The present invention relates to devices, systems and methods for inhibiting spillage or accidental exposure of the contents of bottles and packaging.
Traditional “Boston Round” glass bottles having smooth interior surfaces in the neck region with removable childproof droppers have no mechanism to prevent spillage or drinking once the dropper is removed. These bottles often contain concentrated essential oils, or e-liquids (nicotine liquids) which require child safe packaging; however, even with approved industry leading child safety safeguards in place, once the dropper is removed, there is no existing mechanism which serves the purpose of a physical barrier for limiting spillage or accidental exposure.
Further, bottles having interior surfaces that are not smooth, for example having protruding and recessing threads, have no mechanism to prevent spillage or drinking once the dropper is removed.
There are no known commercially available solutions, which solve these problems. Until now, people simply attempted to physically avoid spillage. What is needed are systems, devices and methods for inhibiting spillage or accidental exposure of the contents of bottles and packaging.
A bottle neck insert can include a cylindrical body having a first end and a second end, the cylindrical body having a plurality of rings; a flange provided at the first end, the flange protruding outwardly from the cylindrical body in a radial direction of the cylindrical body; and a valve section at the second end, the valve section having at least one slit, wherein the flange is configured to seat the insert onto a neck of a bottle and the valve section is configured to allow a pipette to pass through.
A bottle storage system, can include a bottle having a neck with a smooth interior surface; an insert that is configured to fit inside the neck of the bottle; and a pipette assembly that is configured to proceed through the insert into the bottle.
Additional features, advantages, and embodiments of the invention are set forth or apparent from consideration of the following detailed description, drawings and claims. Moreover, it is to be understood that both the foregoing summary of the invention and the following detailed description are examples and intended to provide further explanation without limiting the scope of the invention as claimed.
Some embodiments of the current invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. A person skilled in the relevant art will recognize that other equivalent components can be employed and other methods developed without departing from the broad concepts of the current invention. All references cited anywhere in this specification, including the Background and Detailed Description sections, are incorporated by reference as if each had been individually incorporated.
Some embodiments of the invention relate to a “Dropper Bottle Neck Insert Spill Inhibitor,” or insert, which can be a pinch valve inserted into the neck of the bottle. Some embodiments allow a dropper tip to pass easily in and out of the pinch valve with the pinch valve sealing the bottle against leakage or spillage once the dropper is removed.
Some embodiments of the insert may be produced from an assortment of materials including: Neoprene, HDPE (High-density polyethylene), LDPE (Low-density polyethylene), PET (Polyethylene terephthalate), and Silicone of differing grades. For example, medical grade silicone can be used for its low chemical reactivity profiles, but the inhibitor design is suitable for an array of different materials including a variety of plastics, rubbers, and silicones which may be used for different chemical reactivity scenarios. Some embodiments may comprise a single continuous piece of material injection molded using cavity die molding processes incorporating a single or multi-cavity die.
As shown in
Bottle neck seating collar flange 112 can surround the top section 111 of the insert 110, which can allow the insert 110 to rest on a lip of a bottle neck without sliding down into the bottle. In some embodiments, thin wall retention “upper lip” allows for deployment into existing systems with a tolerance for inclusion in a range of 0.4 to 0.7 mm. In an embodiment, the tolerance for inclusion is 0.4 mm.
A middle section 113 of the inhibitor can include a neck barrel mating section or cylindrical body 120, which comprises a barreled tube that is configured to be mated to an inside neck of a bottle. The collar flange 112 can protrude outwardly from the neck barrel mating section 120 in a radial direction of the neck barrel mating section 120. Along the neck barrel mating section 120, three elevated friction seal rings 114 can be provided, each of which can circumscribe the neck barrel mating section 120. Alternatively, more or less than three friction seal rings 114 can be provided. The cylindrical body 120 can have an outer diameter of about 12 mm. The inner diameter of the cylindrical body 120 can be about 10.5 mm.
Many embodiments were attempted to create a friction fit effect, but in many scenarios, the pressure on the ends forced the pinch valve to stay open (“resting state open”). This resulted in the specific shape and distribution of the friction fit rings to allow pressure distribution and normalization at the ends. Referring to
The system of friction rings can also be designed to prevent lubricating solvents from compromising the seal. By using three rings 114, the entrance of solvents and lubricants into the middle sections of the neck barrel mating section 120 can be prevented and/or minimized and greater dry adhesion factors can be afforded. The rings 114 both provide friction adhesion as well as sealing off the friction adhesion area. Transverse rings added the requisite sealing properties necessary to make the inhibitor universal.
Additionally, this three ring system can create two vacuum cavities which the insertion of the pipette activates. That is, insertion of the pipette forces moisture out of the cavities and creates a secondary adhesion due to the capillary action of the fluid medium. In this way, the three ring system can create mechanical friction as well as a practical vacuum to increase adhesion. The plurality of seal rings 114 can be configured to generate negative pressure against a smooth surface of a neck of the bottle to lock the insert 110 into a position during normal use. The plurality of seal rings can be configured to generate negative pressure against an interior smooth surface of a neck of a Boston round bottle. Normal use of the bottle can include, for example, using a pipette assembly for liquid extraction.
Each of the friction seal rings 114 can protrude identically, although they can be very small and can approach limits of the material medium. Because of the limits of the material medium, some variation in application is expected and tolerable. That is, although silicone is a highly precise material for injection, this is a supple and pliable unit, and the rings themselves are in a range of 0.1 mm and 0.2 mm, with natural variation occurring within that range (normal for silicone molding). This means that as designed, the friction seal rings can be identically shaped and sized, but in practical application they may vary by as much as double due to imprecision of cavitation and mold adherence.
A “Lubricant Saturated” testing model was used and embodiments of the invention were designed accordingly. The math for optimizing friction seal ring coefficients can become more complex when lubricant is applied. The insert friction seal can fit and function while saturated with lubricant. The three ring design created the dual adhesion properties, which allows the design to function.
Referring to
As shown in
The middle section 113 of the inhibitor can comprise neck barrel mating section 120, which can be a barreled tube that is configured to be mated to the inside neck of the bottle. The middle section 113 can be shaped to proceed straight down to afford maximum wall-to-wall surface adhesion and increase its universality. In embodiments where the tapering design was experimented with, the requisite co-efficient of friction could not be achieved to provide a stable deployment. In other words, we had to make the walls as straight as possible in order to maximize the surface area in contact with the inside neck of the bottles. All other designs required secondary locking mechanisms. Additionally, the length of the insert can be maximized to provide greater surface to surface contact. Three elevated friction seal rings 114 can be provided along, and can circumscribe, the neck barrel mating section 120.
The thickness of the middle section walls 113 can be the same towards the top near the collar 112 as the bottom towards the pinch valve segment 116. In some embodiments, a number of different thickness were tried to resolve the resting state issues. In the end, it was found that to normalize the pressure at the ends it was necessary in some embodiments to provide a continuous thickness along the entire length of neck barrel mating section 120. Additionally, this thin wall design affords a greater tilt-ability of the pipette allowing the user to tilt and angle the pipette freely into the body of the bottle. The variable wall thickness designs did not allow for this effect.
At a lower section 115 of the insert 110, the neck barrel mating section 120 can resolve and terminate into pinch valve segment 116 where the pinch valve itself resides. These five parts of the insert can all be continuous and molded from a single piece of material, as seen in
At a bottom portion 115 of the insert 110, the valve section 116 of the insert can comprise pinch valve slits 122. In an embodiment of the invention, the valve section 116 can include six radial slits 122 which open to allow the pipette to pass through. The valve slits 122 can close once the pipette is removed to thus seal the bottle against any accidental spillage. A number of slit configurations are possible. In an embodiment, six slits can be spaced once every 60 degrees. These slits can run 85% to 99% of the length from the center 124 to the edge 126 of the valve section 116 depending on the exact configuration of both the neck's inside diameter and the pipette's outside diameter. For example, the ratio of pipette outside diameter to bottle neck inside diameter can determine the calibration for a specific length of these slits. In a Universal Embodiment, the slits can be effective at 98% of the width of the insert, accommodating most commercially available common sizes.
In an embodiment, the slits can include three slits which are evenly spaced and bisected at the center creating the illusion of six slits. The “six slit” model allowed for the resting state open problem to be further resolved because the slits have the ability to overlap. In some embodiments, four and eight slit designs are viable under certain circumstances, for example, depending on material selection.
In the middle section 113, elevated friction seal rings 114 can seal the insert 110 into the neck of the bottle and prevent it from slipping in or out of the neck of the bottle while the pipette is removed or inserted.
As shown in
As shown in
A pipette assembly 130 shows the standard squeeze bulb dropper pipetting system. A relationship between the bottle 102, the insert 110, and the pipette assembly 130 can be seen in
As shown in
As can be seen from
Contrast Explained: Both embodiments include three elevated rings, however, in the second embodiment Locking Spill Inhibitor Unit 340 these rings are significantly larger and provide Physical Surface to Surface locks in the bottle neck, made possible by a ring added to the internal side of the bottle. The rings of the locking spill inhibitor unit 340 can extend up to 2 mm from the cylindrical housing 341. The rings of the locking spill inhibitor unit 340 can extend in a range of about 0.5 to about 3.0 mm. The rings of the locking spill inhibitor unit 340 can be in a range of 0.5 mm to 3 mm. The rings of the locking spill inhibitor unit 340 can be variant-dependent to accomplish the desired effect with a number of commercially available bottles of this thin wall design. By seamlessly terminating the collar flange 112 at the apex of the bottle neck top 362, a propensity for accidental removal effects caused by the hanging lip of 112 can be reduced. This effect can be customized for a number of commercially available bottle types. The locking can occur first at the top 343 of the thread cavity, and then again at the bottom 345. In contrast, the Standard Spill Inhibitor 110 can have the capacity to secure itself to an entirely smooth surface of a nonspecialized bottle and can do so with the use of friction as well as microvacuum cavities.
Embodiment One “Standard Spill Inhibitor” represents a novel approach to spill inhibition effects on “Smooth Neck” bottle types, while the derivative “Embodiment Two” represents a similar novel approach to accomplishing the same spill inhibitory effects on “Internally Terraced Bottle Neck” bottle types.
While various exemplary embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments.
This application claims priority to U.S. Provisional Application No. 62/216,220, filed Sep. 9, 2015, the content of which is hereby incorporated herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62216220 | Sep 2015 | US |