Bottom grading apparatuses for aquaculture systems

Information

  • Patent Grant
  • 11785921
  • Patent Number
    11,785,921
  • Date Filed
    Thursday, November 19, 2020
    3 years ago
  • Date Issued
    Tuesday, October 17, 2023
    7 months ago
Abstract
Bottom grading apparatuses for aquaculture systems are disclosed herein. An example system includes a vessel filled with water that receives fish, the vessel having a bottom surface with drain; a plenum in fluid communication with the vessel; a multiway valve in fluid communication with the plenum, a mortality pipe, and a grading pipe; and a mortality container in fluid communication with the mortality pipe and the vessel, wherein the fish can re-enter the vessel through the mortality container and deceased fish remain in the mortality container, wherein when the multiway valve is closed to the mortality pipe, the fish will divert through the grading pipe.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present technology pertains to aquaculture, and more specifically, but not by limitation to apparatuses and methods of bottom grading of biological species in aquaculture systems through use of a selectively controllable bottom grading system.


SUMMARY OF THE INVENTION

Various embodiments of the present disclosure are directed to a system comprising a vessel filled with water that receives fish, the vessel having a bottom surface with drain; a plenum in fluid communication with the vessel; a multiway valve in fluid communication with the plenum, a mortality pipe, and a grading pipe; and a mortality container in fluid communication with the mortality pipe and the vessel, wherein the fish can re-enter the vessel through the mortality container and deceased fish remain in the mortality container, wherein when the multiway valve is closed to the mortality pipe, the fish will divert through the grading pipe.


Various embodiments of the present disclosure are directed to a method comprising cultivating fish in an aquaculture system, the aquaculture system comprising: a vessel filled with water that receives large sized fish, the vessel having a bottom surface with drain; a plenum in fluid communication with the vessel, the plenum comprising a plenum in fluid communication with a mortality pipe; a multiway valve in fluid communication with the mortality pipe and a grading pipe; and a mortality container in fluid communication with the mortality pipe and the vessel, wherein the fish can re-enter the vessel through the mortality container and deceased fish remain in the mortality container; closing the grading pipe using the multiway valve to allow the fish to flow into the mortality container; and closing the grading pipe using the multiway valve to allow the fish to flow into the grading pipe.


Various embodiments of the present disclosure are directed to a system comprising a vessel filled with water that receives large sized fish, the vessel having a bottom surface with drain; a plenum in fluid communication with the vessel, the plenum comprising a plenum housing having at least two


outlet interfaces that each comprise a mortality conduit and a harvesting conduit; and a swiveling junction coupled with the drain, the swiveling junction capable of selective alignment with each of the at least two outlet interfaces.





BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which: The accompanying drawings, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed disclosure, and explain various principles and advantages of those embodiments.


The methods and systems disclosed herein have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present disclosure so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.



FIG. 1 is a front plan schematic view of an example aquaculture system with a bottom grading system, constructed in accordance with the present disclosure.



FIG. 2 is a side plan schematic view of the example aquaculture system with a bottom grading system, illustrating a multiway valve.



FIG. 3 is a flowchart of an example method of aquaculture system operation and bottom grading performed in accordance with the present disclosure.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present disclosure is now described more fully with reference to the accompanying drawings, in which example embodiments of the present disclosure are shown. The present disclosure may, however, be embodied in many different forms and should not be construed as necessarily being limited to the example embodiments set forth herein. Rather, these example embodiments are provided so that the disclosure is thorough and complete, and fully conveys the concepts of the present disclosure to those skilled in the art. Also, features described with respect to certain example embodiments may be combined in and/or with various other example embodiments. Different aspects and/or elements of example embodiments, as disclosed herein, may be combined in a similar manner. Further, at least some example embodiments may individually and/or collectively be components of a larger system, wherein other procedures may take precedence over and/or otherwise modify their application. Additionally, a number of steps may be required before, after, and/or concurrently with example embodiments, as disclosed herein. Note that any and/or all methods and/or processes, at least as disclosed herein, can be at least partially performed via at least one entity, at least as described herein, in any manner, irrespective of the at least one entity have any relationship to the subject matter of the present disclosure.


Generally described, the present disclosure describes aquaculture systems that include bottom grading features. In some embodiments, a plenum comprising a plurality of conduits is associated with an aquaculture vessel. In some embodiments, a multiway valve allows for selective use of a mortality container and/or a grading system.


In some embodiments, the aquaculture systems disclosed herein can comprise a means for selectively aligning an outlet (e.g., drain) of the vessel with outlet interfaces (e.g., conduits) of the plenum which allows for bottom grading of deceased fish and recirculation of live fish.


These and other advantages of the present disclosure are provided in greater detail herein with reference to the collective drawings.



FIGS. 1 and 2 collectively illustrate an example aquaculture system 100 that comprises an aquaculture vessel 102, a plenum 104, and a mortality container 106 (e.g. morality box). The aquaculture vessel 102 is utilized to cultivate large fish such as salmon in a fluid such as seawater. The aquaculture vessel 102 has a particular configuration and shape in some embodiments. For example, in one or more embodiments, the aquaculture vessel 102 includes a bottom surface 108 that slopes downwardly from an outer sidewall 110 to an outlet 112 or a drain. In some embodiments the outlet 112 is aligned with a central axis A of the aquaculture vessel 102. The angle of the bottom surface 108 can also be defined relative to the central axis A.


In operation, as fish are cultivated and grow in the aquaculture vessel 102, some fish may die. The deceased fish will fall to the bottom of the aquaculture vessel 102. The sloped configuration of the bottom surface 108 ensures that these deceased fish will be directed into the outlet 112. In another function, the sloped configuration of the bottom surface 108 ensures that live fish will aggregate near the outlet 112 when the fish are selected for either grading or harvesting. To be sure, the “harvesting” of fish can include any operation in which live fish are moved out of the aquaculture vessel 102, which can include moving the fish into another vessel or otherwise. Grading requires movement of the fish into a grading pipe through use of a valve, which is disclosed in greater detail infra. The plenum 104 comprises a housing or enclosure 114. Two or more conduits, such as a mortality conduit 116 and a harvesting conduit 118 can be included in the plenum 104. Additional conduits can be utilized in some embodiments. A junction 120 is coupled to the outlet 112 of the aquaculture vessel 102. In some embodiments, the junction 120 is a j-shaped member having a nozzle end 121 that aligns with one or more of the various conduits of the plenum 104.


In some embodiments, the junction 120 can swivel to selectively align with the two or more conduits of the plenum 104. For example, the junction 120 can selectively align with each of the mortality conduit 116 and the harvesting conduit 118. To transmit the fish out of the aquaculture vessel 102, the junction 120 (e.g. a swiveling junction) can be aligned with the harvesting conduit 118 and fish can exit through the harvesting conduit 118 by way of the junction 120 (e.g. a swiveling junction).


In some embodiments, the outlet 112 has a funnel configuration or shape in area 122 that terminates at a connection to one end of the junction 120.


The aquaculture system 100 in some embodiments comprises a mortality pipe 124 that is a pathway of fluid communication between the mortality conduit 116 and the mortality container 106. In one embodiment, the mortality pipe 124 has a first section that extends between the junction 120 and a multiway valve 126 (e.g. three-way valve) and a second section that extends between the multiway valve 126 and the mortality container 106. In some embodiments, the multiway valve 126 is located in-line with the mortality conduit 116.


The mortality container 106 comprises an enclosure that is in fluid communication with the mortality pipe 124. The mortality container 106 is fed from underneath by the mortality pipe 124 in some instances. In some embodiments, the mortality container 106 is accessible from an upper end so as to allow for removal of deceased fish that are trapped inside the mortality container 106. In one or more embodiments, the mortality container 106 is positioned near an upper end of the aquaculture vessel 102.


In various embodiments, the mortality container 106 comprises a shunt 128 that extends into the aquaculture vessel 102. The shunt 128 allows live fish traveling through the mortality pipe 124 to re-enter the aquaculture vessel 102. According to some embodiments, the mortality container 106 comprises a filter section output conduit 130. The filter section output conduit 130 allows for seawater in the mortality container 106 to be directed to one or more filtering assemblies for treatment. In some embodiments, the multiway valve 126 is coupled with a grading pipe 134. In some instances, fish can be diverted through the grading pipe 134 for analysis when the multiway valve 126 is closed to the mortality container 106. In general, the multiway valve 126 comprises a first outlet that couples with the mortality container 106 and a second outlet that couples with the grading pipe 134. In operation, when fish are being cultivated in the aquaculture vessel 102, the junction 120 (e.g. a swiveling junction) is aligned with the mortality conduit 116 and the multiway valve 126 is configured so that the grading pipe 134 is closed and the mortality pipe 124 is open. This configuration allows both live and dead fish to circulate through the mortality container 106. Deceased fish remain in the mortality container 106 and live fish can re-enter the aquaculture vessel 102 through the shunt 128 between the mortality container 106 and the aquaculture vessel 102.


It will be understood that as deceased fish remain in the mortality container 106, the deceased fish may give off contaminates that affect seawater quality. Thus, a pump can be used to draw seawater in the mortality container 106 into the filter section output conduit 130. The seawater can be cleaning using any number of cleaning techniques such as drum filtering, biofiltering, trickling, and so forth. When grading of fish is desired, an operator or control system can be configured to switch the multiway valve 126 so that the grading pipe 134 is open and the mortality pipe 124 is closed. Live fish (and in some instances deceased fish) are directed through the grading pipe 134.



FIG. 3 is a flowchart of a method for bottom grading of fish in an aquaculture system. The method includes a step 302 of cultivating fish in an aquaculture system. The aquaculture system comprises the features of the aquaculture systems described above in various embodiments. When cultivating the fish in the vessel, deceased fish can be collected in a mortality container. This is facilitated by a step 304 of closing the grading pipe using a multiway valve to allow the fish to flow into the mortality container through a mortality pipe. This step incidentally allows live fish to re-enter the vessel through a shunt in the mortality container. Thus, the method includes a step 306 of collecting deceased fish in the mortality container.


When an operator desires to grade a portion of the fish in the vessel, the method includes a step 308 of opening the grading pipe using the multiway valve, which closes the mortality pipe, to allow the fish to flow into the grading pipe.


The method can include allowing deceased and live fish to travel through a junction into mortality container by way of a mortality pipe extending between the mortality container and the mortality conduit. As noted above, the junction couples with a drain or outlet of the vessel. In some embodiments, the method includes grading the deceased fish according to accepted standards that would be known to one of skill in the art.


In some embodiments, the movement of fish and seawater through the aquaculture system is facilitated through the use of one or more pumps that push or pull water through the various components and pipes of the aquaculture system.


In some embodiments, the method can include selectively re-aligning the junction with a harvesting conduit, in embodiments where the junction comprises a swiveling junction.


The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present technology has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the present technology in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the present technology. Exemplary embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, and to enable others of ordinary skill in the art to understand the present technology for various embodiments with various modifications as are suited to the particular use contemplated.


Aspects of the present technology are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the present technology. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.


In the following description, for purposes of explanation and not limitation, specific details are set forth, such as particular embodiments, procedures, techniques, etc. in order to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced in other embodiments that depart from these specific details.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” or “according to one embodiment” (or other phrases having similar import) at various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Furthermore, depending on the context of discussion herein, a singular term may include its plural forms and a plural term may include its singular form. Similarly, a hyphenated term (e.g., “on-demand”) may be occasionally interchangeably used with its non-hyphenated version (e.g., “on demand”), a capitalized entry (e.g., “Software”) may be interchangeably used with its non-capitalized version (e.g., “software”), a plural term may be indicated with or without an apostrophe (e.g., PE's or PEs), and an italicized term (e.g., “N+1”) may be interchangeably used with its non-italicized version (e.g., “N+1”). Such occasional interchangeable uses shall not be considered inconsistent with each other.


Also, some embodiments may be described in terms of “means for” performing a task or set of tasks. It will be understood that a “means for” maybe expressed herein in terms of a structure, such as a processor, a memory, an 1/0 device such as a camera, or combinations thereof. Alternatively, the “means for” may include an algorithm that is descriptive of a function or method step, while in yet other embodiments the “means for” is expressed in terms of a mathematical formula, prose, or as a flow chart or signal diagram.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


It is noted at the outset that the terms “coupled,” “connected”, “connecting,” “electrically connected,” etc., are used interchangeably herein to generally refer to the condition of being electrically/electronically connected. Similarly, a first entity is considered to be in “communication” with a second entity (or entities) when the first entity electrically sends and/or receives (whether through wireline or wireless means) information signals (whether containing data information or non-data/control information) to the second entity regardless of the type (analog or digital) of those signals. It is further noted that various figures (including component diagrams) shown and discussed herein are for illustrative purpose only, and are not drawn to scale.


If any disclosures are incorporated herein by reference and such incorporated disclosures conflict in part and/or in whole with the present disclosure, then to the extent of conflict, and/or broader disclosure, and/or broader definition of terms, the present disclosure controls. If such incorporated disclosures conflict in part and/or in whole with one another, then to the extent of conflict, the later-dated disclosure controls.


The terminology used herein can imply direct or indirect, full or partial, temporary or permanent, immediate or delayed, synchronous or asynchronous, action or inaction. For example, when an element is referred to as being “on,” “connected” or “coupled” to another element, then the element can be directly on, connected or coupled to the other element and/or intervening elements may be present, including indirect and/or direct variants. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.


Although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not necessarily be limited by such terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present disclosure.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be necessarily limiting of the disclosure. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “includes” and/or “comprising,” “including” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Example embodiments of the present disclosure are described herein with reference to illustrations of idealized embodiments (and intermediate structures) of the present disclosure. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, the example embodiments of the present disclosure should not be construed as necessarily limited to the particular shapes of regions illustrated herein, but are to include deviations in shapes that result, for example, from manufacturing.


Any and/or all elements, as disclosed herein, can be formed from a same, structurally continuous piece, such as being unitary, and/or be separately manufactured and/or connected, such as being an assembly and/or modules. Any and/or all elements, as disclosed herein, can be manufactured via any manufacturing processes, whether additive manufacturing, subtractive manufacturing and/or other any other types of manufacturing. For example, some manufacturing processes include three dimensional (3D) printing, laser cutting, computer numerical control (CNC) routing, milling, pressing, stamping, vacuum forming, hydroforming, injection molding, lithography and/or others.


Any and/or all elements, as disclosed herein, can include, whether partially and/or fully, a solid, including a metal, a mineral, a ceramic, an amorphous solid, such as glass, a glass ceramic, an organic solid, such as wood and/or a polymer, such as rubber, a composite material, a semiconductor, a nano-material, a biomaterial and/or any combinations thereof. Any and/or all elements, as disclosed herein, can include, whether partially and/or fully, a coating, including an informational coating, such as ink, an adhesive coating, a melt-adhesive coating, such as vacuum seal and/or heat seal, a release coating, such as tape liner, a low surface energy coating, an optical coating, such as for tint, color, hue, saturation, tone, shade, transparency, translucency, non-transparency, luminescence, anti-reflection and/or holographic, a photo-sensitive coating, an electronic and/or thermal property coating, such as for passivity, insulation, resistance or conduction, a magnetic coating, a water-resistant and/or waterproof coating, a scent coating and/or any combinations thereof.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and should not be interpreted in an idealized and/or overly formal sense unless expressly so defined herein.


Furthermore, relative terms such as “below,” “lower,” “above,” and “upper” may be used herein to describe one element's relationship to another element as illustrated in the accompanying drawings. Such relative terms are intended to encompass different orientations of illustrated technologies in addition to the orientation depicted in the accompanying drawings. For example, if a device in the accompanying drawings is turned over, then the elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. Therefore, the example terms “below” and “lower” can, therefore, encompass both an orientation of above and below.


While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. The descriptions are not intended to limit the scope of the invention to the particular forms set forth herein. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments.

Claims
  • 1. A method, comprising: cultivating fish in an aquaculture system, the aquaculture system comprising: a vessel filled with water that receives large sized fish, the vessel having a bottom surface with a drain;a swiveling junction in fluid communication with the drain; a plenum in fluid communication with the vessel, the plenum comprising a plenum housing in fluid communication with at least one mortality conduit and at least a harvesting conduit;the swiveling junction configured and dimensioned to selectively align with the at least one mortality conduit and the at least one harvesting conduit to transmit fish out of the vessel via the drain;the at least one mortality conduit in fluid communication with at least one mortality pipe;a multiway valve in fluid communication with the at least one mortality pipe and at least one grading pipe;a mortality container in fluid communication with the at least one mortality pipe;the mortality container comprising a shunt that extends into the aquaculture vessel and a filter section output conduit; andswiveling the swiveling junction relative to the harvesting conduit and aligning the swiveling junction with at least one mortality conduit to transmit deceased and live fish out of the vessel and into the at least one mortality pipe;closing the multiway valve to the grading pipe to allow fish to flow into the mortality container;allowing live fish to re-enter the vessel through the shunt of the mortality container while deceased fish remain in the mortality container;directing water in the mortality container to at least one filtering assembly through the filter section output conduit of the mortality container; andaligning the multiway valve to open the grading pipe so that fish flow into the grading pipe.
  • 2. The method according to claim 1, wherein said step of aligning the multiway valve to open to the grading pipe so that fish flow into the grading pipe further comprises grading the fish.
  • 3. The method according to claim 1, wherein said step of allowing live fish to re-enter the vessel through the shunt of the mortality container while deceased fish remain in the mortality container further comprises collecting a portion of the deceased fish in the mortality container.
  • 4. A method for grading fish in an aquaculture system comprising: housing fish in a vessel;closing a multiway valve to a grading pipe and opening the multiway valve to a second portion of a mortality pipe that leads to a mortality container;transmitting fish through a swiveling junction located underneath the vessel, in fluid communication with a drain of the vessel, the swiveling junction structured to selectively align with: a first portion of the mortality pipe, through which fish are transmitted to the second portion of the mortality pipe and into the mortality container, anda harvesting conduit, through which fish are transmitted for harvesting;swiveling the swiveling junction relative to the harvesting conduit and aligning the swiveling junction with the first portion of the mortality pipe;pumping water and fish through the swiveling junction, the first portion of the mortality pipe, the multiway valve, and the second portion of the mortality pipe into the mortality container;allowing live fish to reenter the vessel through a shunt in the mortality container wherein the shunt is in fluid communication with the vessel; andpumping water within the mortality container through a filter section output conduit of the mortality container.
  • 5. The method of claim 4 wherein said method further comprises opening the multiway valve to the grading pipe and closing the multiway valve to the second portion of the mortality pipe.
  • 6. The method of claim 5 wherein said method further comprises transmitting fish through the swiveling junction located underneath the vessel, in fluid communication with the drain of the vessel, and selectively aligned with the first portion of the mortality pipe.
  • 7. The method of claim 6 wherein said method further comprises pumping water and fish through the swiveling junction, the first portion of the mortality pipe, the multiway valve, and the grading pipe.
  • 8. The method of claim 7 wherein said method further comprises grading fish pumped through the grading pipe.
  • 9. The method of 8 wherein said method further comprises removing deceased fish from the mortality container.
CLAIM OF PRIORITY

This application is a Divisional of U.S. patent having Ser. No. 15/862,573, which was filed on Jan. 4, 2018. The above application is incorporated by reference herein in their entirety.

US Referenced Citations (111)
Number Name Date Kind
2643481 Ederer Jun 1953 A
3200949 Aulich Aug 1965 A
3771492 Doherty Nov 1973 A
3832720 Cook Aug 1974 A
4009782 Grimshaw Mar 1977 A
4052960 Birkbeck et al. Oct 1977 A
4067809 Kato Jan 1978 A
4141318 MacVane Feb 1979 A
4225543 Hohman Sep 1980 A
4394259 Benny et al. Jul 1983 A
4607595 Busot et al. Aug 1986 A
4728438 Featherstone et al. Mar 1988 A
4915059 Long Apr 1990 A
4966096 Adey Oct 1990 A
5038715 Fahs, II Aug 1991 A
5123195 Hawkins Jun 1992 A
5186121 Smith, Jr. Feb 1993 A
5317645 Perozek et al. May 1994 A
5385428 Taft, III et al. Jan 1995 A
5540521 Biggs Jul 1996 A
5659977 Jensen et al. Aug 1997 A
5732654 Perez et al. Mar 1998 A
5961831 Lee et al. Oct 1999 A
5978315 Molaug Nov 1999 A
5979362 McRobet Nov 1999 A
6041738 Hemauer et al. Mar 2000 A
6065430 Sheriff May 2000 A
6099879 Todd, Jr. Aug 2000 A
6206612 Meyer Mar 2001 B1
6317385 Hedgepeth Nov 2001 B1
6382134 Gruenberg et al. May 2002 B1
6443098 Blyth et al. Sep 2002 B1
6447681 Carlberg et al. Sep 2002 B1
6474264 Grimberg et al. Nov 2002 B1
6499431 Lin et al. Dec 2002 B1
6722314 Crisinel et al. Apr 2004 B1
6902675 Kelly et al. Jun 2005 B2
6932025 Massingill et al. Aug 2005 B2
6986323 Ayers Jan 2006 B2
6988394 Shedd et al. Jan 2006 B2
7001519 Linden et al. Feb 2006 B2
7082893 Schreier et al. Aug 2006 B2
7462284 Schreier et al. Dec 2008 B2
7594779 Hildstad et al. Sep 2009 B2
8117992 Parsons et al. Feb 2012 B2
8141515 Nien Mar 2012 B2
8506811 Bradley et al. Aug 2013 B2
8535883 Cane et al. Sep 2013 B2
8633011 Palmer et al. Jan 2014 B2
9637402 Tal et al. May 2017 B2
9756838 Kunitomo et al. Sep 2017 B2
10034461 Holm et al. Jul 2018 B2
10660315 Alcantar et al. May 2020 B1
10694722 Holm et al. Jun 2020 B1
10748278 Brubacher Aug 2020 B2
10959411 Holm Mar 2021 B2
11425895 Holm et al. Aug 2022 B2
11484015 Holm et al. Nov 2022 B2
11596132 Holm Mar 2023 B2
11627729 Holm Apr 2023 B2
11662291 Holm May 2023 B1
20030070624 Zohar Apr 2003 A1
20030104353 Brielmeier et al. Jun 2003 A1
20030121859 Kelly et al. Jul 2003 A1
20040168648 Ayers Sep 2004 A1
20040244715 Schreier et al. Dec 2004 A1
20050211644 Goldman Sep 2005 A1
20070221552 Denney Sep 2007 A1
20070242134 Zernov Oct 2007 A1
20080000821 Drewelow Jan 2008 A1
20080223788 Rimdzius et al. Sep 2008 A1
20090145368 Brauman Jun 2009 A1
20090250010 Urusova et al. Oct 2009 A1
20100081961 Cox Apr 2010 A1
20100092431 Liles et al. Apr 2010 A1
20100236137 Wu et al. Sep 2010 A1
20100269761 Nien Oct 2010 A1
20110250604 Cane et al. Oct 2011 A1
20110258915 Subhadra Oct 2011 A1
20120103271 Kong May 2012 A1
20120125940 Wright et al. May 2012 A1
20120184001 Stephen et al. Jul 2012 A1
20130098303 Jones Apr 2013 A1
20130319342 Musser Dec 2013 A1
20130327709 Stroot Dec 2013 A1
20140261213 Stiles, Jr. et al. Sep 2014 A1
20150167045 Brubacher Jun 2015 A1
20150230439 Harwood Aug 2015 A1
20150250113 Shoham et al. Sep 2015 A1
20150256747 Grotto et al. Sep 2015 A1
20150342161 Sheriff Dec 2015 A1
20150366173 Myers Dec 2015 A1
20160356756 Covi Dec 2016 A1
20170260546 Qimron et al. Sep 2017 A1
20170299382 Yang et al. Oct 2017 A1
20180125041 Holm et al. May 2018 A1
20190008126 Shishehchian Jan 2019 A1
20190071336 Greenwald et al. Mar 2019 A1
20190082661 Lahav et al. Mar 2019 A1
20190135393 Pieterkosky May 2019 A1
20190141964 Perslow et al. May 2019 A1
20190169046 Holm Jun 2019 A1
20190200584 Holm Jul 2019 A1
20200396970 Holm et al. Dec 2020 A1
20210127646 Holm May 2021 A1
20210195874 Holm et al. Jul 2021 A1
20210227807 Holm et al. Jul 2021 A1
20210235010 Wallace et al. Jul 2021 A1
20210274758 Holm et al. Sep 2021 A1
20210275604 Holm Sep 2021 A1
20210278378 Holm Sep 2021 A1
Foreign Referenced Citations (17)
Number Date Country
2711677 Nov 2012 CA
102329055 Jan 2012 CN
2464686 Apr 2010 GB
H01112935 May 1989 JP
WO200241703 May 2002 WO
WO2006042371 Apr 2006 WO
WO2008094132 Aug 2008 WO
WO2016154602 Sep 2016 WO
WO2017002081 Jan 2017 WO
WO017153986 Sep 2017 WO
WO2018184029 Apr 2018 WO
WO2018169412 Sep 2018 WO
WO2021162847 Aug 2021 WO
WO2021178080 Sep 2021 WO
WO2021178431 Sep 2021 WO
WO2021216225 Oct 2021 WO
WO2021221745 Nov 2021 WO
Non-Patent Literature Citations (22)
Entry
Lindholm-Lehto et al., Depuration of Geosmin and 2 mehtylisoborneol-induced off-flavors in recirculation aquacultre system (RAS) farmed European whitefish Coregonus lavaretus, Jul. 10, 2019.
Sompong et al., Microbial Degradation of musty odor in aquaculture pond, International Journal of Agricultural Technology, Dec. 1, 2018.
Tucker et al., Managing Off-Flavor Problems in Pond-Raised Catfish, SRAC Publication, Oct. 5, 2018.
Van Der Heile Tony et al., Composition, Treatment and Use of Saline Gorundwater for Aquaculture in the Netherlands, World Aquaculture, Jun. 2014, pp. 23-27, Nov. 2014.
Garcia-Bencochea, Jose I. et al., Deep Well Disposal of Waste Waters in Saline Aquifers of South Florida, Abstract, American Geophysical Union Water Resources Research, Oct. 1970, 1 page, Oct. 1970.
Howard, Mark R., Down the Drain, Florida Trend, Jan. 1, 2000, hhtp://www.floridatrend.com/print/article/13274, 2 Pages, Jan. 1, 2000.
Gorman J. et al., Economic Feasibility of Utilizing West Alabama Saline Ground Water to Produce Florida Pompano and Hybrid Striped Bass in a Recirculating Aquaculture System, Alabama Agricuitural Experiment Station, Auburn University, 19 Pages, Dec. 1, 2009.
Sharrer, Mark J. et al. Evaluation of Geotextile Filtration Applying Coagulant and Flocculant Amendments for Aquaculture, biosolids dewatering and phosphoros removal, Aquacultural Engineering, vol. 40, Issue 1, Jan. 2009, 10 Pages, <URL:https://www.sciencedirect.com/science/article/pii/S0144860908000678> (Accessed Dec. 4, 2017), Jan. 1, 2009.
Haberfeld, Joseph, Letter RE First Request for Additional Information (RAI), Florida Department of Environmental Protection, 6 pages, Jun. 4, 2013.
Storro, Gaute, Investigations of Salt groundwater at Akvaforsk Research Institute, Sunndalsora, Norway, Geological Survey of Norway, NGU-rapport 93.029, 1993,11 pages, Jan. 1, 1993.
Milchman, Jon Construction Clearance Permit Application, Florida Departmewnt of Environmental Protection, (FDEP), 5 pages, May 12, 2013.
Sun Min et al., Models for estimating feed intake in aquaculture, a review, abstract, Computers and Electomics in Agriculture, vol. 127, <URL:http://www.sciencedirect.com/science/article/pii/S0168169916304240> (Accessed Dec. 4, 2017), 4 pages, Sep. 2016.
Florida Dept. of Environmental Protection, Notice of Draft Pemit, South Dade News Leader, Hoestead , Miade-Dade County, Florida, Sep. 13, 2013, 1 pPage, Sep. 13, 2013.
South Dade News Leader, Notice of Intent, Homestead , Miade-Dade County, Florida, Oct. 18, 2013, 1 page, Oct. 18, 2013.
Florida Dept. of Environmental Protection, Notice of Permit, Florida Department of Environmental Protection, 18 pages, Nov. 4, 2013.
Small, Brian et al., On the Feasibility of Establishing a Saline Aquaculture Industry in Illinois, Illinois Sustainable Technology Center [online] <URL:http://www.istc.illinois.edu/info/library.docs/TR/TR051.pdf>, 46 Pages, Mar. 2014.
Akva Group, Recirculaiion Systems, 6 pages, <URL:http://www.akvagroup.com/products/land-based-aquaculture/recirculation systems> (Accessed Dec. 4, 2017).
State of Florida, Well Completion Report, Feb. 2015, 23 Pages, Feb. 2015.
Water Source, University of Alaska, Fairbanks, School of Fisheries & Ocean Sciences, 53 Pages, <URL:hhtps://www.sfos.uaf.edu/fitc/teaching/courses/fish336/materials/FISH%20336%20Lelc%2031%20Water%20Quality%203.pdf> (Accessed, Dec. 4, 2017.
Hoefel et al., Cooperative biodegradation of geosmin by a consortium comprising three gram-negative bacteria isolated from the biofilm of a sand filter column. Letters in Applied Microbiology, 43, pp. 417-423, Jan. 1, 2006.
McDowall et al., Enhancing biofiltration of geosmin by seeding sand filter columns with a consortium of geosmin degrading bacteria. Water Research, 43, pp. 433-440, Jan. 1, 2009.
Jonns et al., Streptophage-Mediated Control of Off-Flavour Taint Producing Streptomycetes Isolated From Barramundi Ponds, Apr. 12, 2017.
Related Publications (1)
Number Date Country
20210137082 A1 May 2021 US
Divisions (1)
Number Date Country
Parent 15862573 Jan 2018 US
Child 16952828 US