The present embodiments relate generally to footwear and in particular to a method for making footwear and an associated system.
Articles of footwear generally include two primary elements: an upper and a sole structure. The upper is often formed from a plurality of material elements (e.g., textiles, polymer sheet layers, foam layers, leather, synthetic leather) that are stitched or adhesively bonded together to form a void on the interior of the footwear for comfortably and securely receiving a foot. More particularly, the upper forms a structure that extends over instep and toe areas of the foot, along medial and lateral sides of the foot, and around a heel area of the foot. The upper may also incorporate a lacing system to adjust the fit of the footwear, as well as permitting entry and removal of the foot from the void within the upper. In addition, the upper may include a tongue that extends under the lacing system to enhance adjustability and comfort of the footwear, and the upper may incorporate a heel counter.
The sole structure is secured to a lower portion of the upper so as to be positioned between the foot and the ground. In athletic footwear, for example, the sole structure may include a midsole and an outsole. The midsole may be formed from a polymer foam material that attenuates ground reaction forces (i.e., provides cushioning) during walking, running, and other ambulatory activities. The midsole may also include fluid-filled chambers, plates, moderators, or other elements that further attenuate forces, enhance stability, or influence the motions of the foot, for example. The outsole forms a ground-contacting element of the footwear and is usually fashioned from a durable and wear-resistant rubber material that includes texturing to impart traction. The sole structure may also include a sockliner positioned within the upper and proximal a lower surface of the foot to enhance footwear comfort.
In one aspect, an upper for an article of footwear includes a first side portion, a second side portion and a bottom portion, where the first side portion and the second side portion are integral with the bottom portion. The upper may be formed by: placing a section of material on a last member such that a first side surface of the last member is disposed adjacent to a first portion of the section of material, such that a second side surface of the last member is disposed adjacent to a second portion of the section of material and such that a bottom surface of the last member is disposed adjacent to a third portion of the section of material, where the bottom surface of the last member corresponds to the bottom of a foot; pressing a flexible membrane against the section of material and the last member until the section of material conforms to the approximate shape of the last member and forming the upper so that the first portion of the section of material becomes the first side portion of the upper, the second portion of the section of material becomes the second side portion of the upper and the third portion of the section of material becomes the bottom portion of the upper.
A method of making an upper for an article of footwear includes placing an inner member on a last member. The method further includes associating a first side portion of a section of material with a first side surface of a last member such that the first side portion and the first side surface are disposed on opposing sides of the inner member. The method further includes associating a second side portion of the section of material with a second side surface of a last member such that the second side portion and the second side surface are disposed on opposing sides of the inner member. The method further includes associating a bottom portion of the section of material with a bottom surface of the last member such that the bottom portion and the bottom surface are disposed on opposing sides of the inner member, where the bottom surface of the last member corresponds to the bottom surface of a foot. The method further includes pressing a flexible membrane against the last member and the section of material and forming the upper, where the upper has a first side portion, a second side portion and a bottom portion and where the bottom portion extends substantially continuously between the first side portion and the second side portion.
In another aspect, a last assembly includes a last member having the approximate shape of a foot, where the last member further includes a bottom surface corresponding to a foot sole. The last assembly also includes a base member configured to receive a portion of the last member and hold the last member in a substantially fixed position. The last member is mounted to the base member such that the bottom surface of the last member is oriented away from the base member.
In another aspect, a method of making an upper for an article of footwear includes placing an inner member on a last member, the inner member including a bottom portion. The method also includes placing a section of material over the inner member such that a portion of the section of material covers the bottom portion of the inner member and pressing a flexible membrane against the last member, the inner member and the section of material such that the section of material is joined with the inner member, thereby forming the upper.
Other systems, methods, features and advantages of the embodiments will be, or will become, apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description and this summary, be within the scope of the embodiments, and be protected by the following claims.
The embodiments can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the embodiments. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
Referring to
Referring to
It will be understood that forefoot portion 10, midfoot portion 12 and heel portion 14 are only intended for purposes of description and are not intended to demarcate precise regions of last assembly 102. Likewise, lateral side 16 and medial side 18 are intended to represent generally two sides of a component, rather than precisely demarcating last member 102 into two halves.
For consistency and convenience, directional adjectives are employed throughout this detailed description corresponding to the illustrated embodiments. The term “longitudinal” as used throughout this detailed description and in the claims refers to a direction extending a length of a component. In some cases, the longitudinal direction may extend from a forefoot portion to a heel portion of the last member. Also, the term “lateral” as used throughout this detailed description and in the claims refers to a direction extending a width of a component, such as a last member. For example, the lateral direction may extend between a medial side and a lateral side of a last member. Furthermore, the term “vertical” as used throughout this detailed description and in the claims refers to a direction that is perpendicular to both the longitudinal and lateral directions. In situations where a last assembly is placed on a ground surface, the upwards vertical direction may be oriented away from the ground surface, while the downwards vertical direction may be oriented towards the ground surface. It will be understood that each of these directional adjectives may be also be applied to base member 104 as well.
Last member 102 may comprise various surfaces, including a bottom surface 180, a first side surface 182 and a second side surface 184 (see
In different embodiments, the geometry of base member 104 may vary. In some embodiments, base member 104 has a flange-like geometry that narrows inwardly from outer peripheral edge 130. In the current embodiment, the longest portion of base member 104 has length L1, while the longest portion of last member 102 has length L2. As seen in
Embodiments of a last assembly may include provisions for ensuring pressure applied from an external system or apparatus (such as a pressing system described below) is adequately transmitted over a bottom surface of the last member. In some embodiments, a last member may be inverted with respect to a base member. In some cases, the last member may mounted to the base member so that a bottom surface of the last member faces away from the base member.
As seen in
In some embodiments, last member 102 and base member 104 may be seperably attached together. In some embodiments, last member 102 may further include an upper opening portion 186 that corresponds approximately with the foot receiving opening of an upper. In some embodiments, upper opening portion 186 extends along a top portion 188 of last member 102 from heel portion 14, through midfoot portion 12 and partially into forefoot portion 10. In some cases, upper opening portion 186 may provide access to an interior hollow cavity 187 that extends throughout last member 102.
Base member 104 may include receiving slot 170, which is configured to engage and receive last member 102 at upper opening portion 186. As seen in
In some embodiments, base member 104 may be generally tapered from the region adjacent to upper opening portion 186 of last member 102 to outer peripheral edge 130 of base member 104. In other words, the outer surface 132 of base member 104 may be sloped towards outer peripheral edge 130. In some cases, outer surface 132 could have a convex geometry. In other cases, outer surface 132 could have a concave geometry. In still other cases, outer surface 132 may be an inclined surface that is approximately flat. Moreover, in still other cases, the curvature of outer surface 132 could vary over different regions. The geometry and more specifically the curvature of outer surface 132 can be varied according to considerations including, for example, desired stability or to enhance engagement with external components, such as the flexible membrane described in detail below.
With the arrangement described above, it can be appreciated that in some cases the width of last assembly 100, with last member 102 assembled with base member 104, may generally decrease from outer peripheral edge 130 of base member 104 to receiving slot 170, and then may generally increase again from top portion 188 towards bottom surface 180 of last member 102. This arrangement may be in contrast to other embodiments where a last member is arranged with the bottom surface facing downwards, or towards a base member. In such embodiments, the width of the corresponding last assembly may decrease from the bottom edge of the base member, increase quickly along the bottom part of the last member, and finally decrease again towards the top portion of the last member.
Although the embodiments described above include a separable last member and base member, in other embodiments, last member 102 and base member 104 could be permanently joined. In such embodiments, last member 102 and base member 104 could be integrally formed, for example, during a molding process. In other embodiments, last member 102 and base member 104 could be permanently joined using an adhesive or other permanent means of fastening last member 102 and base member 104.
Last assembly 100 may include provisions for temporarily holding portions of an article of footwear in place on last member 102. In some embodiments, last assembly 100 may provide a single system for temporarily holding portions of an article in place on last member 102. In other embodiments, last assembly 100 may provide two or more systems for temporarily holding portions of an article in place on last member 102. In one embodiment, for example, last assembly 100 may incorporate two types of provisions that work cooperatively to retain portions of an article on last member 102. This may help in retaining various portions of footwear on last member 102 over a wide range of different operating conditions or stages in a manufacturing process.
Some examples of provisions for retaining portions of an article and/or material on a last assembly are disclosed in Fisher, U.S. Patent Application Publication Number ______, now U.S. patent application Ser. No. ______, filed Feb. 14, 2013 (Attorney Docket Number 51-2536) and titled “Last with Retractable Pins”, the entirety of which is hereby incorporated by reference. Such examples include vacuum holes, retractable pins, adhesives as well as other provisions.
Last assembly 100 may include provisions for supplying vacuum pressure along one or more portions. In some embodiments, last assembly 100 may be provided with plurality of vacuum holes 150. In particular, in some cases, plurality of vacuum holes 150 may be incorporated into outer surface 132 of base member 104 and/or outer surface 140 of last member 102. Each vacuum hole of plurality of vacuum holes 150 may be in fluid communication with a vacuum pump or other source of a vacuum (not shown). Moreover, it should be understood that various means of providing fluid communication between vacuum holes 150 and a vacuum pump or other source could be provided in various embodiments. For example, some embodiments could incorporate internal channels, fluid lines or other means for connecting one or more vacuum holes 150 with a vacuum pump. In some embodiments, some or all of plurality of vacuum holes 150 may be in fluid communication with one or more common vacuum supply channels. In one embodiment, it is contemplated that a single vacuum supply line is introduced at a portion of last assembly 100. This single supply line is then attached in a manner that places it in fluid communication with plurality of vacuum holes 150. However, in some other embodiments a vacuum may not be supplied at a single location, but may be provided at one or more regions of last member 100. In another embodiment, for example, vacuum holes 150 may be in fluid communication with holes or openings on a lower surface of last assembly 100. Thus, regions of low air pressure provided beneath or along the bottom of last assembly 100 may facilitate the pulling of air through vacuum holes 150 and out the through the lower surface of last assembly 100.
In one embodiment, it is contemplated that vacuum holes 150 are in fluid communication with an interior hollow cavity 187 of last member 102 and a central hollow cavity 189 of base member 104 (see
In different embodiments, the locations of plurality of vacuum holes 150 could vary. In some embodiments, vacuum holes could be incorporated into last member 102. In other embodiments, vacuum holes could be incorporated into base member 104. In one embodiment, vacuum holes could be incorporated into both last member 102 and base member 104. In some embodiments, plurality of vacuum holes 150 may include first set of vacuum holes 152 and second set of vacuum holes 156.
In the embodiment shown in
It will be understood that other embodiments could include vacuum holes in any other portions of last member 102 or base member 104 and could likewise exclude vacuum holes in any portions of last member 102 and/or base member 104. Furthermore, while the current embodiment illustrates a substantially uniform arrangement and spacing for vacuum holes within first set of vacuum holes 152 and second set of vacuum holes 156, other embodiments could incorporate any other arrangements of vacuum holes. For example, in other embodiments the number, size and pattern of vacuum holes could vary. The locations and arrangements could be selected according to various considerations including, but not limited to: required magnitude of forces, curvature of components, intended use for last assembly 100 as well as possibly other considerations.
Last assembly 100 may further include additional provisions for holding one or more portions of an article (or materials used to construct an article) in place. In some embodiments, last assembly 100 may be configured with one or more retaining features for engaging one or more portions of an article. In one embodiment, last member 102 may include plurality of retractable pins that may engage one or more holes in a section of material. The term “retractable pin” as used throughout this detailed description and in the claims refers to a member or element that projects outwardly from a surface of last member 102. In one embodiment, each retractable pin comprises a pin-like projection that is configured to retract into and extend out of a cavity of last member 102, as discussed in further detail below.
The term retractable pin is not intended to be limiting and may refer to components of varying sizes, geometries and constructions. For example, while the current embodiments illustrate retractable pins as generally cylindrical in shape with rounded tips, other embodiments of retractable pins could have any other geometries. As one example, other embodiments may utilize one or more curved projections or pins, including, in some cases, a rounded hook-like end for catching onto a material.
In some embodiments, last member 102 may be configured with one or more sets of retractable pins. Last member 102 may include first set of retractable pins 190, which further includes first retractable pin 191, second retractable pin 192 and third retractable pin 193. First set of retractable pins 190 may be disposed at toe portion 11 of forefoot portion 10 (see
Although the current embodiment depicts a set of retractable pins at the toe portion 11 of last member 102, in other embodiments, the configurations, number and locations of various retractable pins could vary. In some cases, the locations of each set of retractable pins may be selected to most effectively hold one or more portions of an article on last member 102. Moreover, one or more retractable pins may be optional and some embodiments may not include any retractable pins.
In addition to holding portions of material in place using various kinds of pressures (from vacuum holes and/or external pressures) and retractable pins, other embodiments could incorporate still other methods for temporarily holding portions of material to a last member. For example, in some cases, one or more adhesives could be used to temporarily hold portions of material to a last member. In other embodiments, any other means known in the art for temporarily associating portions of material with a last could be used including any kinds of fasteners such as clips, clamps, as well as possibly others fasteners.
Although the current embodiments illustrate a generally homogenous single layer of material, the term “section of material” is not limited to single layers of material or generally homogenous sections. In other cases, for example, a section of material could comprise different portions having substantially different material properties. In still other cases, a section of material could comprise multiple layers, including, for example, a base layer and a trim layer as well as possible other layers. Moreover, in other embodiments multiple distinct sections of material can be associated together and formed into an upper using the methods described in this detailed description.
In some embodiments, a section of material may be pre-cut or otherwise manufactured in a pattern for making an upper. In some cases, different portions of a section of material can be configured to associate with different surfaces of a last member. For example, a section of material may include a first portion, a second portion and a third portion configured to confront a first side surface, a second side surface and a bottom surface, respectively, of a last member. The method of associating of different portions of a section of material with different surfaces of a last member during the forming process is discussed in detail below.
Section of material 400 may be pre-cut or otherwise formed into a pattern for an upper. In some embodiments, section of material 400 may include a bottom portion 402, a first side portion 404 and a second side portion 406. In some cases, section of material 400 may also include a distinct toe portion 408. The various portions may be configured to form corresponding portions of an upper. In some embodiments, for example, bottom portion 402, first side portion 404, second side portion 406 and toe portion 408 may be associated with the bottom portion, first side portion, second side portion and toe portion, respectively, of a three-dimensional formed upper, as discussed in further detail below.
The geometry of section of material 400, including the various different portions, may vary in different embodiments according to the intended design for the finished upper. In one embodiment, first side portion 404, second side portion 406 and toe portion 408 may all be configured with a plurality of slots 420, which may give the formed upper a unique aesthetic design and may also improve airflow and/or reduce weight. However, the specific design shown here for section of material 400 is only intended to be exemplary and in other embodiments any other design is possible, including any patterns or designs known for making uppers.
In some embodiments, bottom portion 402 may include provisions to facilitate three-dimensional contouring of a formed upper. In some cases, bottom portion 402 may include a central slit 440 that may improve the ability of bottom portion 402 to adapt to contours on a last member during manufacturing. In particular, central slit 440 may improve stretching as well as possibly shearing or other deformations of bottom portion 402 that may occur during formation of the upper.
In some embodiments, first side portion 404 and second side portion 406 can comprise portions that correspond with rearward portions of a formed upper. For example, in one embodiment, first side portion 404 and second side portion 406 may include first rearwardly extending portion 450 and second rearwardly extending portion 452, respectively. As discussed in further detail below, first rearwardly extending portion 450 and second rearwardly extending portion 452 may be joined together during a forming process in order to join first side portion 404 and second side portion 406 at a heel portion of an upper and thereby form a rearward portion for the upper.
In some embodiments, footwear pressing system 500 may include a base platform 502 and a pressing assembly 504. In some cases, base platform 502 may comprise a substantially flat rectangular surface. In other cases, base platform 502 could have any other geometry and could include provisions for receiving a last assembly, such as one or more recessed portions into which a portion of a last may be fit. Pressing assembly 504 may be configured to fit over base platform 502. In some embodiments, pressing assembly 504 comprises an outer frame member 510 and a flexible membrane 512 that is mounted within the outer frame member 510. As shown in
In different embodiments, the materials used for flexible membrane 512 could vary. Examples of flexible materials that may be used include, but are not limited to: flexible textiles, natural rubber, synthetic rubber, silicone, elastomers, other elastomers such as silicone rubber, as well as other materials known in the art.
For purposes of clarity, only some provisions of footwear pressing system 500 are shown in the Figures. However, in other embodiments, additional provisions could be provided. Examples of additional provisions include, but are not limited to, provisions for supplying a vacuum between pressing assembly 504 and base platform 502, provisions for applying heat to objects in contact with flexible membrane 512, provisions for supplying power to components of footwear pressing system 500, control buttons, fasteners for clamping pressing assembly 504 and base platform 502 together as well as any other provisions. Examples of such provisions are disclosed in Hull, U.S. Pat. No. 8,162,022, filed Oct. 3, 2008, and titled “Method of Customizing an Article and Apparatus”, the entirety of which is hereby incorporated by reference.
Next, as seen in
As seen in
Once section of material 400 has been placed onto last member 102, pressing assembly 504 may be placed over last assembly 100 and section of material 400, as seen in
Referring now to
As seen in
In some embodiments, plurality of vacuum holes 150 may provide areas where flexible membrane 512 presents an increased inward force to hold section of material 400 in place on last assembly 102. For example, first set of vacuum holes 152 provide a path for air trapped between the various layers to flow to a region of lower air pressure. This causes flexible membrane 512 (which is under the force of the ambient air) to push inwardly, compressing section of material 400 against last member 102 in the vicinity of first set of vacuum holes 152. This configuration creates regions on either side of last member 102 where the pressure of flexible membrane 512 is strong enough to hold section of material 400 in place. This helps to ensure that the portions of section of material 400 stay in place on last member 102 while the pressure (and possibly heat) applied by pressing assembly 504 facilitates contouring of portions and fusing between various portions of material.
In some embodiments, third set of vacuum holes 156 may provide a path for air trapped between flexible membrane 512 and base member 104 to travel to a region of lower air pressure. This causes flexible membrane 512 (which is under the force of the ambient air) to wrap tightly over base member 104. Moreover, the geometry of base member 104 helps facilitate a smooth transition for flexible membrane 512 between last assembly 100 and base platform 502. In particular, the contoured shape of base member 104 allows flexible membrane 512 to gently curve down from last member 102 to base member 104. This arrangement may help avoid abrupt folds, sharp bends or edges in flexible membrane 512 that may impede the strength of the applied vacuum in the vicinity of last assembly 100 or which may possibly damage flexible membrane 512.
As seen most clearly in
In other embodiments, other methods of applying pressure to last assembly 100 may be used. For example, in one alternative embodiment, pressing system 500 (or part of pressing system 500) may be placed inside an external fluid chamber that can be pressurized. As the pressure inside the chamber is increased, the external pressure applied by the chamber fluid to the flexible membrane 512 may increase, which may increase the pressure of flexible membrane 512 section of material 400 against last member 102. As one possible example, pressing system 500 could be disposed within a larger pressurized fluid chamber. In this example, last assembly 100 with a section of material is placed between pressing assembly 504 and base platform 502. By increasing the pressure of the external fluid chamber, flexible membrane 512 may further press against last member 100 and the section of material. In some cases, this may be done in combination with a vacuum pressure applied within pressing system 500. In other cases, this may be done without the use of a vacuum pressure within pressing system 500. Embodiments including an external pressurized chamber could utilize any fluids including gases (such as air) and liquids. To achieve external pressure on a flexible membrane, embodiments could use any of the components or systems disclosed in Fisher et al., U.S. Patent Application Publication Number ______, now U.S. patent application Ser. No. ______, filed Feb. 22, 2013 and titled “System and Method for Applying Heat and Pressure to Three-Dimensional Articles” (Attorney Docket Number 51-2720), the entirety of this document being incorporated by reference herein.
As also seen in
In contrast to some alternative embodiments of an upper, upper 1000 may be configured with bottom portion 1002 that may be bonded directly to a sole structure 1100, as shown in
Some embodiments could include provisions for further associating upper 1000 and sole structure 1100 with additional structures, such as, for example, a bootie or other inner liner. Booties, inner layers or liners may be generally referred to as “inner members” throughout this detailed description and in the claims. Referring to
As seen in
In some embodiments, an upper can be formed by fusing, bonding or otherwise joining one or more sections of material to an inner member, such as a bootie or inner liner.
Referring first to
Referring next to
In order to temporarily fix portions of section of material 2010 in place on inner member 2000 prior to the application of heat and pressure, some embodiments may include adhesive layers. For example, as seen in
In this arrangement, bottom portion 2012 of section of material 2010 may confront, and substantially cover, a bottom portion 2030 (see
Referring now to
The resulting upper 2500, shown in
While various embodiments of the embodiments have been described, the description is intended to be exemplary, rather than limiting and it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of the embodiments. Accordingly, the embodiments are not to be restricted except in light of the attached claims and their equivalents. Also, various modifications and changes may be made within the scope of the attached claims.