Example embodiments generally relate to drilling or boring devices such as drill bits or other tools for forming bore holes in a base material.
Boring or cutting tools, such as drill bits, often have a drive end that includes a conventional interface for receiving drive energy from a powered driving device (e.g., a drill). The drive end may have a standard sized hex head or another conventional drive end geometry that enables the powered driving device to impart rotational force on the boring tool. The boring tool may also have a cutting end at which location a cutting point and/or cutting edges may be formed. By providing rotational energy to the drive end, the cutting end may bore a hole in the material or workpiece on which the boring tool is being used.
A drill bit is one example of a boring tool that has been around a long time, and remains an extremely useful component to many tool kits. Most drill bits have helical shaped cutting flutes that extend across a cutting portion thereof, from a tip of the drill bit toward a shank of the drill bit. In this familiar context, the tip of the drill bit typically has a point that can be distinguished by the angle of the point (or point angle). There are two common point angles (namely 118 degrees and 135 degrees) that are employed on bits that are tailored to specific purposes suited to whichever one of the angles is selected. In the past, one of these point angles would be selected prior to machining the drill bit depending on the expected use of the drill bit, and the tip would be machined to a conical shape at the corresponding selected angle. These conical tips have since given way to the introduction of facets to enable a chisel action to be performed by the tip. However, even with the chisel action being introduced, such bits typically still have a single consistent point angle.
According to some example embodiments, an example boring tool is provided. The boring tool may include a coupling portion for interfacing with a powered driver, a shank operably coupled to the coupling portion, a cutting portion operably coupled to the shank, and a cutting portion. The cutting portion may be defined by a plurality of helical cutting flutes. The cutting tip may be operably coupled to a distal end of the cutting portion relative to the shank. The coupling portion, the shank, the cutting portion and the cutting tip may all share an axis. The cutting tip may include an inner portion and an outer portion. The inner portion may be defined by inner faces bisected by the axis and extending a first radial distance away from the axis to define a first point angle between the inner faces. The outer portion may be defined by outer faces extending from respective ones of the inner faces at the first radial distance to a second radial distance equal to a radius of the cutting portion to define a second point angle between the outer faces, and the second point angle may be less than the first point angle.
According to some example embodiments, a method of forming a boring tool is provided. The method may include machining the boring tool such that the boring tool includes a cutting tip, a shank, and a cutting portion sharing an axis, and machining the cutting portion to define helical cutting flutes that extend from the cutting tip to the shank. The method may also include machining the cutting tip to define an inner portion including inner faces bisected by the axis and extending a first radial distance away from the axis to define a first point angle between the inner faces, and an outer portion including outer faces extending from respective ones of the inner faces at the first radial distance to an outer diameter of the cutting portion to define a second point angle between the outer faces. In this context, the second point angle may be less than the first point angle.
Having thus described some example embodiments in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
Some example embodiments now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all example embodiments are shown. Indeed, the examples described and pictured herein should not be construed as being limiting as to the scope, applicability or configuration of the present disclosure. Rather, these example embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like reference numerals refer to like elements throughout. Furthermore, as used herein, the term “or” is to be interpreted as a logical operator that results in true whenever one or more of its operands are true. As used herein, operable coupling should be understood to relate to direct or indirect connection that, in either case, enables functional interconnection of components that are operably coupled to each other.
As indicated above, some example embodiments may relate to the provision of a boring tool (e.g., a drill bit) with multi-angled cutting edges. In an example embodiment, the boring tool may be constructed in such a way as to integrate a plurality of angled cutting edges into a cutting point angle. The cutting point angle may further comprise multiple angles. Thus, a double angle point of the tip of the boring tool may be automatically formed. Some structures that can employ example embodiments will now be described below by way of example and not limitation.
The coupling portion 110 may be configured to operably couple the boring tool 100 to an external device that may provide torque to the boring tool 100. In this regard, the coupling portion 110 may be a part of the boring tool 100 that receives a torque force. In some embodiments, the device may be a handheld power tool such as a drill or an impact driver. In some embodiments, the coupling portion 110 of the boring tool 100 may be configured to have a non-circular outer surface to facilitate translating torque from the device to the boring tool 100. For example, the coupling portion 110 may have a hexagonally shaped cross section to facilitate engagement with a driving device such as a drill. In
The shank 120 may operably couple the coupling portion 110 to the cutting portion 130. Thus, the shank 120, may assist with translating torque from receiving devices into rotational motion of the cutting portion 130. The shank 120 may have a proximal end that may be operably coupled to a distal end of the coupling portion 110. In this regard, the terms proximal and distal may be relative to the driving device when the boring tool 100 is attached thereto. The cutting portion 130 may be operably coupled to a distal end of the shank 120 at a proximal end of the cutting portion 130. The shank 120 may therefore be understood to transfer torque applied at the coupling portion 110 to the cutting portion 130. Therefore, the shank 120 may be subjected to high torsional loading due to the shank 120 forming a connection between the coupling portion 110 and the cutting portion 130, both of which may experience opposing forces while the boring tool 100 is in use. In this regard, the driving device may exert a torque on the coupling portion 110 that may oppose the direction of rotation of the boring tool 100. Thus, these opposing forces may be naturally distributed throughout the boring tool 100.
The shank 120 may typically have a consistent or same diameter between the proximal and distal ends thereof. However, in the example of
The cutting portion 130 of an example embodiment may include a plurality of helical cutting flutes 132 that extend from a cutting tip 150 at the distal end of the cutting portion 130 to the shank 120 at the proximal end of the cutting portion 130. The cutting flutes can assist in forming and transporting chips or other material released by the cutting action of the boring tool 100 out of the hole drilled. Meanwhile, the cutting tip 150, rather than having a conventional conical shape, may be formed to have portions thereof at two distinct angles relative to the axis 140. The portions of the cutting tip 150 may be referred to as a first portion (i.e., an inner portion 160 in this example) and a second portion (i.e., an outer portion 170 in this example), which are shown in greater detail in
As shown in
The outer portion 170 may define a second point angle 172 between respective outer faces 174 of the cutting tip 150. One instance of the outer faces 174 may extend away from each respective one of the inner faces 164. The outer faces 174 may also be substantially planar surfaces, and the second point angle 172 may be defined between the planar surfaces. The second point angle 172 may be 118° +/- about 8°, although other embodiments may be 118° +/- about 3°. Thus, the second point angle 172 may be between about 110° and 126°, or between about 113° to about 123°. The transition 180 may be a distinct transition between the inner faces 164 (of which there are two shown in the example of
Although not required, some example embodiments may further include an additional relief facet 190 defined at a portion of the inner and outer faces 164 and 174 that is opposite the leading edge of each of the inner and outer faces 164 and 174. The relief facet 190 may form a relief area behind the inner and outer faces 164 and 174 to provide for improved chip removal.
As a result of the cutting tip 150 having multiple cutting surfaces and at least one inside cutting region (i.e., inner portion 160) and at least one outside cutting region (i.e., outer portion 170), the cutting tip 150 may include two differently angled cutting surfaces. Accordingly, the boring tool 100, 100′, 100″ and 100‴ may be used for a variety of materials, and may provide good cutting characteristics for each of multiple different materials. For example, boring tools with a single cutting point angle of around 118° radially defined about the axis of the boring tool allows for drilling into soft materials such as wood, aluminum, brass, cast iron or plastic. Meanwhile, boring tools with a single cutting point angle of around 135° may be used for boring into harder materials such as harder metals. Example embodiments, by providing two different cutting point angles, may provide superior performance across a variety of materials. For example, a boring tool cutting tip with a combination of at least an angle of at least 110° and an angle of at least 130° may allow for the boring tool to be used for drilling soft and hard materials while also allowing efficiently expelling chips from the hole being drilled. In this regard, a typical bit wears first at the outer edge of the cutting tip, since speeds are highest at the outside of the bit. Example embodiments may provide more metal and a less significant angle to reduce the heat generation at the outside of the bit. Example embodiments may therefore not necessarily only be used for purely rotational driving devices. Instead, example embodiments may be employed as impact drill bits for use with an impact driver.
Some example embodiments may therefore provide a boring tool. The boring tool may include a coupling portion for interfacing with a powered driver, a shank operably coupled to the coupling portion, a cutting portion operably coupled to the shank, and a cutting portion. The cutting portion may be defined by a plurality of helical cutting flutes. The cutting tip may be operably coupled to a distal end of the cutting portion relative to the shank. The coupling portion, the shank, the cutting portion and the cutting tip may all share an axis. The cutting tip may include an inner portion and an outer portion. The inner portion may be defined by inner faces bisected by the axis and extending a first radial distance away from the axis to define a first point angle between the inner faces. The outer portion may be defined by outer faces extending from respective ones of the inner faces at the first radial distance to a second radial distance equal to a radius of the cutting portion to define a second point angle between the outer faces, and the second point angle may be less than the first point angle.
Although not required, the method described above may be modified, or additional operations may be included. Some example modifications may include the first radial distance being between about ¼ to ¾ a radius of the cutting portion. Another modification that may also or alternatively be included may be that the first point angle is 135° +/- 5° and the second point angle is 118° +/- 8°. Another modification that may also or alternatively be included may be that a transition between the first point angle and the second point angle is either a distinct angular transition or a curved transition. An example of an additional operation (shown in dashed lines) may include machining a torsion zone having a reduced diameter relative to remaining portions of the shank into the shank at operation 230. The torsion zone may have a diameter that is between about 80% and 95% a diameter of the remaining portions of the shank. Another example of an additional operation (shown in dashed lines) may include machining a relief facet at the cutting tip proximate to each set of the inner and outer faces at operation 240.
The boring tool of some embodiments may include additional features, modifications, augmentations and/or the like to achieve further objectives or enhance performance of the boring tool. The additional features, modifications, augmentations and/or the like may be added in any combination with each other. Below is a list of various additional features, modifications, and augmentations that can each be added individually or in any combination with each other. For example, the first radial distance may be between about ¼ to ¾ of the radius of the cutting portion. In an example embodiment, the first point angle may be 135° +/- 5° and the second point angle may be 118° +/- 8°. In some cases, the first point angle may be about 135° and the second point angle may be about 118°. In an example embodiment, the shank may include a torsion zone having a reduced diameter relative to remaining portions of the shank. The torsion zone may have a diameter that is between about 80% and 95% a diameter of the remaining portions of the shank. In some cases, the boring tool may be formed from high-speed steel or a cobalt infused material. In an example embodiment, the boring tool may be an impact bit and the powered device may be an impact driver. In some cases, the coupling portion may be either cylindrical or a ¼ inch hex head. In an example embodiment, the first radial distance may define a transition between the inner faces and the outer faces, respectively. In various examples, the transition may define either a distinct transition between the first point angle and the second point angle, or a curved transition between the first point angle and the second point angle.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although the foregoing descriptions and the associated drawings describe exemplary embodiments in the context of certain exemplary combinations of elements and/or functions, it should be appreciated that different combinations of elements and/or functions may be provided by alternative embodiments without departing from the scope of the appended claims. In this regard, for example, different combinations of elements and/or functions than those explicitly described above are also contemplated as may be set forth in some of the appended claims. In cases where advantages, benefits or solutions to problems are described herein, it should be appreciated that such advantages, benefits and/or solutions may be applicable to some example embodiments, but not necessarily all example embodiments. Thus, any advantages, benefits or solutions described herein should not be thought of as being critical, required or essential to all embodiments or to that which is claimed herein. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Date | Country | |
---|---|---|---|
63318977 | Mar 2022 | US |