 at the preferred frequency until boring of the desired borepath 16 is complete (step 128).
Prior to completing boring operations, the operator 30 will determine if a second or different frequency is preferred to detect the beacon 28 as the beacon moves to a new location along the desired borepath 16 (step 130). If the second frequency is not preferred at the new location, the operator 30 will continue detecting the beacon signal at the original preferred frequency while boring operations continue (steps 126 and 124). If the second frequency is preferred, the operator 30 will change the beacon 28 to emit the second preferred frequency. The operator 30 will then detect the beacon 28 relative to the tracker 32 using the second preferred frequency while boring operations continue. The operator 30 will toggle between the different preferred frequencies as needed until boring operations are completed (step 132). The operator 30 may perform step 130 as many times as needed along the desired borepath 16.
The present invention provides a tracking system with the ability to analyze the different frequencies the beacon 28 is capable of emitting and determine which frequency has the least amount of interference present at certain locations along the borepath. The present invention may also be used to assist the operator 30 in creating a borepath plan. Before beginning drilling operations, it is often desirable to create a plan for the path of the drill bit 26 to ensure the resulting bore will pass through certain waypoints or will avoid certain known obstacles. The plan is often compared to the actual path of the bore as the progress of the drill bit 26 is tracked. The operator 30 may compare the plan with the analysis of the desired borepath described in steps (100-114) with reference to
The plan may be loaded onto a display unit (not shown) located at the boring machine 12. The display unit may be programmed to notify the operator 30 when the bore has reached a location on the plan that requires the operator 30 to command the beacon 28 to emit the locating signal at a different frequency.
The present invention may also be used to assist the operator 30 in determining what depth to drill the bore. For example, if the tracker 32 detects a large amount of interference or a high noise floor at one frequency, the operator 30 may choose to drill more shallow or deeper in that area to avoid the interference. These determinations may also be incorporated into the plan for drilling the bore.
Various modifications can be made in the design and operation of the present invention without departing from its spirit. Thus, while the principal preferred construction and modes of operation of the invention have been explained in what is now considered to represent its best embodiments, it should be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically illustrated and described.
This application is a continuation-in-part of U.S. patent application Ser. No. 14/087,673, filed Nov. 22, 2013, and claims the benefit of provisional patent application Ser. No. 61/731,277, filed on Nov. 29, 2012, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4054881 | Raab | Oct 1977 | A |
5904210 | Stump et al. | May 1999 | A |
6035951 | Mercer | Mar 2000 | A |
6250402 | Brune | Jun 2001 | B1 |
6457537 | Mercer | Oct 2002 | B1 |
6496008 | Brune et al. | Dec 2002 | B1 |
6727704 | Brune | Apr 2004 | B2 |
6729901 | Aekins | May 2004 | B2 |
7080698 | Mercer | Jul 2006 | B2 |
7182151 | Stump | Feb 2007 | B2 |
7443154 | Merewether | Oct 2008 | B1 |
20020105331 | Brune et al. | Aug 2002 | A1 |
20050023036 | Cole et al. | Feb 2005 | A1 |
20060012490 | Fling | Jan 2006 | A1 |
20060232259 | Olsson | Oct 2006 | A1 |
20060254820 | Cole et al. | Nov 2006 | A1 |
20090059868 | Rajasimman | Mar 2009 | A1 |
20110001633 | Lam et al. | Jan 2011 | A1 |
20130176139 | Chau | Jul 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20160356149 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
61731277 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14087673 | Nov 2013 | US |
Child | 15243529 | US |