1. Field of the Invention
The present invention relates to a both-side recording apparatus capable of both-side recording on a recording sheet of which front side and back side are inverted by a sheet inverting unit, and also to a both-side recording apparatus provided with a sheet feeding roller, a recording unit and a sheet inverting unit.
2. Description of the Related Art
For automatic both-side recording in an ink jet recording apparatus, several methods have been commercialized or proposed in several methods. In these methods, after recording on a front side (top side) of a recording sheet, the conveying direction thereof is reversed to feed the recording sheet into a front-back side inverting apparatus, and, after an inverting operation, the recording sheet is conveyed again by the same sheet conveying unit to execute recording on the back side of the recording sheet by the same recording unit.
Among these methods, U.S. Pat. No. 6,332,068 discloses an invention in which the front-back side inverting apparatus is provided at an upstream side of a sheet conveying roller and the conveying direction of the recording sheet is inverted by 180° by two inverting rollers positioned above and below. Also Japanese Patent Application Laid-open No. 2002-067407 discloses an invention in which the front-back side inverting apparatus is provided at an upstream side of a sheet conveying roller and the conveying direction of the recording sheet is inverted by 180° by a roller of a large diameter, principally executing the inversion, and an auxiliary roller of a small diameter.
However, these prior examples have been associated with certain limitations.
In the invention disclosed in U.S. Pat. No. 6,332,068, since a sheet conveying path to the front-back side inverting apparatus is not present on an extension of a sheet conveying path connecting the sheet conveying roller and a sheet feeding roller, a recording medium of a large thickness or a high rigidity cannot be passed to the sheet conveying path to the front-back side inverting apparatus.
Also in the invention disclosed in Japanese Patent Application Laid-open No. 2002-067407, the sheet conveying path to the front-back side inverting apparatus is present approximately on an extension of the sheet conveying path connecting a sheet discharge roller and the sheet conveying roller but has a meandering shape, so that a recording medium of a large thickness or a high rigidity cannot be passed to the sheet conveying path to the front-back side inverting apparatus as in the above-described case. Also the rollers of the front-back side inverting apparatus are concentrated above the sheet conveying path connecting the sheet discharge roller and the sheet conveying roller, so that the dimension of the apparatus has to be made large in order to secure a necessary length for the sheet conveying path.
An object of the present invention is to provide a both-side recording apparatus of a simple configuration without an increase in the dimension of the apparatus, capable of passing a recording medium of a large thickness or a high rigidity in a state where a sheet inverting apparatus is mounted, thereby enabling to improve the operability.
Another object of the present invention is to provide a both-side recording apparatus provided with a sheet conveying roller, a recording unit and a sheet inverting unit, the apparatus including a first sheet path extending from the sheet conveying roller to the sheet inverting unit and returning again to the sheet conveying roller, and a second sheet path extended substantially linearly at an upstream side of the sheet conveying roller, wherein the first sheet path and the second sheet path mutually share a part in common.
In the following, there will be given a detailed explanation on the embodiments of the present invention with reference to accompanying drawings. Throughout the drawings, like numbers indicate same or equivalent parts.
Referring to
There are also shown a sheet conveying roller 21 for conveying a recording sheet, a pinch roller 22 pressed to and driven by the sheet conveying roller 21, a pinch roller holder 23 for rotatably supporting the pinch roller 22, a pinch roller spring 24 for pressing the pinch roller 22 to the sheet conveying roller 21, a sheet conveying roller pulley 25 fixed to the sheet conveying roller 21, an LF motor 26 for driving the sheet conveying roller 21, a code wheel 27 for detecting a rotation angle of the sheet conveying roller 21, and a platen 29 for supporting the recording sheet in an opposed relation to the recording head 11.
There are further shown a first sheet discharge roller 30 for conveying the recording medium in cooperation with the sheet conveying roller 21, a second sheet discharge roller 31 provided at a downstream side of the first sheet discharge roller 30, a first spur train 32 constituting a rotary member for supporting the recording sheet in an opposed relation to the first sheet discharge roller 30, a second spur train 33 constituting a rotary member for supporting the recording sheet in an opposed relation to the second sheet discharge roller 31, a spur base 34 for rotatably supporting the first spur train 32 and the second spur train 33, a maintenance unit 36 to be operated for preventing clogging of the recording head 11 (clogging of discharge ports or nozzles) thereby recovering the ink discharge performance and for filling the ink in ink flow paths of the recording head at a replacement of the ink tank 12, and a main ASF (auto sheet feeder) 37 constituting an auto sheet feeding unit for stacking recording sheets and supplying the recording sheet one by one to the recording unit at a recording operation.
In
There are further shown a lift input gear 50 meshing with an ASF planet gear 49, a lift reducing gear train 51 for transmitting under reduction a power of the lift input gear 50, a lift cam gear 52 connected directly to a lift cam shaft, a guide shaft spring 55 for biasing the guide shaft 14 toward a direction, a guide slope face 56 on which a cam of a guide shaft gear 53 slides, a lift cam shaft 58 for lifting the pin roller holder 23 etc., a sheet guide 70 for guiding the front end of the recording sheet to the nip portion between the sheet conveying roller 21 and the pinch roller 22, a base 72 for supporting the entire recording unit 1, and a control board 301 constituting a control unit.
In
Now there will be given, with reference to
When the recording operation is initiated, a sheet feeding operation is executed at first. The main ASF corresponds to the sheet feeding unit. The sheet feeding unit is constituted of an auto sheet feeding unit for extracting one by one the plural recording sheets stacked on the pressure plate 41, for supply to the sheet conveying unit. At the start of the sheet feeding operation, the ASF motor 46 rotates in a forward direction to rotate a cam supporting the pressure plate 41 through a gear train. When the cam is detached by the rotation of the ASF motor 46, the pressure plate 41 is biased, by the function of an unillustrated pressure plate spring, toward the sheet feeding roller 39. At the same time, the sheet feeding roller 39 rotates in a conveying direction of the recording sheet, thereby starting the conveying of an uppermost recording sheet. In this operation, plural recording sheets may be advanced at the same time depending on conditions of a frictional force between the paper feeding roller 39 and the recording sheet and of a mutual frictional force between the recording sheets.
In such situation, the separation roller 40 maintained in contact with the sheet feeding roller 39 and having a predetermined inverse rotation torque in a direction opposite to the conveying direction of the recording sheet serves to push back the recording sheet onto the pressure plate other than the recording sheet closest to the side of the sheet feeding roller 39. Also at the end of the sheet feeding operation by the ASF, the separation roller 40 is released from the contact state with the sheet feeding roller 39 and is separated therefrom by a predetermined distance by a cam function, and, in this state, the returning claw 43 is rotated to perform its function of securely returning the recording sheet onto the predetermined position on the pressure plate. Through the aforementioned operations, only one recording sheet is conveyed to the sheet conveying unit.
When the one recording sheet is conveyed from the main ASF 37, the front edge of the recording sheet comes into contact with the ASF flap 44 biased by the ASF flap spring in a direction to block the sheet path, but the front edge passes by pushing back the ASF flap 44. When the recording operation on the recording sheet is completed and the rear edge of the recording sheet passes the ASF flap 44, the ASF flap 44 returns to the original biased state to close the sheet path, whereby the recording sheet does not return to the side of the main ASF 37 when conveyed in the reverse direction.
The recording sheet conveyed from the sheet feeding unit is conveyed to the nip portion of the sheet conveying roller 21 and the pinch roller 22, constituting sheet conveying unit. As the center of the pinch roller 22 is mounted with a certain offset, with respect to the center of the sheet conveying roller 21, in a direction closer to the first sheet discharge roller 30, whereby a tangential direction along which the recording sheet is inserted is somewhat inclined from the horizontal direction. Therefore, in order that the front edge of the sheet can be securely guided to the nip portion, the recording sheet is conveyed with an angle formed by a sheet path formed by the pinch roller holder 23 and the guide member (sheet guide) 70.
The sheet conveyed by the ASF37 impinges on the nip portion of the sheet conveying roller 21 which is in a stopped state. In this operation, the main ASF 37 executes a conveying of a distance somewhat longer than the predetermined sheet path length, whereby a loop is formed in the sheet between the sheet feeding roller 39 and the sheet conveying roller 21. A returning force of the loop to a straight state pushes the front edge of the sheet toward the nip portion of the sheet conveying roller 21, whereby the front edge of the sheet is aligned parallel to the sheet conveying roller 21, thereby achieving so-called registration operation. After such registration operation, the rotation of the LF motor 26 is initiated in a normal advancing direction of the recording sheet (direction advancing toward the first sheet discharge roller 30). Thereafter the sheet feeding roller 39 is cut off from the driving power and is rotated by the movement of the recording material. At this point, the recording sheet is conveyed only by the sheet conveying roller 21 and the pinch roller 22. The recording sheet advanced in the normal direction by a predetermined line feed amount, and proceeds along a rib provided on the platen 29.
The front edge of the recording sheet reaches in succession a nip portion between the first sheet discharge roller 30 and the first spur train 32 and a nip portion between the second sheet discharge roller 31 and the second spur train 33, but the first sheet discharge roller 30 and the second sheet discharge roller 31 have peripheral speeds substantially equal to that of the sheet conveying roller 21 and the first sheet discharge roller 30 and the second sheet discharge roller 31 are connected with the sheet conveying roller 21 through a gear train to rotate the first sheet discharge roller 30 and the second sheet discharge roller 31 in synchronization with the sheet conveying roller 21, whereby the recording sheet is conveyed without a slack or a tension.
The recording unit is principally composed of the recording heat 11 constituting recording means for recording on the recording sheet based on recording data, and the carriage 13 supporting the recording head 11 and executing a scanning (movement) in a direction crossing (usually perpendicularly) the conveying direction of the recording sheet. The carriage 13 is guided and supported by the guide shaft fixed to the chassis 10 and the guide rail 15 constituting a part of the chassis 10, and is reciprocated by the transmission of a driving force of the carriage motor 17 through the carriage belt 16, supported under tension between the carriage motor 17 and the idler pulley 20.
The recording head 11 is provided with plural ink flow paths connected to the ink tank 12, and the ink flow paths communicate with discharge ports provided on a face (discharge port face) opposed to the platen 29. In the interior of each of the plural discharge ports constituting a discharge port array, an actuator for ink discharge is provided. For such actuator, there is employed, for example, one utilizing a film boiling pressure of liquid by an electrothermal converting member (heat generating element) or an electromechanical converting member (piezoelectric member) such as a piezo element.
In such recording apparatus constituted by an ink jet recording apparatus utilizing the recording head as explained above, a signal of a head driver 307 is transmitted to the recording head 11 through a flexible flat cable 73 thereby discharging an ink droplet according to the recording data. Also the code strip 18 provided in the chassis 10 is read by the CR (carriage) encoder 19 mounted on the carriage 13 to enable ink droplet discharge toward the recording sheet at a suitable timing. After the recording of a line in this manner, the recording sheet is conveyed by a necessary amount by the sheet conveying unit. This operation is executed repeatedly to achieve a recording operation over the entire surface of the recording sheet.
The recording head maintenance unit serves to prevent clogging of the discharge ports of the recording head 11 and to eliminate a smear, for example by paper dusts, on the discharge port face of the recording head 11, thereby recovering and maintaining a normal state in the recording operation of the recording head 11. The recovery mechanism for this purpose includes, for example, a capping mechanism for covering the discharge ports, a suction recovery mechanism for sucking and discharging the ink from the discharge ports in a capped state, and a wiping mechanism for wiping and cleaning a peripheral area of the discharge ports.
More specifically, the maintenance unit 36 so provided as to oppose to the recording head 11 in a waiting position of the carriage 13 is constituted, for example, of a capping mechanism having a cap to be contacted with the discharge port face of the recording head 11 for protection thereof, a wiping mechanism having a wiper for cleaning the discharge port face, and a suction recovery mechanism having a suction pump connected with the cap for generating a negative pressure therein. In case of an ink suction for refreshing the ink in the discharge ports of the recording head 11, the cap is pressed to the discharge port face and the suction pump is activated to generate a negative pressure in the cap, thereby sucking and discharging the ink. Also in case the ink is deposited on the discharge port face after the ink suction or in case a foreign substance such as paper dusts is deposited on the discharge port face, the wiper is brought into contact with the discharge port face and moved parallel thereto, thereby wiping the discharge port face and eliminating the deposited substance.
The recording apparatus has been outlined in the foregoing. In the following there will be given a detailed description on the configuration specific to the present embodiment, including a configuration of the auto both-side unit 2 serving as a sheet inversion unit or an auto inversion unit.
At first reference is made to
When a recording operation is initiated, the sheet feeding roller 39 serves to feed (convey) the recording sheet one by one to the sheet conveying roller 21 from the plural recording sheets stacked on the main ASF 37. The recording sheet pinched between the sheet conveying roller 21 and the pinch roller 22 is conveyed in a direction indicated by an arrow a in
In the auto both-side unit 2, the recording sheet changes the advancing direction thereof by being pinched between the both-side roller B 109 and the both-side pinch roller B 113, then is further conveyed by the both-side roller A 108 and the both-side pinch roller A 112 in a direction indicated by an arrow d in
A recoding range on the front side (first side, top side) will be explained. The recording head 11 is provided with a discharge port area (recording area, ink discharge area) N between the paper conveying roller 21 and the first sheet discharge roller 30, but, because of conditions of arrangement of the ink flow paths to the discharge ports and of wirings to the ink discharging actuators (discharge energy generating means), it is usually difficult to position the discharge port area N in the immediate vicinity of the nip portion of the sheet conveying roller 21. Therefore, within the range where the recording sheet is pinched between the sheet conveying roller 21 and the pinch roller 22, the recording can only be made to a position, at the downstream side of the nip portion of the sheet conveying roller 21, distanced by a length L1 shown in
In order to reduce such lower end margin of the front side, the recording apparatus of the present embodiment executes the recording up to a portion where the recording sheet is released from the nip portion of the sheet conveying roller 21 and is pinched and conveyed by the first sheet discharge roller 30 and the second sheet discharge roller 31 only. In this manner the recording operation is rendered possible until the lower end margin on the front side becomes zero. However, in case of conveying the recording sheet from this state in the aforementioned direction b in
In the following, there will be explained a release mechanism for the pinch roller 22, a release mechanism for the sheet detection lever (PE sensor lever) 66, a pressure regulating mechanism for the pinch roller spring 24, a vertical movement mechanism for the guide member (sheet guide) 70, and a vertical movement mechanism for the carriage 13.
The pinch roller 22 is released (separated or distanced) from the sheet conveying roller 21 in order to re-introduce the recording sheet as explained in the foregoing, but there are provided certain mechanisms for inverting the top and back sides of the recording sheet after the re-introduction thereof.
One of such mechanisms is a release mechanism for the PE sensor lever 66 constituting the sheet detection lever. An ordinary PE sensor lever 66 is so mounted as to be capable of rocking with a certain angle of the surface of the recording sheet, in order to exactly detect the position of the front edge or the rear edge of the recording sheet when it proceeds in the normal direction. Because of such setting, in case the sheet proceeds in the reverse direction, there is encountered technical difficulties that an end portion of the recording sheet is hooked or an end of the PE sensor lever 66 engages with the recording sheet under conveying. In the present embodiment, therefore, the PE sensor lever 66 is released from the passing sheet surface until a middle of the front-back side inversion step of the recording sheet so as not to be in contact with the recording sheet.
The aforementioned release mechanism for the PE sensor lever 66 is not essential but may be replaced by another means or configuration. For example, for resolving the aforementioned technical difficulties, it is possible to provide the front end of the PE sensor lever 66 with a roller or the like, thereby resolving the technical difficulties by the rotation of such roller when the recording sheet advances in the opposite direction. It is also possible to adopt a configuration in which the PE sensor lever 66 has a larger rocking angle and can swing to an angle opposite to the direction opposite to the normal when the recording sheet is conveyed in the opposite direction, thereby resolving the aforementioned technical difficulties.
Another is a pressure regulating mechanism for the pinch roller spring 24, namely for varying a pressure (spring force) of the pinch roller 22 to the paper conveying roller 21. In the present embodiment, the pinch roller 22 is released by rotating the entire pinch roller holder 23. In a state where the pinch roller 22 is pressed to the sheet conveying roller 21, since the pinch roller holder 23 is pressed by the pinch roller spring 24, a rotation of the pinch roller holder 23 in the releasing direction increases the pressure of the pinch roller spring 24 thereby resulting drawbacks of an increase in the load for releasing the pinch roller holder 23 or an increase in the stress applied to the pinch roller holder 23 itself. In order to prevent such phenomenon, a mechanism (pressure regulating mechanism) for reducing the pressure of the pinch roller spring 24 at the release of the pinch roller holder 23 is provided.
Another mechanism is a vertical movement mechanism for the sheet guide. The sheet guide 70 constitutes a part of a shared portion of a first sheet path for guiding the recording sheet conveyed from the auto sheet feeding unit 37 and a second sheet path for guiding the recording sheet conveyed to the auto inversion unit constituted of the both-side unit 2 or from the auto inversion unit. The sheet guide 70 is usually provided, in order to guide the recording sheet supplied from the main ASF 37 to the sheet conveying roller 21, in a position at an upward angle with respect to the horizontal path (state shown in
A final mechanism is a vertical movement mechanism for the carriage 13. When the pinch roller holder 23 is brought into the released state, the front end of the pinch roller holder 23 comes close to the carriage 13, and this mechanism is provided in order to prevent the mutual contact of the two, thereby avoiding a situation where the carriage 13 cannot be moved in the main scanning direction. Therefore a vertical movement mechanism is provided for elevating the carriage 13 in synchronization with the releasing operation of the pinch roller holder 23. This vertical movement mechanism for the carriage 13 can also be utilized for other purposes, for example in case of retracting the recording head 11 in order to prevent contact of the recording head 11 and the recording sheet in case of recording a thick recording sheet.
In the following detailed explanations will be given on the foregoing five mechanisms.
In
The pinch roller release mechanism, the PE sensor lever release mechanism, the pinch roller spring pressure regulating mechanism and the sheet guide vertical movement mechanism are operated by a rotation of the lift cam shaft 58. In the configuration of the present embodiment, the pinch roller holder pressing cam 59, the pinch roller spring pressing cam 60, the PE sensor lever pressing cam 61 and the sheet guide pressing cam 65 are respectively fixed on the lift cam shaft 58, whereby the respective cams function in synchronization with a turn of the lift cam shaft 58. An initial angle and a turn of the lift cam shaft 58 are recognized by the lift cam shaft shield plate 62 which exposes or masks the lift cam sensor 69. The concept of the present invention is not limited by such configuration, and there may also be employed a mechanism which drives these mechanisms independently.
In the following, function of each mechanism will be explained.
As shown in
Thus, the torsion angle θ3 of the pinch roller spring 24 is somewhat smaller than the angle θ1 in
When the lift cam shaft 58 is rotated by one turn through the aforementioned states, the pinch roller release mechanism and the pinch roller spring pressure regulating mechanism return to a standard state shown in
In the mechanism shown in
Such rotation of the lift cam shaft 58 in the direction of the arrow a in
In the foregoing, detailed explanations on the five mechanisms, namely the pinch roller release mechanism, the PE sensor lever release mechanism, the pinch roller spring pressure regulating mechanism and the sheet guide vertical movement mechanism, have been given.
In
As explained in the foregoing, the transmitting direction of the driving force of the ASF motor 46 is determined by the rotating direction thereof, and the ASF motor 46 is rotated in a direction indicated by an arrow a in
On the other hand, in case of driving the main ASF 37, the ASF motor 46 is rotated opposite to the direction of the arrow a in
In the present embodiment, the ASF motor 46 is constituted of so-called stepping motor with an open loop control, but it is naturally possible to employ a closed loop control utilizing an encoder on a DC motor or the like.
In case a planet gear mechanism is employed for the driving power transmission and a negative load is generated at the driven side, there may result so-called an overtaken state in which the gears are disengaged by a movement of the pendulum lock lever 64 and the driven side advances in phase than the driving side. In order to prevent such phenomenon, the present embodiment is provided with the pendulum locking cam 63 and the pendulum locking lever 64. In case the lift cam shaft 58 is within a predetermined angular range, based on a cam face shape of the pendulum locking cam 63, the pendulum locking lever 64 rocks in a direction of an arrow c in
In case the pendulum locking cam 63 returns to a predetermined angular range, the pendulum locking lever 64 returns in a direction opposite to the arrow c in
The aforementioned mechanisms of the lift cam shaft 58 enable a release of the pinch roller 22, a locking of the PE sensor lever 66, a pressure regulation of the pinch roller spring 24, a vertical movement of the sheet guide 70 and a vertical movement of the carriage 13. In the following, these five mechanisms will be collectively called lift mechanisms.
In the following, there will be explained how these five lift mechanisms function in mutual correlation.
This state shown in
In the present embodiment, in consideration of the functions of the recording apparatus, the lift mechanisms are limited to the aforementioned four positions as shown in
The functions of the lift mechanisms have been explained in the foregoing.
Then the lift mechanisms are shifted to the third position as shown in
Whether the ink transfers onto the pinch roller 22, stated differently whether the ink is dry or not, is influenced by various factors. Such factors include a type of the recording sheet, a type of the used ink, a superposed deposition method of the used ink, a deposition amount of the used ink per unit area (for example density per unit area of recorded data), an environmental temperature of the recording operation, an environmental humidity of the recording operation, an environmental gas flow rate of the recording operation etc. In brief, the ink tends to dry faster on a recording sheet having an ink receiving layer at the surface and capable of introducing the ink promptly into the interior. Also a faster drying is possible with an ink employing smaller ink particles such as a dye and easily permeable into the interior of the recording sheet. Also a faster drying is possible with an ink system utilizing chemically reactive inks which are solidified by superposed deposition onto the surface of the recording sheet.
Also a faster drying is possible by reducing the ink amount deposited per unit area. Also a faster drying is possible by elevating the environmental temperature of the recording operation. Also a faster drying is possible by lowering the environmental humidity of the recording operation. Also a faster drying is possible by elevating the environmental gas flow rate of the recording operation. Since the necessary drying time varies by various conditions as explained above, the present embodiment adopts a configuration of employing, as a standard value, a drying time required in a recording operation with a predetermined ink system under ordinary conditions of use (ordinary recording sheet and ordinary recording environment), and regulating such standard value with a predictable condition to obtain a drying time.
The predictable condition is an ink amount deposited per unit area, but it is possible also to achieve a finer prediction of the waiting time for drying, by employing means for detecting the environmental temperature, means for detecting the environmental humidity, means for detecting the environmental air flow rate etc. in combination. The waiting time for drying can be determined, for example, by storing the data received from the host apparatus 308 (
The waiting time for drying is also variable depending on whether the ink used for recording is a dye-based ink or a pigment-based ink, and may be made shorter for a dye-based ink which dries faster and longer for a pigment-based ink which dries slower. Also the waiting time for drying may be made shorter at a higher ambient temperature causing a faster drying, or longer at a lower ambient temperature causing a slower drying. Also the waiting time for drying may be made longer at a higher ambient humidity causing a slower drying, or shorter at a lower ambient humidity causing a faster drying. Also the waiting time for drying may be made shorter in case of a recording sheet having an ink receiving layer on the surface and capable of immediately introducing the deposited ink into the interior because the surface of the recording sheet can be easily dried, and made longer for a strongly water-repellent recording sheet which is more difficult to dry.
Such waiting for drying may be made in the state shown in
Therefore, in case the deformation at the end of the recording sheet 4 becomes large after a prolonged lapse of time, even if the pinch roller 22 is released from the sheet conveying roller 21, there is a possibility that the end portion of the recording sheet 4 interferes with the pinch roller 22 thereby causing a jam. In order to avoid such situation, the recording sheet 4 after the recording is subjected to the back-feeding and is moved to the position under the pinch roller 22 before the undulation by the deformation of the recording sheet 4 becomes large. Because of the aforementioned reason, the present embodiment adopts a configuration of awaiting the drying of the recorded portion of the recording sheet 4 after back-feeding of the rear end of the recording sheet 4 to the position shown in
Also the sheet guide 70 is in the down-state and forms a substantially horizontal sheet path, so that the recording sheet 4 can be straightly conveyed toward the auto both-side unit 2. In the present embodiment, the sheet guide 70 is basically maintained in the up-state, but the present invention is not restricted by such embodiment and the sheet guide 70 may be normally maintained in the down-state. More specifically, the lift mechanisms may normally wait in the third or fourth position and may be shifted to the first position at the sheet feeding operation from the main ASF 37. Such configuration enables a smooth insertion at the insertion of a recording sheet of a high rigidity from the side of the sheet discharge rollers.
The conveying of the recording sheet 4 after the end of the recording on the front side to the auto both-side unit 2 is conducted as explained above.
Referring to
When the recording sheet 4 is conveyed in a state shown in
Since the both-side roller A 108, the both-side roller B 109 and the sheet conveying roller 21 are rotated at substantially same peripheral speeds by a drive mechanism to be explained later, the recording sheet 4 is conveyed without a slippage to the both-side roller B 109. Also such substantially same peripheral speeds prevent the recording sheet 4 from becoming slack or subjected to a tension. After a change in the advancing direction along the both-side roller B 109, the recording sheet 4 proceeds along the rear cover 103 and is similarly supported between the both-side roller rubber A 110 of the both-side roller A 108 and the both-side pinch roller A 112.
After a change in the advancing direction again along the both-side roller A 108, the recording sheet 4 is conveyed in a direction of an arrow b in
Detailed operations will be explained later with reference to a flow chart, but the length of the recording sheet can be measured by the PE sensor lever 66 at the recording on the front side of the recording sheet 4. Therefore, in case a recording sheet shorter than the distance from the sheet conveying roller 21 to the both-side roller B 109 or shorter than the distance from the both-side roller A 108 to the sheet conveying roller 21, or a recording sheet longer than a turn-around distance of the auto both-side unit 2 from the exit flap 106 to the exit flap 106 is inserted, an alarm is given at the completion of the recording on the front side and the recording sheet 4 is discharged without conveying to the auto both-side unit 2.
Now there will be explained reason why the recorded surface of the recording sheet 4 is conveyed at the side of the both-side roller rubber A 110 and the both-side roller rubber B 111. The both-side roller rubber A 110 and the both-side roller rubber B 111 are in the driving side, while the both-side pinch roller A 112 and the both-side pinch roller B 113 are in the driven side. Therefore, the recording sheet 4 is conveyed by the rollers of the driving side, and the rollers of the driven side are rotated by the friction with the recording sheet 4. Such driving method is acceptable when the rotary axes supporting the both-side pinch roller A 112 and the both-side pinch roller B 113 have a sufficiently small axial loss, but in case the axial loss increases for some reason, there may result a slippage between the recording sheet 4 and the both-side pinch roller A 112 or the both-side pinch roller B 113. The recorded portion of the recording sheet 4 has been dried to such an extent that the ink is not transferred by a contact with the roller, but there may result an ink peeling from the surface of the recording sheet 4 in case it is rubbed.
In case the recorded surface of the recording sheet 4 is maintained in contact with the both-side pinch roller A 112 and the both-side pinch roller B 113 and causes a slippage to such rollers, the ink on the recorded surface may be peeled off. In order to avoid such situation, the present embodiment employs such an arrangement that the rollers of the driving side are contacted with the recorded (front) side and the rollers of the driven side are contacted with the unrecorded (back) side.
Another reason, to be explained in the following, can also be mentioned for adopting such arrangement.
The both-side roller A 108 or the both-side roller B 109 of the driving side is preferably given a certain large diameter because of a restriction that a radius of curvature of the recording sheet 4 should not preferably be made excessively small, while the both-side pinch roller A 112 or the both-side pinch roller B 113 can be realized with a small diameter. Therefore, for designing a compact auto both-side unit 2, the both-side pinch roller A 112 and the both-side pinch roller B 113 are often designed with a small diameter.
Also the recorded surface of the recording sheet 4 does not basically cause a transfer of the ink to the contacting roller, but may still cause a transfer in a very small amount, thereby gradually smearing the roller which is contact with the recorded surface. A roller of a smaller diameter, having a higher frequency of contact of a unit peripheral area of the roller with the recording sheet 4, is smeared faster than a roller of a larger diameter and can therefore be considered disadvantageous with respect to such smearing. In consideration of such compactization of the apparatus and such roller smearing, the present embodiment adopts an arrangement in which the recorded (front) side of the recording sheet is contacted by the both-side roller A 108 and the both-side roller B 109 of larger diameters.
Another reason, to be explained in the following, can also be mentioned for adopting such arrangement.
In case of pinching and conveying a recording sheet by a pair of rollers one of which is driven, it is customary to employ an elastic material in either of the rollers in order to secure a certain area of nip (nip area), and, in order to obtain an accurate conveying amount, to employ a material of a high friction coefficient at the driving side and a material of a low friction coefficient at the driven side. A rubber material (rubber-like elastomer) providing a high friction coefficient and a high elasticity with a low cost is usually employed for the material constituting the roller of the driving side. Also for increasing the conveying power, there is often employed a structure of applying a surface polishing on the rubber, including an elastomer or the like, and intentionally leaving polishing grains constituting minute irregularities. In such case, the driven side is usually formed with a polymer resin with a relatively low friction coefficient.
In a comparison of a rubber surface with small surface irregularities, and a surface formed by a smooth polymer resin, the ink stain sticks to either when it is contacted with the recorded surface of the recording sheet, but the rubber with minute surface irregularities can retain the stain on the surface by such irregularities and transfers little the stain again onto the recording sheet, while the smooth polymer resin tends to show peeling of the stain and cause a re-transfer onto the recording sheet. It is therefore considered advantageous to contact rubber with the recorded surface of the recording sheet. Also because of this reason, the present embodiment adopts an arrangement in which the rollers of a rubber material are provided at a side contacting the recorded side of the recording sheet and the rollers of a polymer resin material are provided at a side contacting the non-recorded side of the recording sheet.
The reversing operation for executing a both-side recording on an ordinary recording sheet has been explained in the foregoing.
In the following there will be explained functions of the auto both-side unit 2 in case of a recording on a highly rigid recording medium, without both-side recording. A recording medium of a high rigidity can be, for example, a cardboard of a thickness of 2 to 3 mm, or a disk-shaped or irregular-shaped recording medium placed on a predetermined tray. Such recording medium, because of its high rigidity, cannot be so bent as to match the diameter of the both-side rollers in the auto both-side unit 2 and cannot, therefore, be subjected to an auto both-side recording. However, there can be conceived a situation where a recording on such recording medium is desired while the auto both-side unit 2 is attached to the recording apparatus. In case the recording medium has a high rigidity, a feeding by the main ASF 37 is also not possible, and the recording medium is fed from the side of the sheet discharge rollers 31, 32 toward the sheet conveying roller 21, utilizing the straight sheet path. The functions of the auto both-side unit 2 in such case will be explained in the following.
The present invention is not limited to the aforementioned configuration, explained with reference to
Therefore, the recording sheet of low rigidity proceeds in a direction indicated by an arrow a in
As explained in the foregoing, in the auto both-side unit of the present embodiment, it is possible to execute a one-side recording on a recording medium which has a high rigidity and cannot be bent much, without detaching the auto both-side unit.
The auto both-side unit 2 having two sheet paths has been explained in the foregoing.
In the following, there will be explained a drive mechanism for the rollers of the auto both-side unit 2.
Referring to
Referring to
In the present embodiment, as explained in the foregoing, the driving power for the auto both-side unit 2 is obtained from the LF motor 26 which drives the sheet conveying roller 21. Such configuration is preferred since, in conveying the recording sheet by the cooperation of the sheet conveying roller 21 and the both-side roller A 108 or B 109, an almost complete synchronization can be achieved in start/stop timing or in the conveying speed of the recording sheet.
A driving force from the LF motor 26 is transmitted to the both-side solar gear 116 through the both-side transmission gear train 115. On the both-side solar gear 116, there is mounted the both-side pendulum arm 117, on which the both-side planet gear A 118 and the both-side planet gear B 119 are mounted.
As a suitable frictional force is provided between the both-side solar gear 116 and the both-side pendulum arm 117, the both-side pendulum arm 117 causes a rocking motion along the rotation of the both-side solar gear 116. Now let it be assumed that a normal direction means a rotating direction of the LF motor 26 for causing the sheet conveying roller 21 to rotate in a direction to convey the recording sheet in the discharging direction, and that a reverse direction means a rotating direction of the LF motor 26 for conveying the recording sheet toward the auto both-side unit 2. When the LF motor 26 is rotated in the normal direction, the both-side solar gear 116 rotates in a direction indicated by an arrow a in
As a result, the both-side planet gear A 118 meshes with the both-side roller idler gear 124, thereby rotating the both-side roller idler gear 124. By the rotation of the both-side roller idler gear 124, the both-side roller gear A 125 rotates in a direction of an arrow c in
When the LF motor 26 is rotated in the reverse direction, the both-side solar gear rotates in a direction of an arrow b in
Prior to the engagement of the both-side planet gear B 119 with the inversion delay gear A 121, the inversion delay gear A 121 and the inversion delay gear B 122 are biased by the inversion delay gear spring 123 in such a direction that the projections are mutually separated, so that the inversion delay gear B 122 starts to rotate after about a turn of the inversion delay gear A 121 from the start of rotation thereof. Consequently, a period from the start of rotation of the LF motor 26 in the reverse direction, to the start of rotation of the inversion delay gear B 122 constitutes a delay period, in which the both-side roller A 108 and the both-side roller B 109 remain in a stopped state.
A rotation of the inversion delay gear B 122 causes, through the both-side roller idler gear 124, the both-side roller gear A to rotate in a direction of the arrow c in
In the following, there will be explained the function of the spiral groove gear 120. The spiral groove gear 120 is provided with gear teeth on the external periphery and, and, on an end face, with a cam formed by a spiral groove having an endless track at the innermost circumference and at the outermost circumference. In the present embodiment, the spiral groove gear 120 is connected with the both-side solar gear 116 across the idler gear, and therefore rotates in the same direction as and in synchronization with the both-side solar gear 116. In the groove of the spiral groove gear 120, there engages a follower pin 127a constituting a part of the stop arm 127, which therefore rocks according to the rotation of the spiral groove gear 120. For example, when the spiral groove gear 120 rotates in a direction of an arrow e in
On the other hand, in case the spiral groove gear 120 rotates in a direction of an arrow f in
The stop arm 127 functioning as explained above acts on the both-side pendulum arm spring 132 mounted on the both-side pendulum arm 117. The both-side pendulum arm spring 132 is an elastic member mounted on the both-side pendulum arm 117 and extending toward the stop arm 127. The front end of the both-side pendulum arm spring 132 is always positioned closer than the stop arm 127 to the center of the spiral groove gear 120.
Such configuration provides following functions when the LF motor 26 rotates in the normal direction. When the recording sheet is conveyed to the auto both-side unit 2 by rotating the LF motor 26 in the reverse direction and is returned to the sheet conveying roller 21 after the front-back side inversion, the stop arm 127 is in such a state where the follower pin 127a thereof rotates on the outermost endless track of the spiral groove gear 120. Therefore, during the recording on the back side by rotating the LF motor 26 in the normal direction, the follower pin 127a of the stop arm 127 moves toward the internal circumference of the spiral groove gear 120. When the LF motor 26 rotates in the normal direction, since the both-side pendulum arm 117 executes power transmission by a rocking in the direction of the arrow a in
When the LF motor 26 is further rotated in the normal direction, the stop arm 127 moves further to the internal circumference thereby causing an elastic deformation of the both-side pendulum arm spring 132, whereby the position of the both-side pendulum arm 117 is determined by a balance of a force, acting in an angular direction of pressure, of the meshing tooth faces of the both-side planet gear A 118 and the both-side roller idler gear 124 in mutually meshing state, a force for rocking the both-side pendulum arm 117 in the direction of the arrow a in
Also, even in case the operation of the LF motor 26 is intermittent and repeats rotation and stopping, teeth of the both-side plant gear A 118 and the both-side roller idler gear 124 continue to mesh and are not disengaged even during a stopped state. However, when the recording on the back side of the recording sheet 4 is completed and the power transmission to the auto both-side unit 2 becomes unnecessary, it is preferable to disconnect the drive in order to reduce the load on the LF motor 26. Therefore, following operations are executed in case of disconnecting the power transmission.
More specifically, the LF motor 26 is slightly rotated in the reverse direction, in a state where the stop arm 127 is in the innermost endless track and the both-side pendulum arm spring 132 is elastically deformed. In this operation, while the both-side pendulum arm 117 is in a state of receiving a rotating force in a direction of an arrow b in
Once the both-side pendulum arm 117 is rotated in the direction of the arrow b in
In case the LF motor 26 is rotated in the reverse direction from a state where the stop arm 127 is in the innermost endless track, the power transmission to the inversion delay gear A 121 can be executed as explained before, since there is no effect between the both-side pendulum arm spring 132 and the stop arm 127.
The drive mechanism for the rollers of the auto both-side unit 2 has been explained in the foregoing.
In the following, details of the function of the roller driving mechanism of the auto both-side unit 2 and of the function of auto both-side recording will be explained with reference to a flow chart in
When an auto both-side recording is initiated, a step S1 executes feeding of a recording sheet 4. For example the recording sheet 4 is fed from the main ASF 37 toward the sheet conveying roller 21. Then a step S2 executes a recording of a front (top) side. This operation is similar to a one-side recording. In this operation, the roller drive mechanism is in a state shown in
Then, when the recording on the front side is completed, a step S3 confirmed whether the rear end of the recording sheet has been detected by the PE sensor 67. In case the PE sensor 67 still detects the presence of the recording sheet 4, the rear end of the front side thereof is not yet detected and a step S4 continues the rotation of the LF motor 26 in the normal direction to move the recording sheet 4 until the rear end of the front side thereof reaches a position p2 a little beyond the PE sensor lever 66. Then a step S5 calculates the length of the recording sheet 4, based on the conveying amount of the recording sheet 4 from the detection of the front edge of the front side of the recording sheet 4 to the detection of the rear edge by the PE sensor 67.
As explained in the foregoing, a recording sheet 4 having a length shorter than a predetermined length L1 has to be excluded from the auto both-side recording operation, since the front edge of the recording sheet 4 cannot reach the roller in the conveying from the sheet conveying roller 21 to the both-side roller B 109 or in the conveying from the both-side roller 108 to the sheet conveying roller 21. Also a recording sheet 4 having a length longer than a predetermined length L2 has to be excluded from the auto both-side recording operation, since the recorded surface of the recording sheet causes an undesirable mutual contact in the sheet path from the sheet conveying roller 21 to the auto both-side unit 2. In case a necessity for exclusion from the auto both-side recording operation is identified under these conditions, the flow proceeds to a step S6 for rotating the LF motor 26 in the normal direction thereby directly discharging the recording sheet 4 and issuing an alarm for a sheet feed error. In case the length of the recording sheet is identified as suitable for the both-side recording under the aforementioned conditions, the flow proceeds to a step S7 for shifting the lift mechanisms to the third position thereby releasing the pinch roller 22.
Then a step S8 confirms whether the rear end of the front side of the recording sheet 4 has already been conveyed to a downstream side of a position p1 in the vicinity of the pinch roller 22. In case the conveying has already been made to the downstream side, a step S9 executes a back-feed by rotating the LF motor 26 in the reverse direction until the rear end of the front side reaches p1 in order to achieve a secure pinching between the sheet conveying roller 21 and the pinch roller 22 when the pinch roller 22 is returned to the contact state. In these operations, the roller drive mechanism is in a state shown in
Therefore, the load to the LF motor 26 is still low in this state. Such state is provided because, at the back-feeding of the recording sheet 4 in the auto both-side recording operation, the both-side roller B 109 need not be rotated until the front edge of the recording sheet 4 reaches the both-side roller B 109 since there is a certain distance from the sheet conveying roller 21 to the both-side roller B 109. It is also possible, for example at the regulation of the lead-in amount in the ordinary recording operation, to avoid unnecessary rotation of the both-side roller A 108 or the both-side roller B 109 as explained before.
Then a step S10 provides a waiting time until the ink recorded on the front side of the recording sheet 4 dries. Since the necessary drying time is variable by certain factors as explained before, the waiting time t1 for drying may be made a variable parameter. More specifically, t1 is determined in consideration of conditions such as a type of the recording sheet, a type of the ink, a superposed deposition method of the ink, an ink deposition amount per unit area, an environmental temperature, an environmental humidity, and an environmental air flow rate.
Then a step S11 shifts the lift mechanisms to a fourth position, whereby the recording sheet 4 is pinched again by the sheet conveying roller 21 and the pinch roller 22.
Then a step S12 provides a waiting time t2 for drying. It may be dispensed with in case the waiting for a time t1 is executed in the step S10, and, in such case, the flow may proceed to a next step, assuming t2=0. The waiting of a time t2 for drying is required in case a rear end portion of the recording sheet 4 is not subjected to a recording operation and constitutes a margin. In such case, the pinch roller 22 can be immediately pressed to such margin without any trouble, by taking t1=0 in the step S10. However, an immediate back-feed of the recording sheet 4 may cause a transfer of the undried ink onto the pinch roller 22, and a waiting time t2 for drying may be provided in the step S12.
Then a step S13 rotates the LF motor 26 in the reverse direction, thereby back-feeding the recording sheet 4 by a predetermined amount X1. This step conveys the recording sheet 4 to the auto both-side unit 2 for front-back side inversion. After this step, a front edge of the back side returns to a position slightly in front of the sheet conveying roller 21. At this point, the roller drive mechanism assumes a state shown in
Now there will be explained so-called registration operation in case the front edge of the back side is introduced into the nip between the sheet conveying roller 21 and the pinch roller 22. At first, a step S14 switches the control according to whether the currently employed recording sheet 4 is a thin sheet of a low rigidity or a thick sheet of a high rigidity. The rigidity of the recording sheet 4 may be judged for example by the kind of the recording sheet set by the user for example in a printer driver, or by detection means for measuring the thickness of the recording sheet 4. The control is divided into two kinds because the recording sheet 4 shows different behaviors depending on the rigidity, when it is bent to form a loop.
At first there will be explained a case of a thin recording sheet 4 of a relatively low rigidity.
Then a step S18 conveys the recording sheet 4 by a distance X2 slightly longer than a distance from a detecting position for the front edge of the back side by the PE sensor 67 to the sheet conveying roller 21. Through this operation, the front edge of the back side of the recording sheet 4 reaches the nip portion between the sheet conveying roller 21 and the pinch roller 22, and is bent by an additional conveying thereby forming a loop.
In the following, there will be explained a case of a thick recording sheet 4 of a relatively high rigidity.
Then a step S20, while maintaining the sheet guide 70 in the lowered position, rotates the LF motor 26 in the reverse direction, thereby conveying the recording sheet 4 by a distance X4 slightly longer than a distance from the position of the front edge of the back side of the recording sheet 4 at the end of the step S13 to the nip of the sheet conveying roller 21. Thus, as in the case of the thin recording sheet 4, the front edge of the back side of the recording sheet 4 reaches the nip portion of the sheet conveying roller 21 rotated in the reverse direction, and the recording sheet is further advanced to form a loop therein, whereby the front edge of the back side of the recording sheet 4 becomes parallel to the sheet conveying roller 21 and thus completing the registration operation.
Then a step S21 changes the LF motor 26 to the rotation in the normal direction thereby pinching the front edge of the back side of the recording sheet 4 in the nip portion and executing a conveying by a predetermined distance X3, thus completing a preparation for starting the recording on the back side. In the step S19 or S21, the LF motor 26 which has rotated in the reverse direction changes the rotation to the normal direction. At this point, the both-side pendulum arm 117 rocks to a direction indicated by an arrow a in
Then a step S22 shifts the lift mechanisms to the first position, thus completing the preparation for starting the recording of the back side. Now there will be explained reason why the sheet guide 70 is maintained in the lowered state during the registration operation with the thick recording sheet 4. In case of trying to generate a loop in the same manner as in the thin recording sheet 4 as shown in
Also in case a loop is not formed, the recording sheet 4 has no slack (bend) in the state simultaneously supported by the both-side roller A 108 and the sheet conveying roller 21. In case the drive mechanism for the both-side rollers employs a mechanism such as a both-side pendulum arm 117 as in the present embodiment, when the LF motor 26 is rotated in the normal direction in the step S21 after the LF motor 26 is rotated in the reverse direction in the step S20, there is required a period for rocking of the both-side pendulum arm 117 before the both-side roller A 108 and the both-side roller B 109 are rotated, and the both-side roller A 108 and the both-side roller B 109 remain stopped during such period.
The sheet conveying roller 21, being directly connected to the LF motor 26, has no such stopping period, thus generating a contradiction in the sheet conveying speed. If the recording sheet 4 has a slack, the contradiction in the sheet conveying speed can be absorbed by taking up such slack of the recording sheet 4 when the sheet conveying roller alone is rotated in the step S21. In the absence of such slack, the contradiction in the sheet conveying speed cannot be absorbed and the sheet conveying roller 21 forcedly tries to convey the recording sheet 4, but there may result a situation where the recording sheet 4 is not actually conveyed because it is pinched in a rear portion by the both-side roller A 108. Such situation may result in an erroneous conveying amount of the front edge portion of the back side of the recording sheet 4, thus providing an upper margin, on the back side, shorter than an intended value. In the present embodiment, in order to avoid the aforementioned drawbacks, the sheet guide 70 is maintained in the lowered state, thereby forming a sufficient space in the height to the pinch roller holder 23 and securing a loop forming space. It is thus rendered possible to achieve satisfactory registration even in case of using a thick recording sheet 4 of a relatively high rigidity.
Then a step S23 executes a recording operation on the back side of the recording sheet 4. At this moment, the rear end portion of the back side of the recording sheet 4 is still pinched by the both-side roller A 108 in most cases. It is undesirable to stop the rotation of the both-side roller A 108 immediately since it may become a load for pulling the recording sheet 4 backward, thus deteriorating the precision of the sheet conveying. Therefore, the drive of the both-side roller A 108 is continued at least while the rear end portion of the back side of the recording sheet 4 is pinched by the both-side roller A 108. A state of the drive mechanism for the both-side rollers is shown in
When the LF motor 26 continues to rotate in the normal direction thereafter, the follower pin 127a is guided by the spiral groove gear 120 and moves toward the internal circumference, whereby the stop arm 127 rocks in a direction of an arrow g in
Also in case of an intermittent drive involving rotation and stopping, the both-side planet gear A 118 and the both-side roller idler gear 124 are not disengaged because of the meshing of the gear teeth. When the recording operation on the back side of the recording sheet 4 is continued by the normal rotation of the LF motor 26, the follower pin 127a reaches the innermost circumference of the spiral groove gear 120.
Then a step S24 executes a sheet discharging operation of discharging the recording sheet 4 onto an unillustrated discharge tray. The sheet discharging operation can be executed by continuing the rotation of the LF motor 26 in the normal direction, thereby conveying the recording sheet 4 by the second sheet discharge roller 31 to the exterior of the main body 1 of the recording unit.
Then a step S25 executes a confirmation of an absolute position of the front edge of the back side. This operation is executed because the follower pin 127a may not have reached the innermost circumference of the spiral groove gear 120 in case of a short recording sheet 4. In such situation, the LF motor 26 is rotated corresponding to a predetermined length, whereby the follower pin 127a is always brought to the innermost circumference of the spiral groove gear 120 when the back side recording operation for the recording sheet 4 is completed.
Then a step S26 executes an initialization of the drive mechanism for the both-side rollers. As the both-side pendulum arm spring 132 is maintained in a charged state by the engagement of the both-side planet gear A 118 and the both-side roller idler gear 124, they can be easily disengaged by a little rotation of the LF motor 26 in the reverse direction. More specifically, in response to a rotation of the LF motor 26 in the reverse direction, the both-side pendulum arm 117 tends to rock in a direction of an arrow b in
In case the LF motor 26 is rotated in the normal direction in this state where the both-side pendulum arm spring 132 has returned to the original state, the both-side pendulum arm 117 tends to rock in a direction of an arrow a in
Thus the auto both-side recording operation is terminated. A same sequence is repeated in case of executing an auto both-side recording operation in continuation.
In the present embodiment, an elastic impingement is realized between the both-side pendulum arm 117 and the stop arm 127 by the function of the both-side pendulum arm spring 132, but the present invention is not limited to such configuration and may also be constructed as follows.
Functions from
Such disengaging force is balanced with a pressure between the teeth of the both-side planet gear A 118 and the both-side roller idler gear 124 and an elastic and sliding force of such gear teeth, but the disengaging force becomes larger as the follower pin 127a moves toward the internal circumference and overcomes the forces between the gear teeth, thereby forcedly disengaging the both-side planet gear A 118 and the both-side roller idler gear 124. The rotation of the both-side roller A 108 and the both-side roller B 109 is stopped simultaneously with the disengagement. This state is shown in
After the disengagement of the gears, the both-side pendulum arm 117 is prevented from rocking in the direction of the arrow a in
In the foregoing, there has explained a variation of the roller drive mechanism for the auto both-side unit 2.
The present invention is not limited to such configurations, and there may be adopted a control in which the position of the lift mechanisms is changed. For example, in the foregoing, the sheet guide 70 is in the up-state in a normal waiting state, but it may also be in the down-state. More specifically, there is employed a configuration of placing the lift mechanisms normally at the third position and adding a control for shifting the lift mechanisms from the third position to the first position prior to the step S1. There may also be adopted a configuration of adding a control for shifting the lift mechanisms from the first position to the third position after the step S26. Such configuration is suitable for passing a cardboard or the like from the side of the sheet discharge roller, since the pinch roller 22 is in a released state in the waiting state. In the foregoing, there has been given an explanation on the auto both-side recording operation, with reference to an operation sequence shown in a flow chart.
In the foregoing, embodiments have been explained by a serial type recording apparatus in which the recording is executed under a movement of a recording head, constituting recording means, in the main scanning direction, but the present invention is likewise applicable to and provides similar effects in a line type recording apparatus utilizing recording means of line type of a length covering the entire width of the recording sheet or a part thereof and achieving recording by a sub scanning (sheet conveying) only.
Also the present invention can be executed regardless of the number of the recording means, and is likewise applicable to and provides similar effects not only in a recording apparatus utilizing single recording means but also a recording apparatus for color recording, utilizing plural recording means for inks of different colors, a recording apparatus for gradation recording, utilizing plural recording means for inks of different concentrations of a same color, and a recording apparatus combining these.
Furthermore, in case the recording apparatus is an ink jet recording apparatus, the present invention is likewise applicable to and provides similar effects in any configuration of a recording head and an ink tank, for example a configuration employing a replaceable head cartridge integrally containing a recording head and an ink tank, or a configuration in which an recording head and an ink tank are separate and connected with an ink supply tube.
Furthermore, in case the recording apparatus is an ink jet recording apparatus, the present invention is likewise applicable to and provides similar functions and effects not only in a recording apparatus utilizing an ink jet recording head of a type discharging ink by thermal energy, but also in the ink jet recording apparatus utilizing other ink discharging process such as a recording apparatus utilizing an ink jet recording head of an ink discharging process based on an electromechanical converting member such as a piezo element.
In the both-side recording apparatus of the present invention, as explained in the foregoing, a sheet conveying path for sheet inversion and a sheet path for a recording medium of a high rigidity are commonly shared in a part and both paths can be selectively utilized. Therefore, there can be provided a both-side recording apparatus capable of passing a recording medium of a large thickness or a high rigidity in a simple configuration without an increase in the dimension of the apparatus and in an attached state of a sheet inversion apparatus, thereby improving the operability.
Number | Date | Country | Kind |
---|---|---|---|
2003-113806 | Apr 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5196897 | Trask | Mar 1993 | A |
5580042 | Taniguro et al. | Dec 1996 | A |
5620174 | Taniguro et al. | Apr 1997 | A |
5672019 | Hiramatsu et al. | Sep 1997 | A |
5725319 | Saito et al. | Mar 1998 | A |
6168270 | Saikawa et al. | Jan 2001 | B1 |
6293716 | Driggers et al. | Sep 2001 | B1 |
6332068 | Blackman et al. | Dec 2001 | B1 |
20020057322 | Tanikawa et al. | May 2002 | A1 |
20030143011 | Yoshikawa et al. | Jul 2003 | A1 |
20040086310 | Eskey | May 2004 | A1 |
Number | Date | Country |
---|---|---|
2002-59598 | Feb 2002 | JP |
2002-67407 | Mar 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20040239743 A1 | Dec 2004 | US |