This application is based on and claims the priority of provisional application Ser. No. 61/608,775 filed Mar. 9, 2012, hereby incorporated by reference.
1. Field of the Invention
The invention relates to bottle stoppers for maintaining vacuum in a bottle, especially a wine bottle, after de-corking and partial evacuation of air from the bottle.
2. Description of the Prior Art
Wine bottles are normally sealed with corks or caps that are removed to gain access to the wine and then put back on the bottle if the wine is not completely consumed. In order to preserve the freshness of left-over wine that is retained for future consumption, it has become accepted practice to create a vacuum after the cork is put back on the bottle. This condition is believed to prolong the shelf life of an open bottle of wine by minimizing the effect of oxygen on the wine left over in the bottle.
To that end, various pumps and related stoppers have been developed that make it possible to create and retain a certain degree of vacuum in the bottle. Such stoppers have a check valve that allows air to flow out of the bottle but not into the bottle. The pumps are used to extract the air from the bottle with the stopper in place. Some pumps are hand operated while others are battery driven, but typically air is evacuated from the bottle by the stroke of a piston. The resulting vacuum in the bottle inhibits oxidation of the remaining wine contents so that freshness and flavor are preserved for some period of time.
The main problem with the stoppers heretofore found in the art is the fact that they lose vacuum rapidly and predictably. Thus, the preservation effect is gradually reduced to the point of no utility in spite of the careful placement of the stopper in the bottle and the relatively high initial level of vacuum generated by the pump. In essence, these devices have proven to be more a matter of style than substance. This invention is directed at providing an improved stopper that retains a constant level of vacuum for at least ten days, after which it is assumed that a wine enthusiast would not drink left-over wine anyway.
One aspect of the invention resides in a stopper with a check valve configured to provide a seal commensurate with the level of vacuum applied to it. The valve is made up of a resilient seat structure (such as made of silicone or rubber) and a plastic plunger with a conical tip designed to mesh perfectly with a seal opening in the seat. The seat structure is dome shaped with the seat opening at the top of the dome and is located at the bottom of the stopper facing up, toward the outside of the bottle. The plunger is slidably contained in a casing above the seat structure so as to engage the seat opening to seal the bottle when the plunger is in its down position and to open the valve when in its up position. As a result of this configuration, a vacuum in the bottle tends to draw the plunger downward pressing on the resilient seat, thereby causing it to push progressively harder against the silicone seat with increased vacuum and form a secure seal between the tip of the plunger and the opening in the seat. Because the seat structure is dome shaped and facing upward, the vacuum in the bottle, which tends to pull the seat downward, will not cause it to deform and break the seal as would happen if the seat where on a planar structure. Rather, it increases the pressure with which the plunger presses against the seat, thus securing a long-lasting seal that maintains the vacuum in the bottle.
According to another aspect, the top of the plunger features a flange that is housed in a larger, cylindrical, top section of the stopper casing. The flange is configured to sit on the bottom of this cylindrical structure when in its down position so as to provide an additional seal that prevents passage of air to the interior of the bottle. When the vacuum in the bottom is released, the resilience of the silicone seat structure provides an upward displacement of the plunger that produces a separation between the flange and the casing to allow air flow around the flange and through the casing in the space between the plunger and the casing wall.
The top surface of the casing has an opening for connection to a pump to extract air and create a vacuum in the bottle. When that is done, the vacuum provided by the pump sucks the plunger upward all the way to the top of the larger cylindrical section of the casing, causing the plunger tip to release the seat so that air can be drawn out of the bottle. According to another aspect of the invention, three protrusions in the top surface of the plunger prevent it from butting against the interior top surface of the casing and form a seal that would hinder air evacuation from the bottle. As the application of vacuum from the pump ceases, the tip of the plunger, by its own weight and drawn by the vacuum in the bottle, moves downward and engages the valve seat to form a seal. The vacuum in the bottle then also sucks in the seat structure drawing it downward until the flange in the plunger engages the interior bottom surface in the larger section of the casing, which provides an additional seal to secure maintenance of the vacuum in the bottle.
According to yet another aspect of the invention, the vertical wall of the larger section of the casing containing the plunger's flange is transparent to display the vertical position of the plunger as an indication of the degree of vacuum present in the bottle. When the vacuum is at its intended level, the seat of the valve structure is pulled down to its lowest possible position, causing the flange of the plunger to but against the interior bottom surface of the larger section of the casing. In that low position the flange is barely visible though the transparent wall. As vacuum is lost, the resilience of the silicone valve tends to gradually push the plunger upward, which correspondingly elevates the flange in the casing and renders it more visible through the transparent wall. When the pressure in the bottle is substantially equal to atmosphere, the tip of the plunger simply rests on the opening of the valve seat without forming an effective seal. Correspondingly, the flange is at its highest position and is visible in its entirety. To that end, it is preferable for the flange to have a different color that provides contrast with the rest of the stopper.
Additional features and advantages of the invention will be forthcoming from the following detailed description of certain specific embodiments when read in conjunction with the accompanying drawings.
Referring to
Formed into the bottom of the sleeve 20 is a valve seat 30 that enables the evacuation of air from the bottle and the subsequent retention of vacuum, the main objective of the invention. The valve seat 30, also shown in
The stopper 10 further includes a plunger 34 with a lower shaft 36 configured to be slidably housed in the lower tubular section 14 of the casing 12. The tip 38 of the shaft is conical in shape with a wall tapered to the degree necessary to conform to the wall of the aperture 32 in the valve seat 30 when no vacuum is exerted on the valve. This ensure maximum contact between the surfaces of the aperture 32 and the tip 38 to provide an optimum seal. The diameter of the shaft 36 of the plunger is slightly smaller than the inner diameter of the tubular section 14 of the casing to allow flow of air between the two. The top portion of the plunger is an enlarged flange 40 sized to be similarly housed in the top section 16 of the casing 12. The outer wall of the flange 40 is preferably colored so as to be clearly visible through the transparent wall 18 of the casing. The length of the shaft 36 of the plunger is selected so that the flange 40 is high in the casing and preferably completely visible through the wall 18 when the tip 38 of the shaft is resting on the seat 30 of the valve under atmospheric conditions (that is, when not subjected to a vacuum pull from inside the bottle). The length of the shaft 36 is also selected such that the bottom 42 of the flange 40 buts against the interior lower surface 44 of the cylindrical section 16 of the casing (shown in
The top surface 50 of the upper section 16 of the casing, shown as transparent in
When the desired degree of vacuum is established in the bottle and the evacuating pump is turned off, the suction provided by the vacuum in the interior of the bottle pulls the valve seat 30 and the plunger 36 all the way down forming a seal both between the aperture 32 and the tip 38 of the plunger at the bottom of the stopper and between the flange and the casing at the top of the stopper. Under those conditions, the flange 40 of the plunger is not visible through the transparent wall 18 of the casing, as illustrated in
Tests have shown that the stopper of the invention maintains a vacuum of 8″ Hg (i.e., a negative relative pressure of that magnitude) for 10 days without any appreciable leakage. After 10 days the test was stopped because considered useless in view of the unavoidable natural degradation of wine regardless of the vacuum applied to it. It is believed that the tannins in the wine begin to oxidize and produce hydrogen peroxide that combines with ethanol to form acetaldehyde, the compound that produces the odor that destroys wine's freshness and fragrance. All prior-art stoppers tested under the same conditions showed a marked and progressive reduction in vacuum beginning the very same day the bottle was evacuated and sealed.
Various modifications are possible within the meaning and range of equivalence of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2526225 | Samuel et al. | Oct 1950 | A |
2663451 | Yarnall | Dec 1953 | A |
5429256 | Kestenbaum | Jul 1995 | A |
D639657 | Hoyt et al. | Jun 2011 | S |
20100327010 | Manera et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
812036 | Aug 1951 | DE |
515653 | Apr 1921 | FR |
1073737 | Sep 1954 | FR |
1074965 | Oct 1954 | FR |
1082517 | Dec 1954 | FR |
70014 | Feb 1959 | FR |
Number | Date | Country | |
---|---|---|---|
61608775 | Mar 2012 | US |