BORON-BASED COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE SAME

Information

  • Patent Application
  • 20240224567
  • Publication Number
    20240224567
  • Date Filed
    July 21, 2023
    a year ago
  • Date Published
    July 04, 2024
    7 months ago
  • CPC
  • International Classifications
    • H10K50/12
    • C07F5/02
    • H10K50/15
    • H10K50/16
    • H10K85/30
Abstract
Embodiments provide an organic light-emitting device that includes a first electrode, a second electrode facing the first electrode, and an interlayer between the first electrode and the second electrode and including an emission layer. The interlayer includes at least one boron-based compound represented by Formula 1, which is explained in the specification:
Description
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority to and benefits of Korean Patent Application No. 10-2022-0148137 under 35 U.S.C. § 119, filed on Nov. 8, 2022, in the Korean Intellectual Property Office, the entire contents of which are incorporated herein by reference.


BACKGROUND
1. Technical Field

Embodiments relate to a boron-based compound and an organic light-emitting device including the same.


2. Description of the Related Art

Organic light-emitting devices are self-emissive devices that, as compared with devices of the related art, have wide viewing angles, high contrast ratios, short response times, and excellent characteristics in terms of luminance, driving voltage, and response speed, and produce full-color images.


As an example, an organic light-emitting device may have a structure in which a first electrode is arranged on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode are sequentially formed on the first electrode. Holes provided from the first electrode move toward the emission layer through the hole transport region, and electrons provided from the second electrode may move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in the emission layer to produce excitons. The excitons transition from an excited state to a ground state, thereby generating light.


It is to be understood that this background of the technology section is, in part, intended to provide useful background for understanding the technology. However, this background of the technology section may also include ideas, concepts, or recognitions that were not part of what was known or appreciated by those skilled in the pertinent art prior to a corresponding effective filing date of the subject matter disclosed herein.


SUMMARY

Embodiments include a novel boron-based compound and an organic light-emitting device including the same.


Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the embodiments of the disclosure.


Embodiments provide a boron-based compound which may be represented by Formula 1:




embedded image


In Formulae 1 and 2,

    • CY1, CY2, CY3, CY41, CY42, and CY6 may each independently be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group,
    • X11, X12, X21, and X22 may each independently be O, S, N(R8), or P(R8),
    • R1, R2, R3, R41, and R42 may each independently be a group represented by Formula 2, deuterium, —F, —Cl, —Br, —I, a hydroxy group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2),
    • R8 may be a group represented by Formula 2, hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxy group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2),
    • n1, n2, n3, n41, and n42 may each independently be an integer from 0 to 7,
    • when n1 is 2 or more, multiple R1(s) may be identical to or different from each other; when n2 is 2 or more, multiple R2(s) may be identical to or different from each other; when n3 is 2 or more, multiple R3(s) may be identical to or different from each other; when n41 is 2 or more, multiple R41(s) may be identical to or different from each other; and when n42 is 2 or more, multiple R42(s) may be identical to or different from each other,
    • at least one of R1, R2, R3, R41, R42, and R8 may each independently be a group represented by Formula 2,
    • when R1 is a group represented by Formula 2, n1 may be 1 or more; when R2 is a group represented by Formula 2, n2 may be 1 or more; when R3 is a group represented by Formula 2, n3 may be 1 or more; when R41 is a group represented by Formula 2, n41 may be 1 or more; and when R42 is a group represented by Formula 2, n42 may be 1 or more,
    • R6 may be deuterium, —F, —Cl, —Br, —I, a hydroxy group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2),
    • n6 may be an integer from 0 to 10,
    • when n6 is 2 or more, multiple R6(s) may be identical to or different from each other,
    • R51, R52, R71, R72, and R73 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxy group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2),
    • R51 and R52 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • R10a may be:
    • deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, a C2-C60 heteroarylalkyl group, —Si(Q11)(Q12)(Q13), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;
    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, or a C2-C60 heteroarylalkyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, a C2-C60 heteroarylalkyl group, —Si(Q21)(Q22)(Q23), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or
    • —Si(Q31)(Q32)(Q33), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32),
    • Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C7-C60 arylalkyl group, or a C2-C60 heteroarylalkyl group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, or any combination thereof, and
    • * may indicate a binding site to Formula 1.


In an embodiment, the boron-based compound may be represented by Formula 1A, which is explained below.


In an embodiment, X11, X12, X21, and X22 may each independently be O or N(R8).


In an embodiment, at least one of R1, R2, R3, R41, and R42 may each independently be a group represented by Formula 2.


In an embodiment, at least one of R1 and R2 may each independently be a group represented by Formula 2.


In an embodiment, at least one of R12 and R22 may each independently be a group represented by Formula 2.


In an embodiment, R8 may be a phenyl group unsubstituted or substituted with at least one R10a or a naphthyl group unsubstituted or substituted with at least one R10a.


In an embodiment, R3, R41, and R42 may each independently be:

    • deuterium, —F, —Cl, —Br, —I, a hydroxy group, a cyano group, or a nitro group;
    • a C1-C10 alkyl group, a C2-C1 alkenyl group, a C2-C1 alkynyl group, a C3-C1 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C1 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C20 aryl group, a C1-C20 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group, each unsubstituted or substituted with at least one R10a; or
    • —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2), and
    • R10a may be as defined in Formula 1.


In an embodiment, a group represented by Formula 2 may be a group represented by Formula 2A, which is explained below.


In an embodiment, R51 and R52 may each independently be a phenyl group unsubstituted or substituted with at least one R10a.


In an embodiment, R51 and R52 may be bonded to each other to form a fluorene group unsubstituted or substituted with at least one R10a.


In an embodiment, a group represented by Formula 2 may be a group represented by Formula 2-1 or Formula 2-2, which are explained below.


In an embodiment, the boron-based compound may be one of Compounds 1 to 357, which are explained below.


Embodiments provide an organic light-emitting device which may include a first electrode, a second electrode facing the first electrode, and an interlayer between the first electrode and the second electrode and including an emission layer, wherein the interlayer includes at least one boron-based compound represented by Formula 1, which is explained herein.


In an embodiment, the emission layer may include the boron-based compound.


In an embodiment, the emission layer may include a host and a dopant, and the dopant may include the boron-based compound.


In an embodiment, the host may include a hole-transporting host, an electron-transporting host, or any combination thereof.


In an embodiment, the dopant may further include a sensitizer.


In an embodiment, a concentration of the host may be in a range of about 50 parts by weight to about 90 parts by weight, based on 100 parts by weight of the emission layer; a concentration of the sensitizer may be in a range of about 10 parts by weight to about 30 parts by weight, based on 100 parts by weight of the emission layer; and a concentration of the boron-based compound may be in a range of about 0.1 parts by weight to about 5 parts by weight, based on 100 parts by weight of the emission layer.


Embodiments provide an electronic apparatus which may include the organic light-emitting device.


In an embodiment, the electronic apparatus may further include a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or a combination thereof.


It is to be understood that the embodiments above are described in a generic and explanatory sense only and not for the purpose of limitation, and the disclosure is not limited to the embodiments described above.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects and features of the disclosure will be more apparent by describing in detail embodiments thereof with reference to the accompanying drawings, in which:



FIG. 1 is a schematic cross-sectional view of an organic light-emitting device according to an embodiment;



FIG. 2 is a schematic cross-sectional view of an electronic apparatus according to an embodiment;



FIG. 3 is a schematic cross-sectional view of an electronic apparatus according to another embodiment;



FIG. 4 is a schematic perspective view of an electronic device including an organic light-emitting device according to an embodiment;



FIG. 5 is a schematic perspective view of an exterior of a vehicle as an electronic device including an organic light-emitting device according to an embodiment; and



FIGS. 6A to 6C are each a schematic diagram of an interior of a vehicle according to embodiments.





DETAILED DESCRIPTION OF THE EMBODIMENTS

The disclosure will now be described more fully hereinafter with reference to the accompanying drawings, in which embodiments are shown. This disclosure may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.


In the drawings, the sizes, thicknesses, ratios, and dimensions of the elements may be exaggerated for ease of description and for clarity. Like numbers refer to like elements throughout.


In the description, it will be understood that when an element (or region, layer, part, etc.) is referred to as being “on”, “connected to”, or “coupled to” another element, it can be directly on, connected to, or coupled to the other element, or one or more intervening elements may be present therebetween. In a similar sense, when an element (or region, layer, part, etc.) is described as “covering” another element, it can directly cover the other element, or one or more intervening elements may be present therebetween.


In the description, when an element is “directly on,” “directly connected to,” or “directly coupled to” another element, there are no intervening elements present. For example, “directly on” may mean that two layers or two elements are disposed without an additional element such as an adhesion element therebetween.


As used herein, the expressions used in the singular such as “a,” “an,” and “the,” are intended to include the plural forms as well, unless the context clearly indicates otherwise.


As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. For example, “A and/or B” may be understood to mean “A, B, or A and B.” The terms “and” and “or” may be used in the conjunctive or disjunctive sense and may be understood to be equivalent to “and/or”.


In the specification and the claims, the term “at least one of” is intended to include the meaning of “at least one selected from the group consisting of” for the purpose of its meaning and interpretation. For example, “at least one of A, B, and C” may be understood to mean A only, B only, C only, or any combination of two or more of A, B, and C, such as ABC, ACC, BC, or CC. When preceding a list of elements, the term, “at least one of,” modifies the entire list of elements and does not modify the individual elements of the list.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. Thus, a first element could be termed a second element without departing from the teachings of the disclosure. Similarly, a second element could be termed a first element, without departing from the scope of the disclosure.


The spatially relative terms “below”, “beneath”, “lower”, “above”, “upper”, or the like, may be used herein for ease of description to describe the relations between one element or component and another element or component as illustrated in the drawings. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation, in addition to the orientation depicted in the drawings. For example, in the case where a device illustrated in the drawing is turned over, the device positioned “below” or “beneath” another device may be placed “above” another device. Accordingly, the illustrative term “below” may include both the lower and upper positions. The device may also be oriented in other directions and thus the spatially relative terms may be interpreted differently depending on the orientations.


The terms “about” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the recited value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the recited quantity (i.e., the limitations of the measurement system). For example, “about” may mean within one or more standard deviations, or within +20%, 10%, or ±5% of the stated value.


It should be understood that the terms “comprises,” “comprising,” “includes,” “including,” “have,” “having,” “contains,” “containing,” and the like are intended to specify the presence of stated features, integers, steps, operations, elements, components, or combinations thereof in the disclosure, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.


Unless otherwise defined or implied herein, all terms (including technical and scientific terms) used have the same meaning as commonly understood by those skilled in the art to which this disclosure pertains. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and should not be interpreted in an ideal or excessively formal sense unless clearly defined in the specification.


Embodiments provide a boron-based compound which may be represented by Formula 1:




embedded image


In Formulae 1 and 2, CY1, CY2, CY3, CY41, CY42, and CY6 may each independently be a C5-C60 carbocyclic group or a C1-C60 heterocyclic group.


In an embodiment, CY1, CY2, CY3, CY41, and CY42 may each independently be a phenanthrene group, an anthracene group, a naphthalene group, or a benzene group.


In an embodiment, the boron-based compound may be represented by Formula 1A:




embedded image


In Formula 1A,

    • R11 to R13 may each independently be hydrogen, or may each independently be as defined herein in connection with R1,
    • R21 to R23 may each independently be hydrogen, or may each independently be as defined herein in connection with R2,
    • X11, X12, X21, X22, R3, R41, R42, n3, n41, and n42 may each be as defined herein, and
    • * in Formula 2 may indicate a binding site to Formula 1A.


In Formula 1, X11, X12, X21, and X22 may each independently be O, S, N(R8), or P(R8).


In an embodiment, X11, X12, X21, and X22 may each independently be O or N(R8).


In Formula 1, R1, R2, R3, R41, and R42 may each independently be a group represented by Formula 2, deuterium, —F, —Cl, —Br, —I, a hydroxy group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2).


In an embodiment, R3, R41, and R42 may each independently be:

    • deuterium, —F, —Cl, —Br, —I, a hydroxy group, a cyano group, or a nitro group;
    • a C1-C10 alkyl group, a C2-C10 alkenyl group, a C2-C10 alkynyl group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C1 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C20 aryl group, a C1-C20 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group, each unsubstituted or substituted with at least one R10a; or
    • —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2), and
    • R10a is as defined herein.


In Formula 1, R8 may be a group represented by Formula 2, hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxy group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2).


In an embodiment, R8 may be an aryl group unsubstituted or substituted with at least one R10a or a heteroaryl group unsubstituted or substituted with at least one Ria.


In an embodiment, R8 may be a phenyl group unsubstituted or substituted with at least one R10a or a naphthyl group unsubstituted or substituted with at least one R10a.


In Formula 1, n1, n2, n3, n41, and n42 may each independently be an integer from 0 to 7, wherein

    • when n1 is 2 or more, multiple R1(s) may be identical to or different from each other; when n2 is 2 or more, multiple R2(s) may be identical to or different from each other; when n3 is 2 or more, multiple R3(s) may be identical to or different from each other; when n41 is 2 or more, multiple R41(s) may be identical to or different from each other; and when n42 is 2 or more, multiple R42(s) may be identical to or different from each other.


In Formula 1, at least one of R1, R2, R3, R41, R42, and R8 may each independently be a group represented by Formula 2, wherein:

    • when R1 is a group represented by Formula 2, n1 may be 1 or more; when R2 is a group represented by Formula 2, n2 may be 1 or more; when R3 is a group represented by Formula 2, n3 may be or more; when R41 is a group represented by Formula 2, n41 may be 1 or more; and when R42 is a group represented by Formula 2, n42 may be 1 or more.


In an embodiment, at least one of R1, R2, R3, R41, and R42 may each independently be a group represented by Formula 2.


In an embodiment, at least one of R1 and R2 may each independently be a group represented by Formula 2.


In an embodiment, in Formula 1A, at least one of R12 and R22 may each independently be a group represented by Formula 2.


In Formula 2, Re may be deuterium, —F, —Cl, —Br, —I, a hydroxy group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2).


In Formula 2, n6 may be an integer from 0 to 10, wherein

    • when n6 is 2 or more, multiple R6(s) may be identical to or different from each other.


In Formula 2, R51, R52, R71, R72, and R73 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxy group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, a C6-C60 aryloxy group unsubstituted or substituted with at least one R10a, a C6-C60 arylthio group unsubstituted or substituted with at least one R10a, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2).


In an embodiment, R51 and R52 may each independently be a phenyl group unsubstituted or substituted with at least one R10a.


In Formula 2, R51 and R52 may optionally be bonded to each other to form a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a.


In an embodiment, R51 and R52 may be bonded to each other to form a non-aromatic condensed polycyclic group unsubstituted or substituted with at least one R10a.


In an embodiment, R51 and R52 may be bonded to each other to form a fluorene group unsubstituted or substituted with at least one R10a.


In an embodiment, a group represented by Formula 2 may be a group represented by Formula 2A:




embedded image


In Formula 2A,

    • R61 to R64 may each independently be hydrogen, or may each independently be as defined herein in connection with R6,
    • R51, R52, R71, R72, and R73 may each be as defined herein, and
    • * may indicate a binding site to Formula 1.


In an embodiment, in Formula 2A, R51, R52, R61, R62, R63, R64, R71, R72, and R73 may each independently be:

    • hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxy group, a cyano group, or a nitro group;
    • a C1-C10 alkyl group, a C2-C1 alkenyl group, a C2-C1 alkynyl group, a C3-C1 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C1 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C20 aryl group, a C1-C20 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group, each unsubstituted or substituted with at least one R10a; or
    • —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2), and R10a is as defined herein.


In an embodiment, a group represented by Formula 2 may be a group represented by Formula 2-1 or Formula 2-2:




embedded image


In Formulae 2-1 and 2-2,

    • n5 may be an integer from 0 to 5,
    • when n5 is 2 or more, multiple R10a(s) may be identical to or different from each other,
    • n8 may be an integer from 0 to 8,
    • when n8 is 2 or more, multiple R10a(s) may be identical to or different from each other,
    • CY6, R6, n6, R71, R72, R73, and R10a may each be as defined herein, and
    • * may indicate a binding site to Formula 1.


In Formulae 1 and 2, R10a may be:

    • deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, a C2-C60 heteroarylalkyl group, —Si(Q11)(Q12)(Q13), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;
    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, or a C2-C60 heteroarylalkyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, a C2-C60 heteroarylalkyl group, —Si(Q21)(Q22)(Q23), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or
    • —Si(Q31)(Q32)(Q33), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32), and
    • Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C7-C60 arylalkyl group, or a C2-C60 heteroarylalkyl group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, or any combination thereof.


In an embodiment, R10a may be:

    • deuterium, —F, —Cl, —Br, —I, a hydroxy group, a cyano group, or a nitro group;
    • a C1-C10 alkyl group, a C2-C10 alkenyl group, or a C2-C10 alkynyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxy group, a cyano group, a nitro group, or any combination thereof;
    • a C6-C20 aryl group or a C1-C20 heteroaryl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C10 alkyl group, a C2-C10 alkenyl group, a C2-C10 alkynyl group, or any combination thereof; or
    • —Si(Q31)(Q32)(Q33), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32), and
    • Q1 to Q3, Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C10 alkyl group; a C2-C10 alkenyl group; a C2-C10 alkynyl group; a C1-C10 alkoxy group; or a C3-C20 carbocyclic group or a C1-C20 heterocyclic group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C10 alkyl group, a C1-C10 alkoxy group, a C3-C20 carbocyclic group, a C1-C20 heterocyclic group, or any combination thereof.


In Formulae 1 and 2, * may indicate a binding site to Formula 1.


In an embodiment, the boron-based compound may be one of Compounds 1 to 357:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In the boron-based compound represented by Formula 1, due to the introduction of an ortho-position substituent represented by Formula 2, which is an electron-donating group (EDG), at a position having a low electron density, multiple resonance effects (MRE) may be enhanced. Accordingly, a high photoluminescence quantum yield (PLOY) may be exhibited.


Although the boron-based compound represented by Formula 1 has a multiple resonance planar structure, due to the inclusion of the ortho-position substituent represented by Formula 2, intermolecular distance may be relatively increased. Accordingly, it is possible to suppress intermolecular interactions, such as Dexter energy transfer, which may cause a reduction in device efficiency and lifespan.


Since the ortho-position substituent represented by Formula 2 is connected to the boron-based compound represented by Formula 1 through a carbon-carbon bond, high material stability may be obtained.


Accordingly, an electronic device, for example, an organic light-emitting device, including the boron-based compound represented by Formula 1 may have high efficiency and long lifespan.


Synthesis methods of the boron-based compound represented by Formula 1 may be recognizable by one of ordinary skill in the art by referring to the Synthesis Examples and/or the Examples provided below.


Embodiments provide an organic light-emitting device which may include: a first electrode; a second electrode facing the first electrode; and an interlayer between the first electrode and the second electrode and including an emission layer, wherein the interlayer includes at least one boron-based compound represented by Formula 1.


In an embodiment, the first electrode may be an anode; the second electrode may be a cathode; and the interlayer may further include a hole transport region between the emission layer and the first electrode, and an electron transport region between the emission layer and the second electrode, wherein

    • the hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron-blocking layer, or any combination thereof, and
    • the electron transport region may include a buffer layer, a hole-blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.


In an embodiment, the emission layer may include the boron-based compound. The emission layer may emit red light, green light, blue light, and/or white light. For example, the emission layer may emit blue light. The blue light may have, for example, a maximum emission wavelength in a range of about 400 nm to about 490 nm. For example, the blue light may have a maximum emission wavelength in a range of about 450 nm to about 470 nm. Thus, an organic light-emitting device having high color purity may be manufactured.


In an embodiment, the emission layer may include a host and a dopant. In an embodiment, the dopant may include the boron-based compound. In an embodiment, the dopant may further include a sensitizer. For example, the sensitizer may include an organometallic compound represented by Formula 401 as provided herein.


In an embodiment, the host may include two different kinds of host compounds. For example, the host may include a hole-transporting host, an electron-transporting host, or any combination thereof.


In an embodiment, a concentration of the host may be in a range of about 50 parts by weight to about 90 parts by weight, based on 100 parts by weight of the emission layer; a concentration of the sensitizer may be in a range of about 10 parts by weight to about 30 parts by weight, based on 100 parts by weight of the emission layer; and a concentration of the boron-based compound may be in a range of about 0.1 parts by weight to about 5 parts by weight, based on 100 parts by weight of the emission layer.


In embodiments, the host may include the boron-based compound.


In an embodiment, the emission layer may further include one of Compounds H1 to H128 as provided herein, 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di-9-carbazolylbenzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), or any combination thereof.


In an embodiment, the emission layer may further include one of an arylamine compound and a styrylamine compound. For example, the emission layer may further include one of Compounds FD1 to FD36 as provided herein, PDVBi, DPAVBi, or any combination thereof.


In an embodiment, an amount of the host may be greater than an amount of the dopant.


In an embodiment, the boron-based compound may be a thermally activated delayed fluorescence (TADF) material. In an embodiment, the boron-based compound may have a ΔEST value (a difference between a triplet energy level and a singlet energy level) in a range of about 0 eV to about 0.9 eV. For example, the boron-based compound may have a ΔEST value in a range of about 0 eV to about 0.7 eV. For example, the boron-based compound may have a ΔEST value in a range of about 0 eV to about 0.5 eV.


In an embodiment, the organic light-emitting device may include a capping layer outside the first electrode or outside the second electrode. For example, the capping layer may include the boron-based compound represented by Formula 1.


For example, the organic light-emitting device may further include at least one of a first capping layer outside the first electrode and a second capping layer outside the second electrode, and at least one of the first capping layer and the second capping layer may include the boron-based compound represented by Formula 1. Further details on the first capping layer and/or second capping layer are described herein.


In an embodiment, the organic light-emitting device may include: a first capping layer outside the first electrode and including a boron-based compound represented by Formula 1; a second capping layer outside the second electrode and including a boron-based compound represented by Formula 1; or the first capping layer and the second capping layer.


The wording “(interlayer and/or capping layer) includes a boron-based compound” as used herein may be understood as “(interlayer and/or capping layer) may include one kind of boron-based compound represented by Formula 1 or two or more different kinds of boron-based compounds, each independently represented by Formula 1”.


For example, the interlayer and/or the capping layer may include Compound 1 only as the boron-based compound. In this regard, Compound 1 may be present in the emission layer of the organic light-emitting device. In an embodiment, the interlayer may include, as the boron-based compound, Compound 1 and Compound 2. In this regard, Compound 1 and Compound 2 may be present in an identical layer (e.g., both Compound 1 and Compound 2 may be present in the emission layer), or may be present in different layers (e.g., Compound 1 may be present in the emission layer, and Compound 2 may be present in the electron transport region).


The term “interlayer” as used herein refers to a single layer and/or all layers between the first electrode and the second electrode of the organic light-emitting device.


Embodiments provide an electronic apparatus which may include the organic light-emitting device. The electronic apparatus may further include a thin-film transistor. For example, the electronic apparatus may further include a thin-film transistor including a source electrode and a drain electrode, wherein the first electrode of the organic light-emitting device may be electrically connected to the source electrode or the drain electrode.


In embodiments, the electronic apparatus may further include a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or any combination thereof. Further details on the electronic apparatus are as described herein.


Embodiments provide an electronic device which may include the electronic apparatus, wherein the electronic device may be a flat panel display, a curved display, a computer monitor, a medical monitor, a television, a billboard, an indoor light, an outdoor light, a signal light, a head-up display, a fully transparent display, a partially transparent display, a flexible display, a rollable display, a foldable display, a stretchable display, a laser printer, a telephone, a mobile phone, a tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a microdisplay, a three-dimensional (3D) display, a virtual reality display, an augmented reality display, a vehicle, a video wall including multiple displays tiled together, a theater screen, a stadium screen, a phototherapy device, or a signboard.


Description of FIG. 1


FIG. 1 is a schematic cross-sectional view of an organic light-emitting device 10 according to an embodiment. The organic light-emitting device 10 may include a first electrode 110, an interlayer 130, and a second electrode 150.


Hereinafter, the structure of the organic light-emitting device 10 according to an embodiment and a method of manufacturing the organic light-emitting device 10 will be described with reference to FIG. 1.


[First Electrode 110]


In FIG. 1, a substrate may be further included under the first electrode 110 or on the second electrode 150. The substrate may be a glass substrate or a plastic substrate. In embodiments, the substrate may be a flexible substrate, and may include plastics with excellent heat resistance and durability, such as polyimide, polyethylene terephthalate (PET), polycarbonate, polyethylene naphthalate, polyarylate (PAR), polyetherimide, or any combination thereof.


The first electrode 110 may be formed by, for example, depositing or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, a material for forming the first electrode 110 may be a high-work function material that facilitates injection of holes.


The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. When the first electrode 110 is a transmissive electrode, a material for forming the first electrode 110 may include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), or any combination thereof. In embodiments, when the first electrode 110 is a semi-transmissive electrode or a reflective electrode, a material for forming the first electrode 110 may include magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or any combination thereof.


The first electrode 110 may have a structure consisting of a single layer or a structure including multiple layers. For example, the first electrode 110 may have a three-layered structure of ITO/Ag/ITO.


[Interlayer 130]


The interlayer 130 may be arranged on the first electrode 110. The interlayer 130 may include an emission layer.


The interlayer 130 may further include a hole transport region between the first electrode 110 and the emission layer and an electron transport region between the emission layer and the second electrode 150.


The interlayer 130 may further include, in addition to various organic materials, a metal-containing compound such as an organometallic compound, an inorganic material such as a quantum dot, and the like.


In embodiments, the interlayer 130 may include two or more emitting units stacked between the first electrode 110 and the second electrode 150, and at least one charge generation layer between the two or more emitting units. When the interlayer 130 includes the two or more emitting units and the at least one charge generation layer as described above, the organic light-emitting device 10 may be a tandem light-emitting device.


[Hole Transport Region in Interlayer 130]


The hole transport region may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer including different materials, or a structure including multiple layers including different materials.


The hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron-blocking layer, or any combination thereof.


In embodiments, the hole transport region may have a multi-layered structure including a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron-blocking layer structure, wherein the layers of each structure may be stacked from the first electrode 110 in its respective stated order, but the structure of the hole transport region is not limited thereto.


The hole transport region may include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof:




embedded image


In Formulae 201 and 202,

    • L201 to L204 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • L205 may be *—O—*′, *—S—*′, *—N(Q201)-*′, a C1-C20 alkylene group unsubstituted or substituted with at least one R10a, a C2-C20 alkenylene group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • xa1 to xa4 may each independently be an integer from 0 to 5,
    • xa5 may be an integer from 1 to 10,
    • R201 to R204 and Q201 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • R201 and R202 may optionally be linked to each other via a single bond, a C1-C5 alkylene group unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group unsubstituted or substituted with at least one R10a to form a C8-C60 polycyclic group (e.g., a carbazole group, etc.) unsubstituted or substituted with at least one R10a (e.g., Compound HT16, etc.),
    • R203 and R204 may optionally be linked to each other via a single bond, a C1-C5 alkylene group unsubstituted or substituted with at least one R10a, or a C2-C5 alkenylene group unsubstituted or substituted with at least one R10a to form a C8-C60 polycyclic group unsubstituted or substituted with at least one R10a, and
    • na1 may be an integer from 1 to 4.


In embodiments, the compound represented by Formula 201 and the compound represented by Formula 202 may each independently include at least one of groups represented by Formulae CY201 to CY217:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae CY201 to CY217, R10b and R10c may each independently be as defined herein in connection with R10a, ring CY201 to ring CY204 may each independently be a C3-C20 carbocyclic group or a C1-C20 heterocyclic group, and at least one hydrogen in Formulae CY201 to CY217 may be unsubstituted or substituted with R10a as described herein.


In an embodiment, in Formulae CY201 to CY217, ring CY201 to ring CY204 may each independently be a benzene group, a naphthalene group, a phenanthrene group, or an anthracene group.


In embodiments, the compound represented by Formula 201 and the compound represented by Formula 202 may each independently include at least one of groups represented by Formulae CY201 to CY203.


In embodiments, the compound represented by Formula 201 may include at least one of groups represented by Formulae CY201 to CY203 and at least one of groups represented by Formulae CY204 to CY217.


In embodiments, in Formula 201, xa1 may be 1, R201 may be a group represented by one of Formulae CY201 to CY203, xa2 may be 0, and R202 may be a group represented by one of Formulae CY204 to CY207.


In embodiments, the compound represented by Formula 201 and the compound represented by Formula 202 may each not include a group represented by one of Formulae CY201 to CY203.


In embodiments, the compound represented by Formula 201 and the compound represented by Formula 202 may each not include a group represented by one of Formulae CY201 to CY203, and may each independently include at least one of groups represented by Formulae CY204 to CY217.


In embodiments, the compound represented by Formula 201 and the compound represented by Formula 202 may each not include a group represented by one of Formulae CY201 to CY217.


In embodiments, the hole transport region may include one of Compounds HT1 to HT46, m-MTDATA, TDATA, 2-TNATA, NPB(NPD), β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated NPB, TAPC, HMTPD, CzSi, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the hole transport region may be in a range of about 50 Å to about 10,000 Å. For example, the thickness of the hole transport region may be in a range of about 100 Å to about 4,000 Å. When the hole transport region includes a hole injection layer, a hole transport layer, or any combination thereof, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å. For example, the thickness of the hole injection layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the hole transport layer may be in a range of about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within these ranges, satisfactory hole-transporting characteristics may be obtained without a substantial increase in driving voltage.


The emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance according to a wavelength of light emitted by the emission layer, and the electron-blocking layer may block the leakage of electrons from an emission layer to a hole transport region. Materials that may be included in the hole transport region may be included in the emission auxiliary layer and the electron-blocking layer.


[p-Dopant]


The hole transport region may further include, in addition to the materials as described above, a charge-generation material for improving conductive properties. The charge-generation material may be uniformly or non-uniformly dispersed in the hole transport region (e.g., in the form of a single layer consisting of a charge-generation material).


The charge-generation material may be, for example, a p-dopant. In an embodiment, a lowest unoccupied molecular orbital (LUMO) energy level of the p-dopant may be less than or equal to about −3.5 eV.


In an embodiment, the p-dopant may include a quinone derivative, a cyano group-containing compound, a compound containing element EL1 and element EL2, or any combination thereof.


Examples of a quinone derivative may include TCNQ, F4-TCNQ, and the like.


Examples of a cyano group-containing compound may include HAT-CN, a compound represented by Formula 221, and the like:




embedded image


In Formula 221,


R221 to R223 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, and


at least one of R221 to R223 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group, each substituted with: a cyano group; —F; —Cl; —Br; —I; a C1-C20 alkyl group substituted with a cyano group, —F, —Cl, —Br, —I, or any combination thereof; or any combination thereof.


In the compound containing element EL1 and element EL2, element EL1 may be a metal, a metalloid, or any combination thereof, and element EL2 may be a non-metal, a metalloid, or any combination thereof.


Examples of a metal may include: an alkali metal (e.g., lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc.); an alkaline earth metal (e.g., beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), etc.); a transition metal (e.g., titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), technetium (Tc), rhenium (Re), iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), etc.); a post-transition metal (e.g., zinc (Zn), indium (In), tin (Sn), etc.); a lanthanide metal (e.g., lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), etc.); and the like.


Examples of a metalloid may include silicon (Si), antimony (Sb), tellurium (Te), and the like.


Examples of a non-metal may include oxygen (O), a halogen (e.g., F, Cl, Br, I, etc.), and the like.


Examples of a compound containing element EL1 and element EL2 may include a metal oxide, a metal halide (e.g., a metal fluoride, a metal chloride, a metal bromide, a metal iodide, etc.), a metalloid halide (e.g., a metalloid fluoride, a metalloid chloride, a metalloid bromide, a metalloid iodide, etc.), a metal telluride, or any combination thereof.


Examples of a metal oxide may include a tungsten oxide (e.g., WO, W2O3, WO2, WO3, W2O5, etc.), a vanadium oxide (e.g., VO, V2O3, VO2, V2O5, etc.), a molybdenum oxide (e.g., MoO, Mo2O3, MoO2, MoO3, Mo2O5, etc.), a rhenium oxide (e.g., ReO3, etc.), and the like.


Examples of a metal halide may include an alkali metal halide, an alkaline earth metal halide, a transition metal halide, a post-transition metal halide, a lanthanide metal halide, and the like.


Examples of an alkali metal halide may include LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KCl, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, LiI, NaI, KI, RbI, CsI, and the like.


Examples of an alkaline earth metal halide may include BeF2, MgF2, CaF2, SrF2, BaF2, BeCl2, MgCl2, CaCl2), SrCl2, BaCl2, BeBr2, MgBr2, CaBr2, SrBr2, BaBr2, BeI2, MgI2, CaI2, SrI2, BaI2, and the like.


Examples of a transition metal halide may include a titanium halide (e.g., TiF4, TiCl4, TiBr4, TiI4, etc.), a zirconium halide (e.g., ZrF4, ZrCl4, ZrBr4, ZrI4, etc.), a hafnium halide (e.g., HfF4, HfCl4, HfBr4, HfI4, etc.), a vanadium halide (e.g., VF3, VCl3, VBr3, VI3, etc.), a niobium halide (e.g., NbF3, NbCl3, NbBr3, NbI3, etc.), a tantalum halide (e.g., TaF3, TaCl3, TaBr3, TaI3, etc.), a chromium halide (e.g., CrF3, CrO3, CrBr3, CrI3, etc.), a molybdenum halide (e.g., MoF3, MoCl3, MoBr3, MoI3, etc.), a tungsten halide (e.g., WF3, WCl3, WBr3, WI3, etc.), a manganese halide (e.g., MnF2, MnCl2, MnBr2, MnI2, etc.), a technetium halide (e.g., TcF2, TcCl2, TcBr2, TcI2, etc.), a rhenium halide (e.g., ReF2, ReCl2, ReBr2, ReI2, etc.), an iron halide (e.g., FeF2, FeCl2, FeBr2, FeI2, etc.), a ruthenium halide (e.g., RuF2, RuCl2, RuBr2, RuI2, etc.), an osmium halide (e.g., OsF2, OSCl2, OsBr2, OsI2, etc.), a cobalt halide (e.g., CoF2, COCl2, CoBr2, CoI2, etc.), a rhodium halide (e.g., RhF2, RhCl2, RhBr2, RhI2, etc.), an iridium halide (e.g., IrF2, IrCl2, IrBr2, IrI2, etc.), a nickel halide (e.g., NiF2, NiCl2, NiBr2, NiI2, etc.), a palladium halide (e.g., PdF2, PdCl2, PdBr2, PdI2, etc.), a platinum halide (e.g., PtF2, PtCl2, PtBr2, PtI2, etc.), a copper halide (e.g., CuF, CuCl, CuBr, CuI, etc.), a silver halide (e.g., AgF, AgCl, AgBr, AgI, etc.), a gold halide (e.g., AuF, AuCl, AuBr, AuI, etc.), and the like.


Examples of a post-transition metal halide may include a zinc halide (e.g., ZnF2, ZnCl2, ZnBr2, ZnI2, etc.), an indium halide (e.g., InI3, etc.), a tin halide (e.g., SnI2, etc.), and the like.


Examples of a lanthanide metal halide may include YbF, YbF2, YbF3, SmF3, YbCl, YbCl2, YbCl3, SmCl3, YbBr, YbBr2, YbBr3, SmBr3, YbI, YbI2, YbI3, SmI3, and the like.


Examples of a metalloid halide may include an antimony halide (e.g., SbCl5, etc.) and the like.


Examples of a metal telluride may include an alkali metal telluride (e.g., Li2Te, Na2Te, K2Te, Rb2Te, Cs2Te, etc.), an alkaline earth metal telluride (e.g., BeTe, MgTe, CaTe, SrTe, BaTe, etc.), a transition metal telluride (e.g., TiTe2, ZrTe2, HfTe2, V2Te3, Nb2Te3, Ta2Te3, Cr2Te3, Mo2Te3, W2Te3, MnTe, TcTe, ReTe, FeTe, RuTe, OsTe, CoTe, RhTe, IrTe, NiTe, PdTe, PtTe, Cu2Te, CuTe, Ag2Te, AgTe, Au2Te, etc.), a post-transition metal telluride (e.g., ZnTe, etc.), a lanthanide metal telluride (e.g., LaTe, CeTe, PrTe, NdTe, PmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, etc.), and the like.


[Emission Layer in Interlayer 130]


When the organic light-emitting device 10 is a full-color light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, and/or a blue emission layer, according to a subpixel. In an embodiment, the emission layer may have a stacked structure of two or more layers of a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers may contact each other or may be separated from each other to emit white light. In embodiments, the emission layer may include two or more materials of a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials are mixed with each other in a single layer to emit white light. For example, the emission layer may emit blue light.


In an embodiment, the emission layer may include a boron-based compound represented by Formula 1 as described herein.


The emission layer may include a host and a dopant.


In an embodiment, the dopant may include the boron-based compound represented by Formula 1 as described herein. In this regard, the dopant may further include, in addition to the boron-based compound represented by Formula 1, a phosphorescent dopant, a fluorescent dopant, or any combination thereof. Details on the phosphorescent dopant, the fluorescent dopant, and the like that may be further included in the emission layer, in addition to the boron-based compound represented by Formula 1, may be as described below.


An amount of the dopant in the emission layer may be in a range of about 0.01 parts by weight to about 15 parts by weight, based on 100 parts by weight of the host.


In an embodiment, the emission layer may include a quantum dot.


In embodiments, the emission layer may include a delayed fluorescence material. The delayed fluorescence material may serve as a host or as a dopant in the emission layer.


A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the emission layer may be in a range of about 200 Å to about 600 Å. When the thickness of the emission layer is within these ranges, excellent luminescence characteristics may be obtained without a substantial increase in driving voltage.


[Host]


The host may include, for example, a carbazole-containing compound, an anthracene-containing compound, or any combination thereof.


In embodiments, the host may include a compound represented by Formula 301:





[Ar301]xb11-[(L301)xb1-R301]xb21  [Formula 301]


In Formula 301,

    • Ar301 and L301 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • xb11 may be 1, 2, or 3,
    • xb1 may be an integer from 0 to 5,
    • R301 may be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkenyl group unsubstituted or substituted with at least one R10a, a C2-C60 alkynyl group unsubstituted or substituted with at least one R10a, a C1-C60 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q301)(Q302)(Q303), —N(Q301)(Q302), —B(Q301)(Q302), —C(═O)(Q301), —S(═O)2(Q301), or —P(═O)(Q301)(Q302),
    • xb21 may be an integer from 1 to 5, and
    • Q301 to Q303 may each independently be as defined herein in connection with Q1.


In an embodiment, in Formula 301, when xb11 is 2 or more, two or more of Ar301(s) may be linked to each other via a single bond.


In embodiments, the host may include a compound represented by Formula 301-1, a compound represented by Formula 301-2, or any combination thereof:




embedded image


In Formulae 301-1 and 301-2,

    • ring A301 to ring A304 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • X301 may be O, S, N-[(L304)xb4-R304], C(R304)(R305), or Si(R304)(R305),
    • xb22 and xb23 may each independently be 0, 1, or 2,
    • L301, xb1, and R301 may each be as defined herein,
    • L302 to L304 may each independently be as defined herein in connection with L301,
    • xb2 to xb4 may each independently be as defined herein in connection with xb1, and
    • R302 to R305 and R311 to R314 may each independently be as defined herein in connection with R301.


In embodiments, the host may include an alkali earth metal complex, a post-transition metal complex, or any combination thereof. For example, the host may include a Be complex (e.g., Compound H55), a Mg complex, a Zn complex, or any combination thereof.


In an embodiment, the host may include one of Compounds H1 to H128, 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di-9-carbazolylbenzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


[Phosphorescent Dopant]


The phosphorescent dopant may include at least one transition metal as a central metal.


The phosphorescent dopant may include a monodentate ligand, a bidentate ligand, a tridentate ligand, a tetradentate ligand, a pentadentate ligand, a hexadentate ligand, or any combination thereof.


The phosphorescent dopant may be electrically neutral.


In embodiments, the phosphorescent dopant may include an organometallic compound represented by Formula 401:





M(L401)xc1(L402)xc2  [Formula 401]




embedded image


In Formulae 401 and 402,

    • M may be a transition metal (e.g., iridium (Ir), platinum (Pt), palladium (Pd), osmium (Os), titanium (Ti), gold (Au), hafnium (Hf), europium (Eu), terbium (Tb), rhodium (Rh), rhenium (Re), or thulium (Tm)),
    • L401 may be a ligand represented by Formula 402, and xc1 may be 1, 2, or 3, wherein when xc1 is 2 or more, two or more of L401(s) may be identical to or different from each other,
    • L402 may be an organic ligand, and xc2 may be 0, 1, 2, 3, or 4, wherein when xc2 is 2 or more, two or more of L402(s) may be identical to or different from each other,
    • X401 and X402 may each independently be nitrogen or carbon,
    • ring A401 and ring A402 may each independently be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group,
    • T401 may be a single bond, *—O—*′, *—S—*′, *—C(═O)—*′, *—N(Q411)-*′, *—C(Q411)(Q412)-*′, *—C(Q411)=C(Q412)-*′, *—C(Q411)=*′, or *=C═*′,
    • X403 and X404 may each independently be a chemical bond (e.g., a covalent bond or a coordinate bond), O, S, N(Q413), B(Q413), P(Q413), C(Q413)(Q414), or Si(Q413)(Q414),
    • Q411 to Q414 may each independently be as defined herein in connection with Q1,
    • R401 and R402 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group unsubstituted or substituted with at least one R10a, a C1-C20 alkoxy group unsubstituted or substituted with at least one R10a, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q401)(Q402)(Q403), —N(Q401)(Q402), —B(Q401)(Q402), —C(═O)(Q401), —S(═O)2(Q401), or —P(═O)(Q401)(Q402),
    • Q401 to Q403 may each independently be as defined herein in connection with Q1,
    • xc11 and xc12 may each independently be an integer from 0 to 10, and
    • * and *′ in Formula 402 may each indicate a binding site to M in Formula 401.


In an embodiment, in Formula 402, X401 may be nitrogen and X402 may be carbon, or X401 and X402 may each be nitrogen.


In embodiments, in Formula 401, when xc1 is 2 or more, two ring A401(s) in two or more of L401(s) may optionally be linked to each other via T402, which is a linking group, or two ring A402(s) may optionally be linked to each other via T403, which is a linking group (see Compounds PD1 to PD4 and PD7). T402 and T403 may each independently be as defined herein in connection with T401.


In Formula 401, L402 may be an organic ligand. For example, L402 may include a halogen group, a diketone group (e.g., an acetylacetonate group), a carboxylic acid group (e.g., a picolinate group), —C(═O), an isonitrile group, a —CN group, a phosphorus group (e.g., a phosphine group, a phosphite group, etc.), or any combination thereof.


The phosphorescent dopant may include, for example, one of Compounds PD1 to PD39, or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


[Fluorescent Dopant]


The fluorescent dopant may include an amine group-containing compound, a styryl group-containing compound, or any combination thereof.


In an embodiment, the fluorescent dopant may include a compound represented by Formula 501:




embedded image


In Formula 501,

    • Ar501, L501 to L503, R501, and R502 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • xd1 to xd3 may each independently be 0, 1, 2, or 3, and
    • xd4 may be 1, 2, 3, 4, 5, or 6.


In an embodiment, in Formula 501, Ar1 may be a condensed cyclic group (e.g., an anthracene group, a chrysene group, a pyrene group, etc.) in which three or more monocyclic groups are condensed with each other.


In embodiments, in Formula 501, xd4 may be 2.


In embodiments, the fluorescent dopant may include one of Compounds FD1 to FD36, DPVBi, DPAVBi, or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


[Quantum Dot]


The emission layer may include a quantum dot.


The term “quantum dot” as used herein may be a crystal of a semiconductor compound, and may include any suitable material capable of emitting light of various suitable emission wavelengths according to a size of the crystal.


A diameter of the quantum dot may be, for example, in a range of about 1 nm to about 10 nm.


The quantum dot may be synthesized by a wet chemical process, a metal organic chemical vapor deposition process, a molecular beam epitaxy process, and/or any suitable process similar thereto.


The wet chemical process is a method including mixing a precursor material together with an organic solvent and then growing a quantum dot particle crystal. When the crystal grows, the organic solvent naturally acts as a dispersant coordinated on the surface of the quantum dot crystal and controls the growth of the crystal so that the growth of quantum dot particles can be controlled through a process which costs lower, and may be more readily performed than vapor deposition methods, such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE),


The quantum dot may include a Group II-VI semiconductor compound, a Group III-V semiconductor compound, a Group III-VI semiconductor compound, a Group I-III-VI semiconductor compound, a Group IV-VI semiconductor compound, a Group IV element or compound, or a combination thereof.


Examples of a Group II-VI semiconductor compound may include: a binary compound, such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, and/or MgS; a ternary compound, such as CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, and/or MgZnS; a quaternary compound, such as CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, and/or HgZnSTe; or a combination thereof.


Examples of a Group III-V semiconductor compound may include: a binary compound, such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, and/or InSb; a ternary compound, such as GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNP, InAlP, InNAs, InNSb, InPAs, and/or InPSb; a quaternary compound, such as GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, and/or InAlPSb; or a combination thereof. In an embodiment, a Group III-V semiconductor compound may further include a Group II element. Examples of a Group III-V semiconductor compound further including a Group II element may include InZnP, InGaZnP, InAlZnP, etc.


Examples of a Group III-VI semiconductor compound may include: a binary compound, such as GaS, GaSe, Ga2Se3, GaTe, InS, InSe, In2S3, In2Se3, and/or InTe; a ternary compound, such as InGaS3, and/or InGaSe3; and a combination thereof.


Examples of a Group I-III-VI semiconductor compound may include: a ternary compound, such as AgInS, AgInS2, CuInS, CuInS2, CuGaO2, AgGaO2, and/or AgAlO2; or a combination thereof.


Examples of a Group IV-VI semiconductor compound may include: a binary compound, such as SnS, SnSe, SnTe, PbS, PbSe, and/or PbTe; a ternary compound, such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, and/or SnPbTe; a quaternary compound, such as SnPbSSe, SnPbSeTe, and/or SnPbSTe; or a combination thereof.


Examples of a Group IV element or compound may include: a single element material, such as Si or Ge; a binary compound, such as SiC and/or SiGe; or a combination thereof.


Each element included in a multi-element compound such as a binary compound, a ternary compound, or a quaternary compound may be present in a particle at a uniform concentration or at a non-uniform concentration.


In an embodiment, a quantum dot may have a single structure in which the concentration of each element in the quantum dot is uniform (e.g., substantially uniform), or a quantum dot may have a core-shell dual structure. For example, a material included in the core and a material included in the shell may be different from each other.


The shell of the quantum dot may serve as a protective layer that prevents or reduces chemical degeneration of the core to maintain semiconductor characteristics, and/or as may serve a charging layer that imparts electrophoretic characteristics to the quantum dot. The shell may be a single layer or a multi-layer. An interface between the core and the shell may have a concentration gradient in which the concentration of an element in the shell decreases along a direction toward the core.


Examples of a shell of a quantum dot may include a metal oxide, a metalloid oxide, a non-metal oxide, a semiconductor compound, and a combination thereof. Examples of a metal oxide, a metalloid, or a non-metal oxide may include: a binary compound, such as SiO2, Al2O3, TiO2, ZnO, MnO, Mn2O3, Mn3O4, CuO, FeO, Fe2O3, Fe3O4, CoO, Co3O4, and/or NiO; a ternary compound, such as MgAl2O4, CoFe2O4, NiFe2O4, and/or CoMn2O4; and a combination thereof.


Examples of a semiconductor compound may include as described herein: a Group II-VI semiconductor compound; a Group III-V semiconductor compound; a Group III-VI semiconductor compound; a Group I-III-VI semiconductor compound; a Group IV-VI semiconductor compound; and a combination thereof. For example, the semiconductor compound may include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, ZnTeS, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InGaP, InSb, AlAs, AlP, AlSb, or a combination thereof.


A full width at half maximum (FWHM) of an emission wavelength spectrum of the quantum dot may be equal to or less than about 45 nm. For example, a FWHM of an emission wavelength spectrum of the quantum dot may be equal to or less than about 40 nm. For example, a FWHM of an emission wavelength spectrum of the quantum dot may be equal to or less than about 30 nm. Within these ranges, color purity and/or color reproducibility may be increased. Since light emitted through a quantum dot may be emitted in all (e.g., substantially all) directions, a wide viewing angle may be improved.


The quantum dot may be in the form of a spherical particle, a pyramidal particle, a multi-arm particle, a cubic nanoparticle, a nanotube, a nanowire, a nanofiber, and/or a nanoplate particle.


Because the energy band gap may be adjusted by controlling the size of the quantum dot, light having various suitable wavelength bands may be obtained from a quantum dot emission layer. Accordingly, by using quantum dots of different sizes, a light-emitting device that emits light of various suitable wavelengths may be implemented. In an embodiment, the size of the quantum dot may be selected to emit red light, green light, and/or blue light. In an embodiment, the size of the quantum dot may be configured to emit white light by combination of light of various suitable colors.


[Electron Transport Region in Interlayer 130]


The electron transport region may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer including different materials, or a structure including multiple layers including different materials.


The electron transport region may include a buffer layer, a hole-blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.


In embodiments, the electron transport region may have an electron transport layer/electron injection layer structure, a hole-blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein the layers of each structure may be stacked from an emission layer in its respective stated order, but the structure of the electron transport region is not limited thereto.


The electron transport region (e.g., a buffer layer, a hole-blocking layer, an electron control layer, or an electron transport layer in the electron transport region) may include a metal-free compound including at least one π electron-deficient nitrogen-containing C1-C60 cyclic group.


In an embodiment, the electron transport region may include a compound represented by Formula 601:





[Ar601]xe11-[(L601)xe1-R601]xe21  [Formula 601]


In Formula 601,

    • Ar61 and L601 may each independently be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a,
    • xe11 may be 1, 2, or 3,
    • xe1 may be 0, 1, 2, 3, 4, or 5,
    • R601 may be a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a, —Si(Q601)(Q602)(Q603), —C(═O)(Q601), —S(═O)2(Q601), or —P(═O)(Q601)(Q602),
    • Q601 to Q603 may each independently be as defined herein in connection with Q1,
    • xe21 may be 1, 2, 3, 4, or 5, and
    • at least one of Ar601, L601, and R601 may each independently be a π electron-deficient nitrogen-containing C1-C60 cyclic group unsubstituted or substituted with at least one R10a.


In an embodiment, in Formula 601, when xe11 is 2 or more, two or more of Ar601 (s) may be linked to each other via a single bond.


In embodiments, in Formula 601, Ar601 may be a substituted or unsubstituted anthracene group.


In embodiments, the electron transport region may include a compound represented by Formula 601-1:




embedded image


In Formula 601-1,

    • X614 may be N or C(R614), X615 may be N or C(R615), X616 may be N or C(R616), and at least one of X614 to X616 may each be N,
    • L611 to L613 may each independently be as defined herein in connection with L601,
    • xe611 to xe613 may each independently be as defined herein in connection with xe1,
    • R611 to R613 may each independently be as defined herein in connection with R601, and
    • R614 to R616 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a C3-C60 carbocyclic group unsubstituted or substituted with at least one R10a, or a C1-C60 heterocyclic group unsubstituted or substituted with at least one R10a.


In embodiments, in Formulae 601 and 601-1, xe1 and xe611 to xe613 may each independently be 0, 1, or 2.


In embodiments, the electron transport region may include one of Compounds ET1 to ET45, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), Alq3, BAlq, TAZ, NTAZ, TSPO1, TPBI, or any combination thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the electron transport region may be in a range of about 160 Å to about 5,000 Å. For example, the thickness of the electron transport region may be in a range of about 100 Å to about 4,000 Å. When the electron transport region includes a buffer layer, a hole-blocking layer, an electron control layer, an electron transport layer, or any combination thereof, a thickness of the buffer layer, the hole-blocking layer, or the electron control layer may each independently be in a range of about 20 Å to about 1,000 Å, and a thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å. For example, the thickness of the buffer layer, the hole-blocking layer, or the electron control layer may each independently be in a range of about 30 Å to about 300 Å. For example, the thickness of the electron transport layer may be in a range of about 150 Å to about 500 Å. When the thicknesses of the buffer layer, the hole-blocking layer, the electron control layer, the electron transport layer, and/or the electron transport region are within these ranges, satisfactory electron transporting characteristics may be obtained without a substantial increase in driving voltage.


The electron transport region (e.g., an electron transport layer in the electron transport region) may further include, in addition to the materials as described above, a metal-containing material.


The metal-containing material may include an alkali metal complex, an alkaline earth metal complex, or any combination thereof. A metal ion of the alkali metal complex may be a Li ion, a Na ion, a K ion, a Rb ion, or a Cs ion, and a metal ion of the alkaline earth metal complex may be a Be ion, a Mg ion, a Ca ion, a Sr ion, or a Ba ion.


A ligand coordinated with the metal ion of the alkali metal complex or the alkaline earth-metal complex may each independently include a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenylbenzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof.


For example, the metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (LiQ) or Compound ET-D2:




embedded image


The electron transport region may include an electron injection layer that facilitates the injection of electrons from the second electrode 150. The electron injection layer may directly contact the second electrode 150.


The electron injection layer may have a structure consisting of a layer consisting of a single material, a structure consisting of a layer including different materials, or a structure including multiple layers including different materials.


The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof.


The alkali metal may include Li, Na, K, Rb, Cs, or any combination thereof. The alkaline earth metal may include Mg, Ca, Sr, Ba, or any combination thereof. The rare earth metal may include Sc, Y, Ce, Tb, Yb, Gd, or any combination thereof.


The alkali metal-containing compound, the alkaline earth metal-containing compound, and the rare earth metal-containing compound may be oxides, halides (e.g., fluorides, chlorides, bromides, iodides, etc.), or tellurides of the alkali metal, the alkaline earth metal, and the rare earth metal, or any combination thereof.


The alkali metal-containing compound may include: an alkali metal oxide, such as Li2O, Cs2O, or K2O; an alkali metal halide, such as LiF, NaF, CsF, KF, LiI, NaI, CsI, or KI; or any combination thereof. The alkaline earth metal-containing compound may include an alkaline earth metal compound, such as BaO, SrO, CaO, BaxSr1-xO (wherein x is a real number satisfying the condition of 0<x<1), or BaxCa1-xO (wherein x is a real number satisfying the condition of 0<x<1). The rare earth metal-containing compound may include YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, TbF3, YbI3, ScI3, TbI3, or any combination thereof. In embodiments, the rare earth metal-containing compound may include a lanthanide metal telluride. Examples of a lanthanide metal telluride may include LaTe, CeTe, PrTe, NdTe, PmTe, SmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, La2Te3, Ce2Te3, Pr2Te3, Nd2Te3, Pm2Te3, Sm2Te3, Eu2Te3, Gd2Te3, Tb2Te3, Dy2Te3, Ho2Te3, Er2Te3, Tm2Te3, Yb2Te3, Lu2Te3, and the like.


The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include: an alkali metal ion, an alkaline earth metal ion, or a rare earth metal ion; and a ligand bonded to the metal ion (for example, a hydroxyquinoline, a hydroxyisoquinoline, a hydroxybenzoquinoline, a hydroxyacridine, a hydroxyphenanthridine, a hydroxyphenyloxazole, a hydroxyphenylthiazole, a hydroxyphenyloxadiazole, a hydroxyphenylthiadiazole, a hydroxyphenylpyridine, a hydroxyphenyl benzimidazole, a hydroxyphenylbenzothiazole, a bipyridine, a phenanthroline, a cyclopentadiene, or any combination thereof).


In an embodiment, the electron injection layer may consist of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof, as described above. In embodiments, the electron injection layer may further include an organic material (e.g., a compound represented by Formula 601).


In an embodiment, the electron injection layer may consist of an alkali metal-containing compound (e.g., an alkali metal halide); or the electron injection layer may consist of an alkali metal-containing compound (e.g., an alkali metal halide), and an alkali metal, an alkaline earth metal, a rare earth metal, or any combination thereof. For example, the electron injection layer may be a KI:Yb co-deposited layer, an RbI:Yb co-deposited layer, or the like.


When the electron injection layer further includes an organic material, an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combination thereof may be uniformly or non-uniformly dispersed in a matrix including the organic material.


A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å. For example, the thickness of the electron injection layer may be in a range of about 3 Å to about 90 Å. When the thickness of the electron injection layer is within these ranges, satisfactory electron injection characteristics may be obtained without a substantial increase in driving voltage.


[Second Electrode 150]


The second electrode 150 may be arranged on the interlayer 130 as described above. The second electrode 150 may be a cathode, which is an electron injection electrode. A material for the second electrode 150 may be a material having a low work function, such as a metal, an alloy, an electrically conductive compound, or any combination thereof.


The second electrode 150 may include lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ytterbium (Yb), silver-ytterbium (Ag—Yb), ITO, IZO, or any combination thereof. The second electrode 150 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.


The second electrode 150 may have a single-layered structure or a multi-layered structure.


[Capping Layer]


The organic light-emitting device 10 may include a first capping layer outside the first electrode 110, and/or a second capping layer outside the second electrode 150. For example, the organic light-emitting device 10 may have a structure in which the first capping layer, the first electrode 110, the interlayer 130, and the second electrode 150 are stacked in this stated order, a structure in which the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are stacked in this stated order, or a structure in which the first capping layer, the first electrode 110, the interlayer 130, the second electrode 150, and the second capping layer are stacked in this stated order.


In an embodiment, light generated in an emission layer of the interlayer 130 of the organic light-emitting device 10 may be extracted toward the outside through the first electrode 110, which may be a semi-transmissive electrode or a transmissive electrode, and through the first capping layer. In an embodiment, light generated in an emission layer of the interlayer 130 of the organic light-emitting device 10 may be extracted toward the outside through the second electrode 150, which may be a semi-transmissive electrode or a transmissive electrode, and through the second capping layer.


The first capping layer and the second capping layer may each increase external luminescence efficiency according to the principle of constructive interference. Accordingly, the light extraction efficiency of the organic light-emitting device 10 may be increased, so that the luminescence efficiency of the organic light-emitting device 10 may be improved.


The first capping layer and the second capping layer may each include a material having a refractive index greater than or equal to about 1.6 (with respect to a wavelength of about 589 nm).


The first capping layer and the second capping layer may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or an organic-inorganic composite capping layer including an organic material and an inorganic material.


At least one of the first capping layer and the second capping layer may each independently include a carbocyclic compound, a heterocyclic compound, an amine group-containing compound, a porphine derivative, a phthalocyanine derivative, a naphthalocyanine derivative, an alkali metal complex, an alkaline earth metal complex, or any combination thereof. The carbocyclic compound, the heterocyclic compound, and the amine group-containing compound may optionally be substituted with a substituent including O, N, S, Se, Si, F, Cl, Br, I, or any combination thereof.


In an embodiment, at least one of the first capping layer and the second capping layer may each independently include an amine group-containing compound.


In embodiments, at least one of the first capping layer and the second capping layer may each independently include a compound represented by Formula 201, a compound represented by Formula 202, or any combination thereof.


In embodiments, at least one of the first capping layer and the second capping layer may each independently include one of Compounds HT28 to HT33, one of Compounds CP1 to CP6, β-NPB, or any combination thereof:




embedded image


[Electronic Apparatus]


The organic light-emitting device may be included in various electronic apparatuses. For example, an electronic apparatus including the organic light-emitting device may be a light-emitting apparatus, an authentication apparatus, or the like.


The electronic apparatus (e.g., a light-emitting apparatus) may further include, in addition to the organic light-emitting device, a color filter, a color conversion layer, or a color filter and a color conversion layer. The color filter and/or the color conversion layer may be arranged in at least one direction in which light emitted from the organic light-emitting device travels. In embodiments, the light emitted from the organic light-emitting device may be blue light or white light. Details on the organic light-emitting device may be as described above. In an embodiment, the color conversion layer may include a quantum dot. The quantum dot may be, for example, a quantum dot as described herein.


The electronic apparatus may include a first substrate. The first substrate may include subpixels, the color filter may include color filter areas respectively corresponding to the subpixels, and the color conversion layer may include color conversion areas respectively corresponding to the subpixels.


A pixel-defining film may be arranged between the subpixels to define each subpixel.


The color filter may further include color filter areas and light-shielding patterns arranged between the color filter areas, and the color conversion layer may further include color conversion areas and light-shielding patterns arranged between the color conversion areas.


The color filter areas (or the color conversion areas) may include: a first area emitting first-color light; a second area emitting second-color light; and/or a third area emitting third-color light, wherein the first-color light, the second-color light, and/or the third-color light may have different maximum emission wavelengths from one another. For example, the first-color light may be red light, the second-color light may be green light, and the third-color light may be blue light. For example, the color filter areas (or the color conversion areas) may include quantum dots. For example, the first area may include a red quantum dot, the second area may include a green quantum dot, and the third area may not include a quantum dot. Details on the quantum dot may be as described herein. The first area, the second area, and/or the third area may each further include a scatterer.


In an embodiment, the organic light-emitting device may emit first light, the first area may absorb the first light to emit first-first-color light, the second area may absorb the first light to emit second-first-color light, and the third area may absorb the first light to emit third-first-color light. In this regard, the first-first-color light, the second-first-color light, and the third-first-color light may have different maximum emission wavelengths from one another. For example, the first light may be blue light, the first-first-color light may be red light, the second-first-color light may be green light, and the third-first-color light may be blue light.


The electronic apparatus may further include a thin-film transistor, in addition to the organic light-emitting device as described above. The thin-film transistor may include a source electrode, a drain electrode, and an active layer, wherein one of the source electrode and the drain electrode may be electrically connected to one of the first electrode and the second electrode of the organic light-emitting device.


The thin-film transistor may further include a gate electrode, a gate insulating film, and the like.


The active layer may include crystalline silicon, amorphous silicon, an organic semiconductor, an oxide semiconductor, and the like.


The electronic apparatus may further include a sealing portion that seals the organic light-emitting device. The sealing portion may be arranged between the color filter and/or the color conversion layer, and the organic light-emitting device. The sealing portion may allow light from the organic light-emitting device to be extracted to the outside, and may simultaneously prevent ambient air and moisture from penetrating into the organic light-emitting device. The sealing portion may be a sealing substrate including a transparent glass substrate or a plastic substrate. The sealing portion may be a thin-film encapsulation layer including an organic layer and/or an inorganic layer. When the sealing portion is a thin-film encapsulation layer, the electronic apparatus may be flexible.


Various functional layers may be further included on the sealing portion, in addition to the color filter and/or the color conversion layer, according to the use of the electronic apparatus. Examples of a functional layer may include a touch screen layer, a polarizing layer, and the like. The touch screen layer may be a pressure-sensitive touch screen layer, a capacitive touch screen layer, or an infrared touch screen layer. The authentication apparatus may be, for example, a biometric authentication apparatus that authenticates an individual by using biometric information of a living body (e.g., fingertips, pupils, etc.).


The authentication apparatus may further include, in addition to the organic light-emitting device as described above, a biometric information collector.


The electronic apparatus may be applied to various displays, light sources, lighting, personal computers (e.g., a mobile personal computer), mobile phones, digital cameras, electronic organizers, electronic dictionaries, electronic game machines, medical instruments (e.g., electronic thermometers, sphygmomanometers, blood glucose meters, pulse measurement devices, pulse wave measurement devices, electrocardiogram displays, ultrasonic diagnostic devices, or endoscope displays), fish finders, various measuring instruments, meters (e.g., meters for a vehicle, an aircraft, and a vessel), projectors, and the like.


[Electronic Device]


The organic light-emitting device may be included in various electronic devices.


For example, the electronic device including the organic light-emitting device may be a flat panel display, a curved display, a computer monitor, a medical monitor, a television, a billboard, an indoor light, an outdoor light, a signal light, a head-up display, a fully transparent display, a partially transparent display, a flexible display, a rollable display, a foldable display, a stretchable display, a laser printer, a telephone, a mobile phone, a tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a microdisplay, a three-dimensional (3D) display, a virtual reality display, an augmented reality display, a vehicle, a video wall including multiple displays tiled together, a theater screen, a stadium screen, a phototherapy device, or a signboard.


The organic light-emitting device may have excellent effects in terms of luminescence efficiency and long lifespan, and thus, the electronic device including the organic light-emitting device may have characteristics such as high luminance, high resolution, and low power consumption.


Description of FIGS. 2 and 3


FIG. 2 is a schematic cross-sectional view of an electronic apparatus according to an embodiment.


The electronic apparatus (for example, a light-emitting apparatus) of FIG. 2 may include a substrate 100, a thin-film transistor (TFT), an organic light-emitting device, and an encapsulation portion 300 that seals the organic light-emitting device.


The substrate 100 may be a flexible substrate, a glass substrate, or a metal substrate. A buffer layer 210 may be arranged on the substrate 100. The buffer layer 210 may prevent penetration of impurities through the substrate 100, and may provide a flat surface on the substrate 100.


A TFT may be arranged on the buffer layer 210. The TFT may include an active layer 220, a gate electrode 240, a source electrode 260, and a drain electrode 270.


The active layer 220 may include an inorganic semiconductor such as silicon or polysilicon, an organic semiconductor, or an oxide semiconductor, and may include a source region, a drain region, and a channel region.


A gate insulating film 230 for insulating the active layer 220 from the gate electrode 240 may be arranged on the active layer 220, and the gate electrode 240 may be arranged on the gate insulating film 230.


An interlayer insulating film 250 may be arranged on the gate electrode 240. The interlayer insulating film 250 may be arranged between the gate electrode 240 and the source electrode 260 to insulate the gate electrode 240 from the source electrode 260 and between the gate electrode 240 and the drain electrode 270 to insulate the gate electrode 240 from the drain electrode 270.


The source electrode 260 and the drain electrode 270 may be arranged on the interlayer insulating film 250. The interlayer insulating film 250 and the gate insulating film 230 may be formed to expose a source region and a drain region of the active layer 220, and the source electrode 260 and the drain electrode 270 may respectively contact the exposed portions of the source region and the drain region of the active layer 220.


The TFT may be electrically connected to an organic light-emitting device to drive the organic light-emitting device, and may be covered and protected by a passivation layer 280. The passivation layer 280 may include an inorganic insulating film, an organic insulating film, or any combination thereof. An organic light-emitting device may be provided on the passivation layer 280. The organic light-emitting device may include a first electrode 110, an interlayer 130, and a second electrode 150.


The first electrode 110 may be arranged on the passivation layer 280. The passivation layer 280 may not completely cover the drain electrode 270 and may expose a portion of the drain electrode 270. The first electrode 110 may be electrically connected to the exposed portion of the drain electrode 270.


A pixel-defining film 290 including an insulating material may be arranged on the first electrode 110. The pixel-defining film 290 may expose a portion of the first electrode 110, and an interlayer 130 may be formed in the exposed portion of the first electrode 110. The pixel-defining film 290 may be a polyimide organic film or polyacrylic organic film. Although not shown in FIG. 2, at least some layers of the interlayer 130 may extend beyond the upper portion of the pixel-defining film 290 to be provided in the form of a common layer.


The second electrode 150 may be arranged on the interlayer 130, and a capping layer 170 may be further included on the second electrode 150. The capping layer 170 may be formed to cover the second electrode 150.


The encapsulation portion 300 may be arranged on the capping layer 170. The encapsulation portion 300 may be arranged on an organic light-emitting device to protect the organic light-emitting device from moisture and/or oxygen. The encapsulation portion 300 may include: an inorganic film including silicon nitride (SiNx), silicon oxide (SiOx), indium tin oxide, indium zinc oxide, or any combination thereof; an organic film including polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, polyarylate, hexamethyldisiloxane, an acrylic resin (e.g., polymethyl methacrylate, polyacrylic acid, etc.), an epoxy-based resin (e.g., aliphatic glycidyl ether (AGE), etc.), or any combination thereof; or a combination of the inorganic film and the organic film.



FIG. 3 is a schematic cross-sectional view of an electronic apparatus according to another embodiment.


The electronic apparatus (for example, a light-emitting apparatus) of FIG. 3 may differ from the electronic apparatus of FIG. 2, at least in that a light-shielding pattern 500 and a functional region 400 are further included on the encapsulation portion 300. The functional region 400 may be a color filter area, a color conversion area, or a combination of the color filter area and the color conversion area. In an embodiment, the organic light-emitting device included in the electronic apparatus of FIG. 3 may be a tandem light-emitting device.


Description of FIG. 4


FIG. 4 is a schematic perspective view of an electronic device 1 including an organic light-emitting device according to an embodiment.


The electronic device 1, which may be an apparatus that displays a moving image or a still image, may be not only a portable electronic device, such as a mobile phone, a smartphone, a tablet personal computer (PC), a mobile communication terminal, an electronic notebook, an electronic book, a portable multimedia player (PMP), a navigation device, or an ultra-mobile PC (UMPC), but may also be various products, such as a television, a laptop computer, a monitor, a billboard, or an internet of things (IOT) device. The electronic device 1 may be a product as described above, or may be a part thereof.


In an embodiment, the electronic device 1 may be a wearable device, such as a smart watch, a watch phone, a glasses-type display, or a head mounted display (HMD), or may be a part of a wearable device. However, embodiments are not limited thereto.


For example, the electronic device 1 may be an instrument panel of a vehicle, a center information display (CID) arranged on a center fascia or a dashboard of a vehicle, a room mirror display that replaces a side mirror of a vehicle, an entertainment display for a rear seat of a vehicle or a display arranged on a rear surface of a front seat, a head up display (HUD) installed at a front of a vehicle or projected on a front window glass, or a computer generated hologram augmented reality head up display (CGH AR HUD). For convenience of explanation, FIG. 4 shows an embodiment in which the electronic device 1 is a smartphone.


The electronic device 1 may include a display area DA and a non-display area NDA outside the display area DA. A display apparatus may implement an image through a two-dimensional array of pixels that are arranged in the display area DA.


The non-display area NDA is an area in which an image is not displayed, and may surround the display area DA. A driver for providing electrical signals or power to display elements arranged in the display area DA may be arranged in the non-display area NDA. A pad, which is an area to which an electronic element or a printed circuit board may be electrically connected, may be arranged in the non-display area NDA.


The electronic device 1 may have different lengths in an x-axis direction and in a y-axis direction. In an embodiment as shown in FIG. 4, the length in the x-axis direction may be shorter than the length in the y-axis direction. In embodiments, the length in the x-axis direction may be the same as the length in the y-axis direction. In other embodiments, the length in the x-axis direction may be longer than the length in the y-axis direction.


Description of FIGS. 5 and 6A to 6C


FIG. 5 is a schematic perspective view of the exterior of a vehicle 1000 as an electronic device including an organic light-emitting device according to an embodiment. FIGS. 6A to 6C are each a schematic diagram of an interior of a vehicle 1000 according to embodiments.


Referring to FIGS. 5, 6A, 6B, and 6C, the vehicle 1000 may refer to various apparatuses for moving a subject to be transported, such as a person, an object, or an animal, from a departure point to a destination. Examples of a vehicle 1000 may include a vehicle traveling on a road or a track, a vessel moving over a sea or a river, an airplane flying in the sky by using the action of air, and the like.


The vehicle 1000 may travel on a road or a track. The vehicle 1000 may move in a given direction according to the rotation of at least one wheel. Examples of the vehicle 1000 may include a three-wheeled or four-wheeled vehicle, a construction machine, a two-wheeled vehicle, a prime mover apparatus, a bicycle, and a train running on a track.


The vehicle 1000 may include a body having an interior and an exterior, and a chassis that is a portion excluding the body in which mechanical apparatuses necessary for driving are installed. The exterior of the body may include a front panel, a bonnet, a roof panel, a rear panel, a trunk, and a pillar provided at a boundary between doors. The chassis of the vehicle 1000 may include a power generating apparatus, a power transmitting apparatus, a driving apparatus, a steering apparatus, a braking apparatus, a suspension apparatus, a transmission apparatus, a fuel apparatus, front and rear wheels, left and right wheels, and the like.


The vehicle 1000 may include a side window glass 1100, a front window glass 1200, a side mirror 1300, a cluster 1400, a center fascia 1500, a passenger seat dashboard 1600, and a display apparatus 2.


The side window glass 1100 and the front window glass 1200 may be partitioned by a pillar arranged between the side window glass 1100 and the front window glass 1200.


The side window glass 1100 may be installed on a side of the vehicle 1000. In an embodiment, the side window glass 1100 may be installed in a door of the vehicle 1000. Multiple side window glasses 1100 may be provided and may face each other. In an embodiment, the side window glass 1100 may include a first side window glass 1110 and a second side window glass 1120. In an embodiment, the first side window glass 1110 may be arranged adjacent to the cluster 1400, and the second side window glass 1120 may be arranged adjacent to the passenger seat dashboard 1600.


In an embodiment, the side window glasses 1100 may be apart from each other in an x-direction or in a −x-direction. For example, the first side window glass 1110 and the second side window glass 1120 may be apart from each other in the x direction or in the −x direction. For example, an imaginary straight line L connecting the side window glasses 1100 to each other may extend in the x direction or in the −x direction. For example, the imaginary straight line L connecting the first side window glass 1110 and the second side window glass 1120 to each other may extend in the x direction or in the −x direction.


The front window glass 1200 may be installed on the front of the vehicle 1000. The front window glass 1200 may be arranged between the side window glasses 1100 facing each other.


The side mirror 1300 may provide a view of the rear of the vehicle 1000. The side mirror 1300 may be installed on the exterior of the body. In an embodiment, multiple side mirrors 1300 may be provided. One of the side mirrors 1300 may be arranged outside the first side window glass 1110. Another one of the side mirrors 1300 may be arranged outside the second side window glass 1120.


The cluster 1400 may be arranged in front of the steering wheel. The cluster 1400 may include a tachometer, a speedometer, a coolant thermometer, a fuel gauge, a turn signal indicator, a high beam indicator, a warning light, a seat belt warning light, an odometer, a hodometer, an automatic transmission selection lever indicator, a door open warning light, an engine oil warning light, and/or a low fuel warning light.


The center fascia 1500 may include a control panel on which buttons for adjusting an audio apparatus, an air conditioning apparatus, and a seat heater are arranged. The center fascia 1500 may be arranged on a side of the cluster 1400.


The passenger seat dashboard 1600 may be spaced apart from the cluster 1400 with the center fascia 1500 therebetween. In an embodiment, the cluster 1400 may be arranged to correspond to a driver seat (not shown), and the passenger seat dashboard 1600 may be arranged to correspond to a passenger seat (not shown). In an embodiment, the cluster 1400 may be adjacent to the first side window glass 1110, and the passenger seat dashboard 1600 may be adjacent to the second side window glass 1120.


In an embodiment, the display apparatus 2 may include a display panel 3, and the display panel 3 may display an image. The display apparatus 2 may be arranged inside the vehicle 1000. In an embodiment, the display apparatus 2 may be arranged between the side window glasses 1100 facing each other. The display apparatus 2 may be arranged in at least one of the cluster 1400, the center fascia 1500, and the passenger seat dashboard 1600.


The display apparatus 2 may include an organic light-emitting display apparatus, an inorganic electroluminescent (EL) display apparatus, a quantum dot display apparatus, and the like. Hereinafter, an organic light-emitting display apparatus including the organic light-emitting device according to an embodiment will be described as an example of the display apparatus 2. However, various types of display apparatuses as described herein may be used as embodiments.


Referring to FIG. 6A, the display apparatus 2 may be arranged in the center fascia 1500. In an embodiment, the display apparatus 2 may display navigation information. In an embodiment, the display apparatus 2 may display information regarding audio settings, video settings, or vehicle settings.


Referring to FIG. 6B, the display apparatus 2 may be arranged in the cluster 1400. The cluster 1400 may display driving information and the like through the display apparatus 2. For example, the cluster 1400 may be digitally implement driving information. The cluster 1400 may digitally display vehicle information and driving information as images. For example, a needle and a gauge of a tachometer and various warning lights or icons may be displayed by digital signals.


Referring to FIG. 6C, the display apparatus 2 may be arranged in the passenger seat dashboard 1600. The display apparatus 2 may be embedded in the passenger seat dashboard 1600 or may be arranged on the passenger seat dashboard 1600. In an embodiment, the display apparatus 2 arranged on the passenger seat dashboard 1600 may display an image related to information displayed on the cluster 1400 and/or information displayed on the center fascia 1500. In embodiments, the display apparatus 2 arranged on the passenger seat dashboard 1600 may display information that is different from the information displayed on the cluster 1400 and/or the information displayed on the center fascia 1500.


[Manufacturing Method]


Respective layers included in the hole transport region, the emission layer, and respective layers included in the electron transport region may be formed in a selected region by using one or more suitable methods, such as vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, and laser-induced thermal imaging (LITI).


When respective layers included in the hole transport region, the emission layer, and respective layers included in the electron transport region are formed by vacuum deposition, the deposition may be performed at a deposition temperature in a range of about 100° C. to about 500° C., at a vacuum degree in a range of about 10−8 torr to about 10−3 torr, and at a deposition rate in a range of about 0.01 Å/sec to about 100 Å/sec, depending on a material to be included in a layer to be formed and the structure of a layer to be formed.


Definitions of Terms

The term “C3-C60 carbocyclic group” as used herein may be a cyclic group consisting of carbon atoms as the only ring-forming atoms and having 3 to 60 carbon atoms, and the term “C1-C60 heterocyclic group” as used herein may be a cyclic group that has 1 to 60 carbon atoms and further has, in addition to carbon atoms, at least one heteroatom as a ring-forming atom. The C3-C60 carbocyclic group and the C1-C60 heterocyclic group may each be a monocyclic group consisting of one ring or a polycyclic group in which two or more rings are condensed with each other. For example, the C1-C60 heterocyclic group may have 3 to 61 ring-forming atoms.


The term “cyclic group” as used herein may be a C3-C60 carbocyclic group or a C1-C60 heterocyclic group.


The term “π electron-rich C3-C60 cyclic group” as used herein may be a cyclic group that has 3 to 60 carbon atoms and may not include *—N═*′ as a ring-forming moiety, and the term “π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein may be a heterocyclic group that has 1 to 60 carbon atoms and may include *—N═*′ as a ring-forming moiety.


In embodiments,

    • a C3-C60 carbocyclic group may be a T1 group or a group in which two or more T1 groups are condensed with each other (e.g., a cyclopentadiene group, an adamantane group, a norbornane group, a benzene group, a pentalene group, a naphthalene group, an azulene group, an indacene group, an acenaphthylene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a pentaphene group, a heptalene group, a naphthacene group, a picene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, an indenophenanthrene group, or an indenoanthracene group),
    • a C1-C60 heterocyclic group may be a T2 group, a group in which two or more T2 groups are condensed with each other, or a group in which at least one T2 group and at least one T1 group are condensed with each other (e.g., a pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, etc.),
    • a π electron-rich C3-C60 cyclic group may be a T1 group, a group in which two or more T1 groups are condensed with each other, a T3 group, a group in which two or more T3 groups are condensed with each other, or a group in which at least one T3 group and at least one T1 group are condensed with each other (e.g., a C3-C60 carbocyclic group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, a thiophene group, a furan group, an indole group, a benzoindole group, a naphthoindole group, an isoindole group, a benzoisoindole group, a naphthoisoindole group, a benzosilole group, a benzothiophene group, a benzofuran group, a carbazole group, a dibenzosilole group, a dibenzothiophene group, a dibenzofuran group, an indenocarbazole group, an indolocarbazole group, a benzofurocarbazole group, a benzothienocarbazole group, a benzosilolocarbazole group, a benzoindolocarbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, a benzonaphthosilole group, a benzofurodibenzofuran group, a benzofurodibenzothiophene group, a benzothienodibenzothiophene group, etc.), and
    • a π electron-deficient nitrogen-containing C1-C60 cyclic group may be a T4 group, a group in which two or more T4 groups are condensed with each other, a group in which at least one T4 group and at least one T1 group are condensed with each other, a group in which at least one T4 group and at least one T3 group are condensed with each other, or a group in which at least one T4 group, at least one T1 group, and at least one T3 group are condensed with each other (e.g., a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a benzopyrazole group, a benzimidazole group, a benzoxazole group, a benzoisoxazole group, a benzothiazole group, a benzoisothiazole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a phenanthroline group, a cinnoline group, a phthalazine group, a naphthyridine group, an imidazopyridine group, an imidazopyrimidine group, an imidazotriazine group, an imidazopyrazine group, an imidazopyridazine group, an azacarbazole group, an azafluorene group, an azadibenzosilole group, an azadibenzothiophene group, an azadibenzofuran group, etc.),
    • wherein the T1 group may be a cyclopropane group, a cyclobutane group, a cyclopentane group, a cyclohexane group, a cycloheptane group, a cyclooctane group, a cyclobutene group, a cyclopentene group, a cyclopentadiene group, a cyclohexene group, a cyclohexadiene group, a cycloheptene group, an adamantane group, a norbornane (or a bicyclo[2.2.1]heptane) group, a norbornene group, a bicyclo[1.1.1]pentane group, a bicyclo[2.1.1]hexane group, a bicyclo[2.2.2]octane group, or a benzene group,
    • the T2 group may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a tetrazine group, a pyrrolidine group, an imidazolidine group, a dihydropyrrole group, a piperidine group, a tetrahydropyridine group, a dihydropyridine group, a hexahydropyrimidine group, a tetrahydropyrimidine group, a dihydropyrimidine group, a piperazine group, a tetrahydropyrazine group, a dihydropyrazine group, a tetrahydropyridazine group, or a dihydropyridazine group,
    • the T3 group may be a furan group, a thiophene group, a 1H-pyrrole group, a silole group, or a borole group, and
    • the T4 group may be a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilole group, an azaborole group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, or a tetrazine group.


The term “cyclic group,” “C3-C60 carbocyclic group,” “C1-C60 heterocyclic group,” “π electron-rich C3-C60 cyclic group,” or “π electron-deficient nitrogen-containing C1-C60 cyclic group” as used herein may each be a group condensed with any cyclic group, a monovalent group, or a polyvalent group (e.g., a divalent group, a trivalent group, a tetravalent group, etc.), depending on the structure of a formula in connection with which the terms are used. For example, a “benzene group” may be a benzo group, a phenyl group, a phenylene group, or the like, which may be readily understood by one of ordinary skill in the art according to the structure of a formula including the “benzene group.”


Examples of a monovalent C3-C60 carbocyclic group or a monovalent C1-C60 heterocyclic group may include a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group. Examples of a divalent C3-C60 carbocyclic group or a divalent C1-C60 heterocyclic group may include a C3-C10 cycloalkylene group, a C1-C10 heterocycloalkylene group, a C3-C10 cycloalkenylene group, a C1-C10 heterocycloalkenylene group, a C6-C60 arylene group, a C1-C60 heteroarylene group, a divalent non-aromatic condensed polycyclic group, and a divalent non-aromatic condensed heteropolycyclic group.


The term “C1-C60 alkyl group” as used herein may be a linear or branched aliphatic hydrocarbon monovalent group that has 1 to 60 carbon atoms, and examples thereof may include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, a tert-pentyl group, a neopentyl group, an isopentyl group, a sec-pentyl group, a 3-pentyl group, a sec-isopentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, and the like. The term “C1-C60 alkylene group” as used herein may be a divalent group having a same structure as the C1-C60 alkyl group.


The term “C2-C60 alkenyl group” as used herein may be a monovalent hydrocarbon group having at least one carbon-carbon double bond in the middle or at a terminus of a C2-C60 alkyl group, and examples thereof may include an ethenyl group, a propenyl group, a butenyl group, and the like. The term “C2-C60 alkenylene group” as used herein may be a divalent group having a same structure as the C2-C60 alkenyl group.


The term “C2-C60 alkynyl group” as used herein may be a monovalent hydrocarbon group having at least one carbon-carbon triple bond in the middle or at a terminus of a C2-C60 alkyl group, and examples thereof may include an ethynyl group, a propynyl group, and the like. The term “C2-C60 alkynylene group” as used herein may be a divalent group having a same structure as the C2-C60 alkynyl group.


The term “C1-C60 alkoxy group” as used herein may be a monovalent group represented by —O(A101) (wherein A101 may be C1-C60 alkyl group), and examples thereof may include a methoxy group, an ethoxy group, an isopropyloxy group, and the like.


The term “C3-C10 cycloalkyl group” as used herein may be a monovalent saturated hydrocarbon cyclic group having 3 to 10 carbon atoms, and examples thereof may include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group (or a bicyclo[2.2.1]heptyl group), a bicyclo[1.1.1]pentyl group, a bicyclo[2.1.1]hexyl group, a bicyclo[2.2.2]octyl group, and the like. The term “C3-C1 cycloalkylene group” as used herein may be a divalent group having a same structure as the C3-C1 cycloalkyl group.


The term “C1-C10 heterocycloalkyl group” as used herein may be a monovalent cyclic group that has 1 to 10 carbon atoms and further includes, in addition to carbon atoms, at least one heteroatom as a ring-forming atom, and examples thereof may include a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, a tetrahydrothiophenyl group, and the like. The term “C1-C10 heterocycloalkylene group” as used herein may be a divalent group having a same structure as the C1-C10 heterocycloalkyl group.


The term “C3-C10 cycloalkenyl group” as used herein may be a monovalent cyclic group that has 3 to 10 carbon atoms and at least one carbon-carbon double bond in the cyclic structure thereof and no aromaticity, and examples thereof may include a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, and the like. The term “C3-C10 cycloalkenylene group” as used herein may be a divalent group having a same structure as the C3-C10 cycloalkenyl group.


The term “C1-C10 heterocycloalkenyl group” as used herein may be a monovalent cyclic group that has 1 to 10 carbon atoms, at least one heteroatom as a ring-forming atom in addition to carbon atoms, and at least one carbon-carbon double bond in the cyclic structure thereof. Examples of a C1-C1a heterocycloalkenyl group may include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, a 2,3-dihydrothiophenyl group, and the like. The term “C1-C10 heterocycloalkenylene group” as used herein may be a divalent group having a same structure as the C1-C10 heterocycloalkenyl group.


The term “C6-C60 aryl group” as used herein may be a monovalent group having a carbocyclic aromatic system of 6 to 60 carbon atoms, and the term “C6-C60 arylene group” as used herein may be a divalent group having a carbocyclic aromatic system of 6 to 60 carbon atoms. Examples of a C6-C60 aryl group may include a phenyl group, a pentalenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a heptalenyl group, a naphthacenyl group, a picenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, and the like. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the two or more rings may be condensed with each other.


The term “C1-C60 heteroaryl group” as used herein may be a monovalent group having a heterocyclic aromatic system of 1 to 60 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom as a ring-forming atom, and the term “C1-C60 heteroarylene group” as used herein may be a divalent group having a heterocyclic aromatic system of 1 to 60 carbon atoms, further including, in addition to carbon atoms, at least one heteroatom as a ring-forming atom. Examples of a C1-C60 heteroaryl group may include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a benzoisoquinolinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthrolinyl group, a phthalazinyl group, a naphthyridinyl group, and the like. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each include two or more rings, the two or more rings may be condensed with each other.


The term “monovalent non-aromatic condensed polycyclic group” as used herein may be a monovalent group that has two or more rings condensed with each other, only carbon atoms (e.g., 8 to 60 carbon atoms) as ring-forming atoms, and no aromaticity in its entire molecular structure. Examples of a monovalent non-aromatic condensed polycyclic group may include an indenyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, an indenophenanthrenyl group, an indenoanthracenyl group, and the like. The term “divalent non-aromatic condensed polycyclic group” as used herein may be a divalent group having a same structure as the monovalent non-aromatic condensed polycyclic group.


The term “monovalent non-aromatic condensed heteropolycyclic group” as used herein may be a monovalent group that has two or more rings condensed with each other, at least one heteroatom other than carbon atoms (e.g., 1 to 60 carbon atoms) as a ring-forming atom, and no aromaticity in its entire molecular structure. Examples of a monovalent non-aromatic condensed heteropolycyclic group may include a pyrrolyl group, a thiophenyl group, a furanyl group, an indolyl group, a benzoindolyl group, a naphthoindolyl group, an isoindolyl group, a benzoisoindolyl group, a naphthoisoindolyl group, a benzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a dibenzosilolyl group, a dibenzothiophenyl group, a dibenzofuranyl group, an azacarbazolyl group, an azafluorenyl group, an azadibenzosilolyl group, an azadibenzothiophenyl group, an azadibenzofuranyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a benzopyrazolyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a benzoxadiazolyl group, a benzothiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an imidazotriazinyl group, an imidazopyrazinyl group, an imidazopyridazinyl group, an indeno carbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, a benzosilolocarbazolyl group, a benzoindolocarbazolyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a benzonaphtho silolyl group, a benzofurodibenzofuranyl group, a benzofurodibenzothiophenyl group, a benzothienodibenzothiophenyl group, and the like. The term “divalent non-aromatic condensed heteropolycyclic group” as used herein may be a divalent group having a same structure as the monovalent non-aromatic condensed heteropolycyclic group.


The term “C6-C60 aryloxy group” as used herein may be a group represented by —O(A102) (wherein A102 may be a C6-C60 aryl group), and the term “C6-C60 arylthio group” as used herein may be a group represented by —S(A103) (wherein A103 may be a C6-C60 aryl group).


The term “C7-C60 arylalkyl group” as used herein may be a group represented by -(A104)(A105) (wherein A104 may be a C1-C54 alkylene group, and A105 may be a C6-C59 aryl group), and the term “C2-C60 heteroarylalkyl group” as used herein may be a group represented by -(A106)(A107) (wherein A106 may be a C1-C59 alkylene group, and A107 may be a C1-C59 heteroaryl group).


In the specification, the group “R10a” may be:

    • deuterium (-D), —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, or a nitro group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, a C2-C60 heteroarylalkyl group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), —P(═O)(Q11)(Q12), or any combination thereof;
    • a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, or a C2-C60 heteroarylalkyl group, each unsubstituted or substituted with deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C7-C60 arylalkyl group, a C2-C60 heteroarylalkyl group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), —P(═O)(Q21)(Q22), or any combination thereof; or
    • —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), or —P(═O)(Q31)(Q32).


In the specification, Q1 to Q3, Q11 to Q13, Q21 to Q23 and Q31 to Q33 may each independently be: hydrogen; deuterium; —F; —Cl; —Br; —I; a hydroxyl group; a cyano group; a nitro group; a C1-C60 alkyl group; a C2-C60 alkenyl group; a C2-C60 alkynyl group; a C1-C60 alkoxy group; or a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a C7-C60 arylalkyl group, or a C2-C60 heteroarylalkyl group, each unsubstituted or substituted with deuterium, —F, a cyano group, a C1-C60 alkyl group, a C1-C60 alkoxy group, a C3-C60 carbocyclic group, a C1-C60 heterocyclic group, a phenyl group, a biphenyl group, or any combination thereof.


The term “heteroatom” as used herein may be any atom other than a carbon atom or a hydrogen atom. Examples of a heteroatom may include O, S, N, P, Si, B, Ge, Se, or any combination thereof.


The term “third-row transition metal” as used herein may be hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), or the like.


The term “Ph” as used herein refers to a phenyl group, the term “Me” as used herein refers to a methyl group, the term “Et” as used herein refers to an ethyl group, the terms “tert-Bu” or “But” as used herein each refer to a tert-butyl group, and the term “OMe” as used herein refers to a methoxy group.


The term “biphenyl group” as used herein may be a “phenyl group substituted with a phenyl group.” For example, a “biphenyl group” may be a substituted phenyl group having a C6-C60 aryl group as a substituent.


The term “terphenyl group” as used herein may be a “phenyl group substituted with a biphenyl group.” For example, a “terphenyl group” may be a substituted phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.


The symbols * and *′ as used herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula or moiety.


In the specification, the terms “x-axis,” “y-axis,” and “z-axis” are not limited to three axes in an orthogonal coordinate system (for example, a Cartesian coordinate system), and may be interpreted in a broader sense than the aforementioned three axes in an orthogonal coordinate system. For example, the x-axis, y-axis, and z-axis may be axes that are orthogonal to each other, or the x-axis, y-axis, and z-axis may be axes that are in different directions that are not orthogonal to each other.


Hereinafter, compounds according to embodiments and organic light-emitting devices according to embodiments will be described in detail with reference to the Synthesis Examples and the Examples. The wording “B was used instead of A” used in describing Synthesis Examples means that an identical molar equivalent of B was used in place of A.


EXAMPLES
Synthesis Example 1: Synthesis of Compound 11



embedded image


embedded image


Synthesis of Intermediate 11-1

9,9′-spirobi[fluoren]-1-ylboronic acid (1 eq), 3-bromo-5-((3,5-di-tert-butylphenyl)(phenyl)amino)phenol (1.2 eq), tetrakis(triphenylphosphine)palladium(0) (0.05 eq), and potassium carbonate (3 eq) were dissolved in tetrahydrofuran/distilled water, and the mixture was stirred at 75° C. After the mixture was cooled and washed three times using ethyl acetate and water, the resulting organic layer was dried using MgSO4 and dried under reduced pressure. The resulting reaction product was purified by column chromatography (dichloromethane:n-hexane) and recrystallized to obtain Intermediate 11-1. (yield: 58%)


Synthesis of Intermediate 11-2

Intermediate 11-1 (1 eq), 1,3-dibromobenzene (2 eq), copper(I) iodide (CuI) (1 eq), 2-picolinic acid (1 eq), and potassium carbonate (3 eq) were dissolved in dimethylformamide, and the mixture was stirred at 150° C. for 10 hours in a nitrogen atmosphere. The mixture was cooled and dried under reduced pressure to remove dimethylformamide. The mixture was washed three times using ethyl acetate and water, and the resulting organic layer was dried using MgSO4 and dried under reduced pressure. The resulting reaction product was purified by column chromatography (dichloromethane:n-hexane) and recrystallized to obtain Intermediate 11-2. (yield 61%)


Synthesis of Intermediate 11-3

Intermediate 11-2 (1 eq), N1-([1,1′:3′,1″-terphenyl]-2′-yl)-N3-(5′-(tert-butyl)-[1,1′:3′,1″-terphenyl]-2′-yl)-5-chloro-N1-phenylbenzene-1,3-diamine (1.1 eq), tris(dibenzylideneacetone)dipalladium(0) (0.05 eq), 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (S-Phos) (0.10 eq), and sodium tert-butoxide (3 eq) were dissolved in o-xylene, and the mixture was stirred at 150° C. for 20 hours in a nitrogen atmosphere. The mixture was cooled and dried under reduced pressure to remove o-xylene. The mixture was washed three times using ethyl acetate and water, and the resulting organic layer was dried using MgSO4 and dried under reduced pressure. The resulting reaction product was purified by column chromatography (dichloromethane:n-hexane) and recrystallized to obtain Intermediate 11-3. (yield: 49%)


Synthesis of Intermediate 11-4

After Intermediate 11-3 (1 eq) was dissolved in ortho dichlorobenzene, the flaks was cooled to 0° C. in a nitrogen atmosphere, and BBr3 (5 eq) dissolved in ortho dichlorobenzene was slowly injected thereto. After completion of dropwise addition, the temperature was raised to 190° C., and the mixture was stirred for 24 hours. After cooling to 0° C., triethylamine was slowly added dropwise to the flask to terminate the reaction until the exotherm stopped. N-hexane and methanol were added thereto to cause precipitation, and a solid was obtained therefrom by filtration. The obtained solid was purified by silica filtration and purified again by MC/Hex recrystallization to obtain Intermediate 11-4. Final purification was performed thereon by column chromatography (dichloromethane:n-hexane). (yield: 7%)


Synthesis of Compound 11

Intermediate 11-4 (1 eq), 9H-carbazole-1,2,3,4,5,6,7,8-d8 (1.1 eq), tris(dibenzylideneacetone)dipalladium(0) (0.05 eq), 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (0.10 eq), and sodium tert-butoxide (3 eq) were dissolved in o-xylene, and the mixture was stirred at 150° C. for 20 hours in a nitrogen atmosphere. The mixture was cooled and dried under reduced pressure to remove o-xylene. The mixture was washed three times using ethyl acetate and water, and the resulting organic layer was dried using MgSO4 and dried under reduced pressure. The resulting reaction product was purified by column chromatography (dichloromethane:n-hexane) and recrystallized to obtain Compound 11 (yield: 65%). Final purity was further refined by sublimation purification, and the compound thus obtained was identified by ESI-LCMS as Compound 11. ESI-LCMS: [M]+: C121H84D8B2N4O, 1646.80


Synthesis Example 2: Synthesis of Compound 55



embedded image


Synthesis of Intermediate 55-1

9,9′-spirobi[fluoren]-1-ylboronic acid (1.5 eq), 3-bromo-5-((5′-(tert-butyl)-[1,1′:3′,1″-terphenyl]-2′-yl)(phenyl)amino)phenol (1 eq), tetrakis(triphenylphosphine)palladium(0) (0.1 eq), and potassium carbonate (K2CO3) (3 eq) were dissolved in tetrahydrofuran:distilled water (3:1), and the mixture was stirred under reflux for 20 hours. After the mixture was cooled and washed three times using ethyl acetate and water, the resulting organic layer was dried using MgSO4 and dried under reduced pressure. The resulting reaction product was purified by column chromatography using dichloromethane and n-hexane and recrystallized to obtain Intermediate 55-1. (yield: 60%)


Synthesis of Intermediate 55-2

Intermediate 55-1 (2.1 eq), 1,3-dibromobenzene (1 eq), copper iodide (0.2 eq), potassium carbonate (K2CO3, 4 eq), and 2-picolinic acid (0.4 eq) were dissolved in N,N-dimethylformamide, and the mixture was stirred under reflux for 24 hours. After the mixture was cooled and washed three times using ethyl acetate and water, the resulting organic layer was dried using MgSO4 and dried under reduced pressure. The resulting reaction product was purified by column chromatography using dichloromethane and n-hexane and recrystallized to obtain Intermediate 55-2. (yield 57%)


Synthesis Compound 55

After Intermediate 55-2 (1 eq) was dissolved in ortho dichlorobenzene, the flaks was cooled to 0° C. in a nitrogen atmosphere, and BBr3 (5 eq) dissolved in ortho dichlorobenzene was slowly injected thereto. After completion of dropwise addition, the temperature was raised to 190° C., and the mixture was stirred for 24 hours. After cooling to 0° C., triethylamine was slowly added dropwise to the flask to terminate the reaction until the exotherm stopped. N-hexane and methanol were added thereto to cause precipitation, and a solid was obtained therefrom by filtration. The obtained solid was purified by silica filtration and purified again by MC/Hex recrystallization to obtain Compound 55. Final purification was performed thereon by column chromatography (dichloromethane:n-hexane). (yield: 8%) Final purity was further refined by sublimation purification, and the compound thus obtained was identified by ESI-LCMS as Compound 55. ESI-LCMS: [M]+: C124H86N2O2, 1658.2


Synthesis Example 3: Synthesis of Compound 68



embedded image


embedded image


Synthesis of Intermediate 68-1

N1-(5-(tert-butyl)-[1,1′-biphenyl]-2-yl)-5-chloro-N3-(3,5-di-tert-butylphenyl)-N3-phenylbenzene-1,3-diamine (1 eq), 1,3-dibromobenzene (1.5 eq), tris(dibenzylideneacetone)dipalladium(0) (0.05 eq), 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (S-Phos) (0.10 eq), and sodium tert-butoxide (3 eq) were dissolved in o-xylene, and the mixture was stirred at 150° C. for 20 hours in a nitrogen atmosphere. The mixture was cooled and dried under reduced pressure to remove o-xylene. The mixture was washed three times using ethyl acetate and water, and the resulting organic layer was dried using MgSO4 and dried under reduced pressure. The resulting reaction product was purified by column chromatography (dichloromethane:n-hexane) and recrystallized to obtain Intermediate 68-1. (yield: 64%)


Synthesis of Intermediate 68-2

After Intermediate 68-1 (1 eq) was dissolved in ortho dichlorobenzene, the flaks was cooled to 0° C. in a nitrogen atmosphere, and BBr3 (5 eq) dissolved in ortho dichlorobenzene was slowly injected thereto. After completion of dropwise addition, the temperature was raised to 190° C., and the mixture was stirred for 24 hours. After cooling to 0° C. triethylamine was slowly added dropwise to the flask to terminate the reaction until the exotherm stopped. N-hexane and methanol were added thereto to cause precipitation, and a solid was obtained therefrom by filtration. The obtained solid was purified by silica filtration and purified again by MC/Hex recrystallization to obtain Intermediate 68-2. (yield: 12%)


Synthesis of Intermediate 68-3

Intermediate 68-2 (1 eq), 9,9′-spirobi[fluoren]-1-ylboronic acid (1.3 eq), CX31 (0.1 eq), and potassium carbonate (K2CO3) (3 eq) were dissolved in 1,4-dioxane:distilled water (3:1), and the mixture was stirred under reflux for 20 hours. After the mixture was cooled and washed three times using ethyl acetate and water, the resulting organic layer was dried using MgSO4 and dried under reduced pressure. The resulting reaction product was purified by column chromatography using dichloromethane and n-hexane and recrystallized to obtain Intermediate 68-3. (yield 62%)


Synthesis Compound 68

Intermediate 68-3 (1 eq), 9H-carbazole-1,2,3,4,5,6,7,8-d8 (1.1 eq), tris(dibenzylideneacetone)dipalladium(0) (0.05 eq), tri-tert-butylphosphine (PtBu3) (0.10 eq), and sodium tert-butoxide (3 eq) were dissolved in o-xylene, and the mixture was stirred at 150° C. for 20 hours in a nitrogen atmosphere. The mixture was cooled and dried under reduced pressure to remove o-xylene. The mixture was washed three times using ethyl acetate and water, and the resulting organic layer was dried using MgSO4 and dried under reduced pressure. The resulting reaction product was purified by column chromatography (dichloromethane:n-hexane) and recrystallized to obtain Compound 68 (yield: 66%). Final purity was further refined by sublimation purification, and the compound thus obtained was identified by ESI-LCMS as Compound 68. ESI-LCMS: [M]+: C127H105N5, 1739.4


Synthesis Example 4: Synthesis of Compound 132



embedded image


embedded image


Synthesis of Intermediate 132-1

5-(tert-butyl)-N-(3-chloro-5-phenoxyphenyl)-[1,1′-biphenyl]-2-amine (1 eq), 9H-carbazole-1,2,3,4,5,6,7,8-d8 (1.1 eq), tris(dibenzylideneacetone)dipalladium(0) (0.05 eq), tri-tert-butylphosphine (PtBu3) (0.10 eq), and sodium tert-butoxide (3 eq) were dissolved in o-xylene, and the mixture was stirred at 150° C. for 20 hours in a nitrogen atmosphere. The mixture was cooled and dried under reduced pressure to remove o-xylene. The mixture was washed three times using ethyl acetate and water, and the resulting organic layer was dried using MgSO4 and dried under reduced pressure. The resulting reaction product was purified by column chromatography (dichloromethane:n-hexane) and recrystallized to obtain Intermediate 132-1 (yield 64%).


Synthesis of Intermediate 132-2

Intermediate 132-1 (1 eq), N1-([1,1′-biphenyl]-2-yl)-N3-(5-(tert-butyl)-[1,1′-biphenyl]-2-yl)-5-chloro-N3-phenylbenzene-1,3-diamine (1.2 eq), tetrakis(triphenylphosphine)palladium(0) (0.05 eq), and potassium carbonate (3 eq) were dissolved in tetrahydrofuran/distilled water, and the mixture was stirred under reflux for 24 hours. After the mixture was cooled and washed three times using ethyl acetate and water, the resulting organic layer was dried using MgSO4 and dried under reduced pressure. The resulting reaction product was purified by column chromatography (dichloromethane:n-hexane) and recrystallized to obtain Intermediate 132-2. (yield: 67%)


Synthesis of Intermediate 132-3

Intermediate 132-2 (1 eq), 9,9′-spirobi[fluoren]-1-ylboronic acid (1.3 eq), CX31 (0.1 eq), and potassium carbonate (K2CO3) (3 eq) were dissolved in 1,4-dioxane:distilled water (3:1), and the mixture was stirred under reflux for 20 hours. After the mixture was cooled, dried under reduced pressure, and washed three times using ethyl acetate and water, the resulting organic layer was dried using MgSO4 and dried under reduced pressure. The resulting reaction product was purified by column chromatography using dichloromethane and n-hexane and recrystallized to obtain Intermediate 132-3. (yield: 59%)


Synthesis of Compound 132

After Intermediate 132-3 (1 eq) was dissolved in ortho dichlorobenzene, the flaks was cooled to 0° C. in a nitrogen atmosphere, and BBr3 (5 eq) dissolved in ortho dichlorobenzene was slowly injected thereto. After completion of dropwise addition, the temperature was raised to 190° C., and the mixture was stirred for 24 hours. After cooling to 0° C., triethylamine was slowly added dropwise to the flask to terminate the reaction until the exotherm stopped. N-hexane and methanol were added thereto to cause precipitation, and a solid was obtained therefrom by filtration. The obtained solid was purified by silica filtration and purified again by MC/Hex recrystallization to obtain Compound 132 (yield: 10%). Final purity was further refined by sublimation purification, and the compound thus obtained was identified by ESI-LCMS as Compound 132. ESI-LCMS: [M]+: C124H89N3, 1659.2



1H NMR and MALDI-TOF MS of the compounds synthesized according to Synthesis Examples 1 to 4 are shown in Table 1.


Synthesis methods for other compounds than the compounds shown in Synthesis Examples 1 to 4 may be readily recognized by those skilled in the technical field by referring to the synthesis paths and source materials described above.












TABLE 1







Compound
ESI-MS [M+]



















11
1646.8



55
1658.2



68
1739.4



132
1659.2










Example 1

As an anode, a glass substrate (product of Corning Inc.) with a 15 Ω/cm2 (1,200 Å) ITO electrode formed thereon was cut to a size of 50 mm×50 mm×0.7 mm, sonicated using isopropyl alcohol and pure water each for 5 minutes, and cleaned by irradiation of ultraviolet rays and exposure of ozone thereto for 30 minutes. The resultant glass substrate was mounted on a vacuum deposition apparatus.


NPD was deposited on the anode to form a hole injection layer having a thickness of 300 Å, HT3 was deposited on the hole injection layer to form a hole transport layer having a thickness of 200 Å, and CzSi was deposited on the hole transport layer to form an emission auxiliary layer having a thickness of 100 Å.


A pre-mixed mixture of HT2 and ET2 (host), PS2 (phosphorescent sensitizer), and Compound 11 were co-deposited at a weight ratio of 85:14:1 on the emission auxiliary layer to form an emission layer having a thickness of 200 Å, TSPO1 was deposited on the emission layer to form a hole-blocking layer having a thickness of 200 Å, TPBI was deposited on the hole-blocking layer to form an electron transport layer having a thickness of 300 Å, LiF was deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å, and Al was deposited on the electron injection layer to form a cathode having a thickness of 3,000 Å, thereby completing the manufacture of an organic light-emitting device.


Examples 2 to 8 and Comparative Examples 1 to 6

Organic light-emitting devices were manufactured in the same manner as in Example 1, except that, in forming an emission layer, compounds shown in Table 2 were respectively used instead of HT2/ET2, PS2, and Compound 11.
















TABLE 2






Exciplex

Boron







host

dopant
Driving

Emission
Lifespan



(HT:ET =
Phosphorescent
(boron-based
voltage
Efficiency
wavelength
ratio



5:5)
sensitizer
compound)
(V)
(cd/A)
(nm)
(T95)







Example 1
HT2/ET2
PS2
 11
4.4
26.8
Blue
315


Example 2
HT2/ET2
PS2
 55
4.5
26.3
Blue
295


Example 3
HT2/ET2
PS2
 68
4.2
25.6
Blue
340


Example 4
HT2/ET2
PS2
132
4.3
24.4
Blue
325


Example 5
HT3/ET3
PS1
 11
4.3
25.9
Blue
300


Example 6
HT3/ET3
PS1
 55
4.5
26.5
Blue
315


Example 7
HT3/ET3
PS1
 68
4.2
25.6
Blue
320


Example 8
HT3/ET3
PS1
132
4.4
24.7
Blue
305


Comparative
HT2/ET2
PS2
A1
4.6
22.6
Blue
180


Example 1









Comparative
HT2/ET2
PS2
A2
4.9
13.4
Blue
125


Example 2









Comparative
HT2/ET2
PS2
A3
4.9
18.7
Blue
140


Example 3









Comparative
HT3/ET3
PS1
A1
4.5
21.2
Blue
175


Example 4









Comparative
HT3/ET3
PS1
A2
4.8
12.6
Blue
100


Example 5









Comparative
HT3/ET3
PS1
A3
4.8
17.3
Blue
125


Example 6







embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image








From Table 2, it was confirmed that the organic light-emitting devices of Examples 1 to 8 emitted blue light and had, as compared with the organic light-emitting devices of Comparative Examples 1 to 6, equivalent or lower driving voltage, higher efficiency, and longer lifespan.


According to embodiments, an organic light-emitting device including the boron-based compound may have low driving voltage, high efficiency, and long lifespan.


Embodiments have been disclosed herein, and although terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. In some instances, as would be apparent by one of ordinary skill in the art, features, characteristics, and/or elements described in connection with an embodiment may be used singly or in combination with features, characteristics, and/or elements described in connection with other embodiments unless otherwise specifically indicated. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the spirit and scope of the disclosure as set forth in the claims.

Claims
  • 1. An organic light-emitting device comprising: a first electrode;a second electrode facing the first electrode; andan interlayer between the first electrode and the second electrode and comprising an emission layer, whereinthe interlayer comprises at least one boron-based compound represented by Formula 1:
  • 2. The organic light-emitting device of claim 1, wherein the emission layer comprises the boron-based compound.
  • 3. The organic light-emitting device of claim 1, wherein the emission layer comprises a host and a dopant, andthe dopant comprises the boron-based compound.
  • 4. The organic light-emitting device of claim 3, wherein the host comprises a hole-transporting host, an electron-transporting host, or a combination thereof.
  • 5. The organic light-emitting device of claim 3, wherein the dopant further comprises a sensitizer.
  • 6. The organic light-emitting device of claim 5, wherein a concentration of the host is in a range of about 50 parts by weight to about 90 parts by weight, based on 100 parts by weight of the emission layer,a concentration of the sensitizer is in a range of about 10 parts by weight to about 30 parts by weight, based on 100 parts by weight of the emission layer, anda concentration of the boron-based compound is in a range of about 0.1 parts by weight to about 5 parts by weight, based on 100 parts by weight of the emission layer.
  • 7. An electronic apparatus comprising the organic light-emitting device of claim 1.
  • 8. The electronic apparatus of claim 7, further comprising a color filter, a color conversion layer, a touch screen layer, a polarizing layer, or a combination thereof.
  • 9. A boron-based compound represented by Formula 1:
  • 10. The boron-based compound of claim 9, wherein the boron-based compound is represented by Formula 1A:
  • 11. The boron-based compound of claim 9, wherein X11, X12, X21, and X22 are each independently O or N(R8).
  • 12. The boron-based compound of claim 9, wherein at least one of R1, R2, R3, R41, and R42 is each independently a group represented by Formula 2.
  • 13. The boron-based compound of claim 9, wherein at least one of R1 and R2 is each independently a group represented by Formula 2.
  • 14. The boron-based compound of claim 10, wherein at least one of R12 and R22 is each independently a group represented by Formula 2.
  • 15. The boron-based compound of claim 9, wherein R8 is a phenyl group unsubstituted or substituted with at least one R10a or a naphthyl group unsubstituted or substituted with at least one R10a.
  • 16. The boron-based compound of claim 9, wherein R3, R41, and R42 are each independently: deuterium, —F, —Cl, —Br, —I, a hydroxy group, a cyano group, or a nitro group;a C1-C10 alkyl group, a C2-C1 alkenyl group, a C2-C1 alkynyl group, a C3-C1 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C1 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C20 aryl group, a C1-C20 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group, each unsubstituted or substituted with at least one R10a; or—Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)2(Q1), or —P(═O)(Q1)(Q2), andR10a is as defined in Formula 1.
  • 17. The boron-based compound of claim 9, wherein a group represented by Formula 2 is a group represented by Formula 2A:
  • 18. The boron-based compound of claim 9, wherein R51 and R52 are each independently a phenyl group unsubstituted or substituted with at least one R10a.
  • 19. The boron-based compound of claim 9, wherein R51 and R52 are bonded to each other to form a fluorene group unsubstituted or substituted with at least one R10a.
  • 20. The boron-based compound of claim 9, wherein a group represented by Formula 2 is a group represented by Formula 2-1 or Formula 2-2:
  • 21. The boron-based compound of claim 9, wherein the boron-based compound is one of Compounds 1 to 357:
Priority Claims (1)
Number Date Country Kind
10-2022-0148137 Nov 2022 KR national