The present disclosure relates to a downhole tool including a resettable plug and a bottom hole assembly which facilitates treatment of a subterranean formation through a downhole tubular.
A bottom hole assembly is an apparatus that is adapted for use within a borehole that extends into the earth to reach a target subterranean formation that is expected to contain valuable hydrocarbons, such as oil, gas and combinations thereof. A bottom hole assembly may be run into an existing borehole on a wireline that may provide a physical tether as well as providing connections for electrical power delivery and data communication between the bottom hole assembly and a computer system at the surface near the borehole. Furthermore, a bottom hole assembly may include one or more downhole tools, components or subsystems that perform one or more functions of the bottom hole assembly.
Certain downhole tools may include a resettable plug. A resettable plug may be activated or set to seal off one portion of the borehole from another portion of the borehole. The resettable plug may later be deactivated to retract the seal, such that the fluid communication around the resettable plug is restored. Optionally, the resettable plug may be repositioned within the borehole and reactivated or set.
A bottom hole assembly (BHA), including a downhole tool that includes the resettable plug, may be deployed within the borehole, such that the resettable plug may be activated and deactivated at various locations within the borehole. In this manner, the resettable plug may be used in conjunction with a formation fracturing process, formation treatment process, other processes, or other downhole operations at multiple locations within the borehole without removal of the bottom hole assembly from the borehole.
One embodiment provides a resettable plug downhole tool for use within a borehole that extends into a subterranean formation. The resettable plug downhole tool comprises a resettable plug, a valve, a pressure sensor, and a valve actuator. The resettable plug includes a central body, a selectively deployable sealing element about a periphery of the central body, and a fluid passageway that extends through the central body from a first opening in the central body on a first side of the deployable sealing element to a second opening in the central body on a second side of the deployable sealing element. The valve is disposed to control fluid flow through the fluid passageway, the pressure sensor is disposed to sense fluid pressure within the borehole on the first side of the deployable sealing element, and the valve actuator is coupled to the valve for controlling operation of the valve. Another embodiment provides a method of controlling fluid flow through a resettable plug. The method comprises monitoring a pressure of fluid within a borehole above the resettable plug, and controlling operation of a valve to prevent the monitored fluid pressure from exceeding a setpoint pressure, wherein the valve controls fluid flow through a passageway in the resettable plug, and wherein the passageway extends from a first opening above the resettable plug to a second opening below the resettable plug.
In another embodiment, a bottom hole assembly (BHA) comprises the resettable plug downhole tool, an actuator tool, a gripping tool and a locating tool.
In a further embodiment, there is provided a method of delivering a treatment fluid into a formation intersected by a borehole, the method comprising the steps of: deploying the BHA on wireline; utilizing the locating tool to locate a ported tubular segment within the borehole; positioning the BHA near the ported tubular segment such that the resettable plug downhole tool is below and near the ported tubular segment; activating the resettable plug downhole tool to engage the borehole; extending the actuator tool inside the ported tubular segment; gripping a closure cover over the ported tubular segment with the gripping tool secured at the end of the actuator tool; retracting the actuator tool to open the closure cover over the openings of the ported tubular segment; and delivering a treatment fluid through the ported tubular segment to the formation.
One embodiment provides a downhole tool for use within a borehole that extends into a subterranean formation. The downhole tool comprises a resettable plug, a valve, a pressure sensor, and a valve actuator. The resettable plug includes a central body, a selectively deployable sealing element about a periphery of the central body, and a fluid passageway that extends through the central body from a first opening in the central body on a first side of the deployable sealing element to a second opening in the central body on a second side of the deployable sealing element. The valve is disposed to control fluid flow through the fluid passageway, the pressure sensor is disposed to sense fluid pressure within the borehole on the first side of the deployable sealing element, and the valve actuator is coupled to the valve for controlling operation of the valve.
The downhole tool may be connected to a wireline that extends from a wireline unit or truck located near an opening into the borehole. The wireline may be used to provide physical support of the downhole tool as it is raised and lowered into and within the borehole, supply electrical power to electronic components within the downhole tool, and/or provide for data communication between the downhole tool and control systems outside the borehole. While the wireline may be sufficient for raising and lowering the downhole tool within a substantially vertical wellbore or portion of a wellbore, a downhole tool on a wireline as a part of a BHA may further include a tractor that can push or pull the downhole tool along the borehole regardless of the orientation of the borehole, such as in a horizontal portion of a borehole.
The sealing element preferably includes one or more elastomeric rings extending about the circumference of the central body of the resettable plug. Under compression in an axial direction (i.e., a compressive force directed generally parallel to the axis of the resettable plug), the elastomeric rings press radially outwardly to engage the borehole and seal off the borehole. With the sealing element set to seal off the borehole, fluid contained in a first portion of the borehole above or uphole of the sealing element may be isolated from fluid contained in a second portion of the borehole below or downhole of the sealing element. The setting of the sealing element to isolate a first portion of the borehole from a second portion of the borehole may be useful in conjunction with various downhole processes, such as a formation fracturing or treatment operation.
The downhole tool may further include an anchor having a plurality of anchor elements, each anchor element being radially deployable to engage the borehole and inhibit unintended movement of the downhole tool along the borehole. For example, the anchor elements may be deployed or set so that the downhole tool is retained in a fixed location within the borehole even if the downhole tool is subjected to external forces. For example, the anchor elements may be deployed prior to a formation fracturing or treatment operation so that the downhole tool retains its location despite being exposed to a high pressure fracturing or treatment fluid on one side of the sealing elements. In a further example, the anchor elements may be deployed in conjunction with opening or closing a sliding sleeve disposed along a section of casing within the borehole.
The sealing element and the anchor may be independently operated using separate actuators or may be operated dependent upon a single actuator. One preferred embodiment actuates both the sealing element and the anchor using a single actuator. Furthermore, using a single actuator to actuate both the sealing element and the anchor simplifies the construction of the downhole tool and ensures that the sealing element is not set without setting the anchor. Use of the anchor helps to prevent damage to a sealing element that is sealed against the borehole.
The fluid passageway through the central body of the resettable plug extends from a first opening or port in the central body on a first side of the deployable sealing element to a second opening or port in the central body on a second side of the deployable sealing element. Optionally, the resettable plug may have a plurality of first openings or ports disposed about the central body on the first side of the deployable sealing element, such that each of the first openings or ports are angularly spaced apart about a circumference of the central body. In a similar option, the resettable plug may have a plurality of second openings or ports disposed about the central body on the second side of the deployable sealing element, such that each of the second openings or ports are angularly spaced apart about a circumference of the central body. The resettable plug may have a plurality of first openings or ports and a plurality of second openings or ports, where the number of first openings or ports may be the same as or different than the number of second openings or ports, and where the positioning or orientation of the first openings or ports may be the same as or different than the positioning or orientation of the second openings or ports.
The fluid passageway may include a generally axial passageway between the first and second openings or ports. For example, the generally axial passageway may be defined by a section of tubular metal. Furthermore, the central body of the resettable plug may include a section of tubular metal, wherein the generally axial passageway is defined by the inwardly-facing surface of the tubular metal. The cross-sectional area of the fluid passageway may vary widely, but is preferably sufficient to reduce borehole pressure differentials across the resettable plug and to enable passage of expected types of fluids and particulates that may accumulate on the resettable plug when the sealing element has been set. For example, the cross-sectional area of the fluid passageway should be sufficient to allow the free passage of fracturing or treatment fluids and particulates when the valve is open. Common treatment fluids and particulates may include, benzoic acid, naphthalene, rock salt, resin materials, waxes, polymers, sand, proppant, and ceramic materials.
However, the downhole tool may include one or more components disposed within the fluid passageway without obstructing fluid flow or particulate passage through the fluid passageway. For example, the fluid passageway may contain a cable providing electrical power to, or data communication to and with, a component that is within the fluid passageway or is located on the downhole side of the resettable plug. Specifically, a cable could supply electrical power from the wireline (on the uphole end of the downhole tool) to a an electrical motor that is within the downhole tool (on the downhole side of the sealing element and fluid passageway), as well as data communication between a computing system at the surface and an on-board controller within the downhole tool (also on the downhole side of the sealing element and fluid passageway). Alternatively, a motor and hydraulic pump and an on-board controller may be on the uphole side of the sealing element and fluid passageway. In this example, a cable through the fluid passageway may provide electrical power to another component or downhole tool, such as formation perforating guns a power tool or an actuator. As another example, the fluid passageway may include a rotary vane that is axially secured within the fluid passageway. The rotary vane may be mechanically coupled to a motor, such that the motor may drive the rotary vane to assist in fluid flow and particulate passage through the fluid passageway. Alternatively, the rotary vane may be mechanically coupled to an electrical generator to generate electrical current as the result of fluid flow and particulate passage across the vanes as it passes through the fluid passageway.
The valve is disposed to control fluid flow through the fluid passageway. The valve may be disposed at any point in the fluid passageway between the first opening or port and the second opening or port. The valve is preferably either above or below the sealing element. Most preferably, the valve is disposed on the same side of the downhole tool (relative to the sealing element) as the actuator for the sealing element and any anchor. For example, the valve may be conveniently disposed at the second opening or port. One such valve may form a sleeve with a range of motion that enables the sleeve to slide across the second opening or port. A valve actuator may be coupled to the valve and used to control the operation of the valve, such that the second opening or port may be fully open (uncovered), partially open (partially covered), or fully closed (fully covered). In embodiments where the valve includes a sleeve, the valve actuator may control the extent to which the sleeve covers the second opening or port, perhaps to control one or more operating parameters selected from a fluid flow rate through the fluid passageway, a tension on the wireline cable, a pressure on one side of the sealing element, or a differential pressure across the sealing element.
The pressure sensor is disposed to sense fluid pressure within the borehole on the first side of the deployable sealing element. It should be recognized that the location of the pressure sensor within the downhole tool may vary, so long as the pressure sensor may sense the fluid pressure within the borehole on the first side of the deployable sealing element. For example, the pressure sensor may be located just inside the first opening or port on the first side of the deployable sealing element, but the pressure sensor may also be located near the second opening or port on the second side of the deployable sealing element, so long as there is no substantial obstruction between the pressure sensor and the borehole on the first side of the deployable sealing element. In one embodiment, the first opening or port is always open and the valve selectively covers the second opening or port, such that the fluid pressure within the fluid passageway is substantially the same as the fluid pressure within the borehole on the first side of the deployable sealing element. A differential pressure across the sealing element may be determinable where a second pressure sensor is disposed to sense the fluid pressure in the borehole on a second side of the deployable sealing element.
A cable tension sensor may be included in the downhole tool in order to sense an amount of tension in the wireline cable. The cable tension sensor may be secured near and downhole of the point where the wireline cable is physically secured to a cable head of the downhole tool. For example, a tension sensor may include a component which houses a strain gauge for detecting strain in a member connecting a downhole portion of the downhole tool to an uphole portion of the downhole tool and thereby an electrical signal that indicates a level of tension in the wireline cable. In another embodiment, a tension sensor may include a three-roller system with the wireline cable passing through the rollers to cause deflection of the middle roller. A load cell coupled to the middle roller provides an electronic signal that indicates a level of tension in the wireline cable. In either embodiment, the tension signal may be transmitted to a controller that is in electronic communication with the tension sensor. In one embodiment, the controller is in electronic communication with the valve actuator for sending a control signal to the valve actuator, wherein the controller adjusts operation of the valve in response to the measured amount of tension in the wireline cable. Optionally, the valve may be fully or partially opened in order to prevent the amount of tension in the wireline cable from exceeding a tension setpoint.
An electrical current sensor may be used to sense an amount of current drawn by motor coupled to a rotary vane or impeller disposed within the fluid passageway, or to sense an amount of current produced by a generator coupled to the rotary vane. The presence of particulates in the fluid flowing through the vanes is expected to increase the amount of current required by the motor to maintain a given rotational speed, such that the amount of electrical current drawn by the motor may be calibrated to determine an amount of particulate in the fluid that passes through the fluid passageway. For example, during or after a fracturing or treatment operation, the valve and/or the motor driving the vane may be controlled to continue passing fluid through the fluid passageway until the amount of particulates has dropped below a setpoint amount of particulates. The rotary vane or impeller is preferably axially disposed within a portion of the fluid passageway.
The downhole tool may further include a controller in electronic communication with the pressure sensor for receiving a pressure signal from the pressure sensor and in electronic communication with the valve actuator for sending a control signal to the valve actuator. The controller may, for example, operate to control the operation of the valve via the valve actuator in order to maintain the pressure in the borehole above the sealing element below a setpoint pressure. The pressure control may be implemented while pumping the downhole tool into the borehole with the sealing elements retracted, during a formation fracturing or treatment operation with the sealing elements set to seal against the wall of the borehole, or after a formation fracturing or treatment operation with the sealing elements set to seal against the wall of the borehole or at any time. The controller may be an analog circuit or a digital processor, such as an application specific integrated circuit (ASIC) or array of field-programmable gate arrays (FPGAs). Accordingly, embodiments may implement any one or more aspects of control logic in the controller that is on-board the downhole tool or in a computing system that is in data communication with the controller. A computing system may be located at the surface to provide a user-interface for monitoring and controlling the operation of the downhole tool, and may be in data communication with the controller over the wireline cable.
The downhole tool may further include a controller in communication with a distributed measurement cable, which may be a fiber optic-cable, for receiving measurements such as cable temperature, temperature increase or decrease rate, vibration, strain, pressure or combinations thereof. The controller may, for example, operate to control the operation of the valve via the valve actuator in order to maintain setpoints of various measured parameters provided by the distributed measurement cable. The valve control may be implemented while pumping the downhole tool into the borehole with the sealing elements retracted, during a formation fracturing or treatment operation with the sealing elements set to seal against the wall of the borehole, or after a formation fracturing or treatment operation with the sealing elements set to seal against the wall of the borehole or at any time.
Embodiments of the downhole tool may further include a rotary brush. The rotary brush may be secured to the central body of the downhole tool on an uphole side of the sealing element. A motor may be mechanically coupled to the rotary brush to controllably rotate the brush. The rotary brush may be used to clean the inside surface of the borehole, such as an inside surface of casing, in a region where the resettable plug will be subsequently positioned and set to seal off the borehole. When the sealing element of the resettable plug is set against a clean surface, the sealing element will form a better seal and will experience less wear. In one option, the rotary brush may be rotated to assist with the removal of particulates that may have accumulated on the top (uphole) side of the sealing element, such as excess proppant that was used during a formation fracturing or treatment operation. Rotating the rotary brush may serve to loosen the particulates and enhance the flow of fluid and particulates through the fluid passageway when the valve is open. For example, the rotary brush may be driven to rotate until the amount of particulates in the fluid flowing through the fluid passage drops below some setpoint. In one embodiment, the downhole tool will further include an electrical current sensor for measuring an amount of electrical current drawn by the electric motor that drives the rotary brush. Such electrical current sensor may be in electronic communication with the controller for signaling the amount of electrical current to the controller. Since an accumulation of particulates in the borehole on top of the sealing element will cause a physical resistance to rotation of the rotary brush, an electrical current signal that exceeds an electrical current setpoint may indicate the presence of an accumulation of particulates in the wellbore around the rotary brush. Accordingly, the controller may further control operation of the valve and/or the rotary brush in response to the amount of electrical current drawn by the motor exceeding an electrical current setpoint.
The valve actuator may be an electrically powered valve actuator, but is preferably a hydraulic valve actuator. Where the valve actuator is hydraulic, the downhole tool may further include a hydraulic pump in fluid communication with the hydraulic valve actuator, and an electric motor mechanically coupled to operate the hydraulic pump. The electric motor preferably receives electrical power through a wireline cable, but may receive some or all of its electrical power from a battery within the downhole tool. Hydraulic fluid lines or passages extend from the hydraulic pump to one or more piston chambers so that the hydraulic fluid pushes the valve across the opening or port to control fluid flow through the fluid passageway. A solenoid valve may be used to control the supply of pressurized hydraulic fluid to and from each piston chamber. In one embodiment, a first piston chamber is disposed to enable the supply of pressurized hydraulic fluid to move the valve toward a closed position and a second piston chamber is disposed to enable the supply of pressured hydraulic fluid to move the valve toward an open position. The controller may control the operation of the various solenoid valves in order to position the valve at any desired position, including a fully closed position, a fully open position, and any position there between. Optionally, the valve actuator is spring biased to an open position such that by depressurizing the first piston chamber, the valve actuator moves into the open position. Where the valve actuator is electromechanical, the downhole tool may further include a roller screw and an electric motor mechanically coupled to operate the roller screw. The electric motor preferably receives electrical power through a wireline cable, but may receive some or all of its electrical power from a battery within the downhole tool. The roller screw drives a nut which is secured to an actuator sleeve and restricted in rotation, but free to move axially. The actuator sleeve is disposed to position the valve at a desired location including a fully closed position, a fully open position, and any position there between. The controller may control the number of rotations of the electrical motor, thereby precisely controlling the position of the valve.
Statements made herein referring to a component, opening or port being “above”, “below”, “uphole” or “downhole” relative to another component, opening or port should be interpreted as if the downhole tool or bottom hole assembly has been run into a wellbore. It should be noted that even a horizontal wellbore, or any non-vertical wellbore, still has an “uphole” direction defined by the path of the wellbore that leads to the surface and a “downhole” direction that is generally opposite to the “uphole” direction.
Another embodiment provides a method of controlling fluid flow through a resettable plug. The method comprises monitoring parameters measured by a distributed measurement cable and controlling operation of a valve to prevent the monitored parameters from exceeding a setpoint value of one or more parameters, wherein the valve controls fluid flow in a fluid passageway through the resettable plug, and wherein the fluid passageway extends from a first opening above the resettable plug to a second opening below the resettable plug.
Another embodiment provides a method of controlling fluid flow through a resettable plug. The method comprises monitoring a pressure of fluid within a borehole above the resettable plug, and controlling operation of a valve to prevent the monitored fluid pressure from exceeding a setpoint pressure, wherein the valve controls fluid flow in a fluid passageway through the resettable plug, and wherein the fluid passageway extends from a first opening above the resettable plug to a second opening below the resettable plug.
In one option, the method further includes running the resettable plug into the borehole on a wireline, wherein the operation of the valve is controlled while running the resettable plug into the borehole. For example, a bottom hole assembly including the resettable plug downhole tool may be run into the borehole accompanied by fluid flow being pumped downhole. The operation of the valve may be controlled while the downhole tool is run into the borehole toward a target formation. Optionally, the valve operation may be controlled to prevent the tension in the wireline cable from exceeding a tension setpoint. Opening the valve will tend to equalize the differential pressure across the downhole tool, such that the fluid being pumped into the borehole will place less tension on the wireline cable. Accordingly, the method may further include measuring an amount of tension in a wireline cable coupled to the central body of the resettable plug, and controlling operation of the valve to allow fluid flow through the passageway in response to the measured amount of tension in the wireline cable exceeding a tension setpoint.
Optionally, the method may further include positioning a rotary brush coupled to the central body to align the rotary brush with a target area of casing in the borehole, driving the rotary brush to clean the target area of casing, and positioning the resettable plug to align with the cleaned target area of the casing prior to setting the resettable plug within the borehole, wherein setting the resettable plug seals the resettable plug against the cleaned target area of the casing and isolates the uphole portion of the borehole from the downhole portion of the borehole. Still further, a motor may be mechanically coupled to the rotary brush to controllably rotate the brush, where the method further includes measuring an amount of electrical current draw by the motor to rotate the rotary brush in the target area of the casing at a predetermined rotational speed, and continuing to drive the rotary brush in the target area of the casing until the measured amount of electrical current draw by the motor is less than a predetermined current setpoint indicating the target area of the casing is clean, and wherein the resettable plug is positioned to align with the cleaned target area of the casing only after the measured amount of electrical current draw by the motor is less than the predetermined current setpoint.
Various embodiments may be implemented in conjunction with a formation fracturing or treatment operation. For example, the method may further include setting the resettable plug within the borehole to isolate an uphole portion of the borehole from a downhole portion of the borehole, and then pressurizing a fluid into the isolated uphole portion of the borehole to hydraulically fracture a subterranean formation above the resettable plug, wherein operation of the valve is controlled during the hydraulic fracturing or treatment of the subterranean formation. For example, operation of the valve may be further controlled to reduce an amount of treatment fluids and particulates accumulation on top of the resettable plug as a result of the hydraulic fracturing or treatment of the subterranean formation. Such fluids and particulates may be selected from benzoic acid, naphthalene, rock salt, resin materials, waxes, polymers, sand, proppant, and ceramic materials.
Additionally, operation of the valve may be controlled to prevent or mitigate accumulation of fluids and particulates on top of the resettable plug. As fluids and particulates are pumped into a formation during a fracture operation, the pumping pressure required to do so may increase as the formation can no longer receive a continuous rate of fluids and particulates. When this occurs, pressure will increase in the formation and the borehole, and fluids and particulates and debris from the borehole or formation, or combinations thereof, will have a greater likelihood of accumulation in the wellbore and on top of the resettable plug.
The controller may operate the valve to control the borehole pressure at a second setpoint pressure as may be required during a fracture operation. To fracture a formation, a sufficient pressure is required known as “break-pressure”, for example, 8,000 psi. Once the formation is fractured, a reduced pressure is typically required to treat or inject proppant to the fractures known as the “prop-pressure”, for example, 4,500 psi. The controller may be programmed to send a control signal to the valve actuator if a “break-pressure” is exceeded in a first pressure signal from the pressure sensor and then also limit “prop-pressure” as indicated by a second pressure signal.
The method may further include monitoring tension in a wireline cable coupled to the central body of the resettable plug, and controlling operation of the valve to allow fluid flow through the passageway in response to the measured amount of tension in the wireline cable exceeding a tension setpoint.
In addition, the method may further include driving a rotary brush secured to the central body on an uphole side of the circumferential seal, wherein a motor is mechanically coupled to the rotary brush to controllably rotate the brush, measuring an amount of electrical current draw by the motor to rotate the rotary brush at a predetermined rotational speed, continuing to drive the rotary brush, with the resettable plug set, until the measured amount of electrical current draw by the motor is less than an electrical current setpoint indicating a reduced amount of particulate accumulation on top of the resettable plug, and then unsetting the resettable plug in response to determining that the measured amount of electrical current draw by the motor is less than the electrical current setpoint.
Other embodiments of the method may include driving an impeller that is disposed in the passageway to assist fluid flow through the passageway, wherein a motor is mechanically coupled to the impeller to controllably spin the impeller. An alternative embodiment of the method may include generating electrical current with a generator mechanically coupled to an impeller disposed in the passageway, wherein the impeller drives the generator during fluid flow through the passageway. In addition, the method may further include measuring an amount of electrical current generated by the generator, and controlling operation of the valve to maintain fluid flow through the fluid passageway until the amount of electrical current is less than an electrical current setpoint indicating that the amount of particulate present in the fluid flow through the passageway has been reduced.
In another embodiment, a bottom hole assembly (BHA) may include the resettable plug downhole tool in addition to other downhole tools, for example, an anchor tool, an actuator tool, a gripping tool, a power tool and a locating tool. The actuator tool may be secured to and above the power tool. The gripping tool may be secured to and above the actuator tool. The locating tool may be secured to and above the gripping tool and also to the cable head. The power tool may be secured to and above the resettable plug downhole tool. A second power tool may be secure to and below the resettable plug tool and the anchor tool may be secured to and below the resettable plug downhole tool.
In an embodiment, the power tool may be a hydraulic power tool disposed to provide hydraulic power to actuate an extendable portion of the actuator tool and to the gripping tool, through the extendable portion of the actuator tool, to radially engage gripping elements of the gripping tool to a tubular within the borehole. Optionally, the power tool may be an electromechanical power tool and disposed to provide mechanical power to an extendable portion of the actuator.
Where the power tool is hydraulic, the power tool may include a hydraulic pump in fluid communication with a hydraulic reservoir, and an electric motor mechanically coupled to operate the hydraulic pump. The electric motor preferably receives electrical power through a wireline cable, but may receive some or all of its electrical power from a battery within the BHA. A hydraulic fluid line or channel extends from the hydraulic pump to a solenoid valve block which may control the supply of pressurized hydraulic fluid to and from multiple hydraulic lines or channels exiting the power tool. A controller may control the operation of various solenoid valves of the solenoid valve block in order to direct hydraulic fluid to a desired hydraulic fluid line or channel exiting the power tool.
In an embodiment, the actuator tool comprises a piston secured or integral to the extendable portion and isolating a first and second piston chamber; a first piston chamber disposed to receive pressurized hydraulic fluid to linearly actuate the extendable portion of the actuator; and a second piston chamber disposed to receive hydraulic fluid to retract the extendable portion of the actuator; wherein the first and second piston chambers controllably receive pressurized hydraulic fluid from a power tool. Optionally, a compression spring is within the second piston chamber to push the piston, thereby retracting the extendable portion of the actuator. Optionally, the actuator tool may be a rotary actuator tool that converts rotational force into a linear movement of the extendable portion.
In an embodiment, the gripping tool comprises a piston secured or integral to a radially extendable gripping element and isolating a first and second piston chamber; a first piston chamber disposed to receive pressurized hydraulic fluid to actuate or extend the radially extendable gripping element; and a second piston chamber disposed to receive hydraulic fluid to retract the radially extendable gripping element; wherein the first and second piston chambers selectively receive pressurized hydraulic fluid from a power tool and through the actuator tool. Optionally, a compression spring may be disposed within the second piston chamber to push the piston, thereby retracting the extendable portion of the actuator. In a further option, the gripping tool may receive pressurized hydraulic fluid directly from a power tool.
In an embodiment, the anchor tool comprises a piston disposed to interact with a radially extendable member and isolating a first and second piston chamber; a first piston chamber disposed to receive pressurized hydraulic fluid to actuate the radially extendable member; and a second piston chamber disposed to receive hydraulic fluid to retract the extendable member; wherein the first and second piston chambers selectively receive pressurized hydraulic fluid from a power tool. Optionally, a compression spring may be disposed within the second piston chamber to push the piston, thereby retracting the radially extendable member. In a further option, the anchor tool may receive pressurized hydraulic fluid directly from a power tool.
In an embodiment, the anchor tool radially extendable member engages a borehole to secure the BHA within the borehole.
In an embodiment, the locating tool is a casing collar locating tool.
In an embodiment, the locating tool is a mechanical locating tool.
In an embodiment, the locating tool is a wireline tool.
In an embodiment, the locating tool is an electromagnetic induction tool.
In an embodiment, radially extendable gripping elements engage a moveable closure cover selectively blocking or unblocking one or more ports of a ported tubular segment to enable delivery of a treatment fluid to a formation through the ported tubular segment.
In an embodiment, the movable closure cover selectively blocks or unblocks one or more ports of a ported tubular segment by rotation about a predominantly coaxial axis to the borehole axis.
In an embodiment, there is a method of delivering a hydraulic fracturing or treatment fluid into a subterranean formation intersected by a borehole, the method comprising the steps of deploying the bottom hole assembly into the borehole on a wireline; utilizing the locating tool to locate a ported tubular segment within the borehole; positioning the bottom hole assembly near the ported tubular segment such that the resettable plug is below and near the ported tubular segment; activating the resettable plug downhole tool to engage the borehole, deploy the selectively deployable sealing element isolating an uphole portion of the borehole from a downhole portion of the borehole and secure the bottom hole assembly within the borehole; extending the actuator tool inside the ported tubular segment; engaging a closure cover over the ported tubular segment with one or more gripping tool radially extendable gripping elements; manipulating the actuator tool to open the closure cover over the openings of the ported tubular segment; pumping a hydraulic fracturing or treatment fluid through the borehole to the ported tubular segment.
In an embodiment, the method further comprises controlling operation of the valve while running the bottom hole assembly into the borehole.
In an embodiment, the method further comprises controlling operation of the valve during the delivery of the hydraulic fracturing or treatment fluid to the subterranean formation.
In embodiment, the method further comprises controlling operation of the valve to reduce an amount of fluid or particulate accumulation on top of the resettable plug as a result of the pumping of the hydraulic fracturing or treatment operation of the subterranean formation.
In an embodiment, the method further comprises monitoring pressure of the hydraulic fracturing or treatment fluid above the deployed selectively deployable sealing element; upon the pressure reaching a setpoint pressure, controlling operation of the valve to prevent the fluid pressure from exceeding the setpoint pressure, wherein the valve only controls fluid flow through the fluid passageway.
In an embodiment, the pumping step further comprises pressurizing the fluid into the isolated uphole portion of the borehole to hydraulically fracture or treat the subterranean formation above the resettable plug.
In an embodiment, the operation of the valve is controlled during the hydraulic fracturing or treatment of the subterranean formation.
In an embodiment, the method further comprises deactivating the resettable plug; repositioning the bottom hole assembly within the borehole without removing the bottom hole assembly from the borehole; reactivating the resettable plug within the borehole to isolate a second uphole portion of the borehole from a second downhole portion of the borehole; pumping a hydraulic fracturing or treatment fluid into the borehole that extends into the subterranean formation; pressurizing the hydraulic fracturing or treatment fluid into the isolated second uphole portion of the borehole to hydraulically fracture or treat the subterranean formation above the resettable plug.
Another embodiment provides a method of delivering a treatment fluid into a formation intersected by a borehole, the method comprising the steps of: deploying the bottom hole assembly (BHA) into the borehole on a wireline, utilizing a locating tool to locate a ported tubular segment within the borehole; positioning the BHA near the ported tubular segment such that the resettable plug downhole tool is below and near the ported tubular segment; activating the resettable plug downhole tool to engage the borehole and secure the BHA within the borehole; extending the actuator tool inside a ported tubular segment; engaging a closure cover over the ported tubular segment with the gripping tool radially extendable gripping elements; retracting the actuator tool to open the closure cover over the openings of the ported tubular segment; retracting the gripping tool radially extendable gripping elements; retracting an extendable portion of the actuator tool; closing the valve of the resettable plug downhole tool; delivering a treatment fluid through the borehole to the ported tubular segment; opening the valve in the resettable plug downhole tool to remove debris from above the resettable plug to below the resettable plug; and deactivating the resettable plug downhole tool.
Yet another embodiment provides a method of delivering a treatment fluid into a formation intersected by a borehole, the method comprising the steps of: deploying a BHA into the borehole on a wireline, utilizing the locating tool to locate a ported tubular segment within the borehole; positioning the BHA near the ported tubular segment such that the resettable plug downhole tool is below and near the ported tubular segment; engaging a radially extendable member of the anchor tool to the borehole; activating the resettable plug downhole tool to engage the borehole and secure the BHA within the borehole; extending the actuator tool inside the ported tubular segment; engaging a moveable closure cover over the ported tubular segment with the gripping tool radially extendable gripping elements; retracting the actuator tool to move the closure cover and unblock the openings of the ported tubular segment; retracting the gripping tool radially extendable gripping elements; retracting the extendable portion of actuator tool; closing the valve of the resettable plug downhole tool; delivering a treatment fluid through the borehole to the ported tubular segment; opening the valve of the resettable plug downhole tool to remove debris from above the resettable plug to below the resettable plug; deactivating the resettable plug downhole tool; and retracting the radially extendable member of the anchor tool.
In an embodiment, an extendable portion of the actuator tool may be retracted to open the closure cover over the openings of ported tubular segment.
In an embodiment of a bottom hole assembly (BHA), the resettable plug tool is connected to a cable head, the power tool may be connected below the resettable plug downhole tool, the anchor tool may be connected below the power tool, the actuator tool may be connected below the anchor tool, the gripping tool may be connected below the actuator tool and the locating tool may be connected below the gripping tool.
In an embodiment, there is provided a method of delivering a treatment fluid into a formation intersected by a borehole, the method comprising the steps of: deploying a BHA into the borehole on wireline, utilizing the locating tool to locate a ported tubular segment within the borehole; positioning the BHA near the ported tubular segment such that the resettable plug downhole tool is above and near the ported tubular segment; engaging a radially extendable member of the anchor tool to the borehole; extending the actuator tool inside a ported tubular segment; engaging a closure cover over the ported tubular segment with the gripping tool radially extendable gripping elements; retracting the actuator tool to open the closure cover over the openings of the ported tubular segment; retracting radially extendable gripping elements of the gripping tool; retracting the radially extendable member of the anchor tool; repositioning the BHA such that the resettable plug downhole tool is below and near the ported tubular segment; engaging the radially extendable member of the anchor tool to the borehole; activating the resettable plug downhole tool to engage the borehole; closing the valve of the resettable plug downhole tool; delivering a treatment fluid through the borehole to the ported tubular segment; opening the valve of the resettable plug downhole tool to remove debris from above the resettable plug to below the resettable plug; deactivating the resettable plug downhole tool; and retracting the radially extendable member of the anchor tool.
In an embodiment, the closure cover is opened by an integrated actuation mechanism. For example, a motor disposed to rotate or shift the closure cover.
In an embodiment, the closure cover is opened by a communication line extending uphole.
In an embodiment, the closure cover is opened by an electronic means.
It is noted that the BHA, downhole tools and components, and the ported tubular segments discussed herein, are provided as examples of suitable embodiments for opening variously configured downhole ports. Numerous modifications are contemplated and will be evident to those reading the present disclosure.
The central body 18 includes a fluid passageway (not shown; see
In
In
The central body 18 is preferably a rigid tubular metal, which may be described as having a central axis 17. The central body 18 has one or more openings or ports 44 near a first (upper) end and one or more openings or ports 46 near a second (lower) end. As shown, the first openings or ports 44 may remain open at all times, whereas the second openings or ports 46 are selectively opened or closed by the valve 42. The central body 18 also supports the sealing element 20, including one or more circumferential elastomeric rings 21. Such elastomeric rings 21 are compressible and expand radially outwardly in all directions under axially directed compression. The central body 18 may also support an anchor 22, which includes a plurality of anchoring elements 23 spaced apart around the circumference of the central body 18. The anchor elements 23 may be pushed outwardly to engage a borehole wall (as shown in
Proceeding downward along the downhole tool 10, the central body 18 is coupled to the power tool 28 (in the form of a hydraulic module) that houses various solenoid valves, motors, pumps, or controllers needed to support the operation of the resettable plug. It should be recognized that the arrangement or configuration of the various components may vary from the embodiment shown. In the illustrated embodiment, the power tool 28 includes a motor 50 that drives a gearbox 52 coupled to a hydraulic fluid pump 54 by a drive shaft 53.
The hydraulic fluid pump 54 supplies hydraulic fluid at a high pressure through a supply line 55 to first and second solenoid valves 60, 62. The first solenoid valve 60 controls the flow of hydraulic fluid to a first piston chamber 61 that retracts an actuator 70. Conversely, the second solenoid valve 62 controls the flow of hydraulic fluid to a second piston chamber 63, and an optional supplemental piston chamber 63B, that extends the actuator 70. With the actuator 70 retracted, the seal 20 and anchor 22 are also retracted (not set), such that the downhole tool 10 may be moved within the borehole. With the actuator 70 extended, the sealing element 20 and the anchor 22 are both set, such that the anchor 22 is biased outwardly to grip the borehole 30 wall and the elastomeric rings 21 of the sealing element 20 are compressed and outwardly deformed to seal against the borehole 30 wall (see
The cross-sectional view of
Optionally in
The wireline cable 14 may provide an electrical power supply line to the motor 50 and a controller 72. Alternatively, the BHA 10 may include a battery 74 that provides electrical power to the motor 50 and controller 72. The controller 72 is responsible for control of the motor 50, the solenoid valves 60, 62 that operate the sealing element 20 and the anchor 22, and the solenoid valves 64, 66 that operate the valve. The controller 72 may implement control logic that is based, without limitation, on one or more inputs, such as a pressure sensor signal, a wireline cable tension signal, an electrical current sensor signal, or a control command received through the wireline cable 14.
Optionally, as shown in
However, in the embodiment shown, the controller 72 may receive inputs from the tension sensor 100, the pressure sensor(s) 84 and/or 86, the current sensor 95 associated with the motor of the rotary brush 94, the current sensor 81 associated with the motor or generator of the vane 80, and the computing system 32. Additional sensors and inputs may be incorporated as well. The controller 72 may provide output signals to various components of the BHA, such as the motor 50 coupled to the hydraulic pump 54, such as the motor 50 coupled to the roller screw 160, the motor of the rotary brush 94, the motor of the vane 80, and each of the solenoid valves 60, 62, 64, 66 that control the operation of the sealing element 20, the anchor 22 and the valve 42.
In the current condition of the solenoid valves in
The disclosed apparatus and methods enable flushing the wellbore before, during and after a fracturing or treatment operation, such that the resettable plug is not trapped/buried by particulate in the borehole and the sealing element is not damaged. By flowing the particulate through the fluid passageway within the central body of the resettable plug downhole tool, the particulate may be removed from the top of the sealing element before the sealing elements are unset. This avoids the usual damage, such as erosion, to the sealing elements that is caused by particulate flowing across the surface of the sealing elements. Embodiments of the apparatus and methods will prolong the life of the sealing element and, thereby, maximize the number of times that the resettable plug can be successfully set downhole. The valve is also useful during setting of the resettable plug, since the valve may be open during the setting of the sealing element and then closed after the sealing element has been set. Having the valve open in this manner while setting the sealing element may prevent pressure or flow from shifting the BHA during the setting process. Still further, in pump-down operations, high fluid velocities around the downhole tool may erode and damage the sealing elements. By having the flow-through valve open during a pump-down operation, higher pump rates may be tolerated without damage to the sealing elements.
In
In
In
In
In
In
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the claims. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, components and/or groups, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The terms “preferably,” “preferred,” “prefer,” “optionally,” “may,” and similar terms are used to indicate that an item, condition or step being referred to is an optional (not required) feature of the embodiment. The term “seal”, as in the engaging of a sealing element to a borehole, is used for the purpose of describing particular embodiments. The term “seal” should not be limited in scope to a perfect seal and may be a partial seal.
The corresponding structures, materials, acts, and equivalents of all means or steps plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. Embodiments have been presented for purposes of illustration and description, but it is not intended to be exhaustive or limited to the embodiments in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art after reading this disclosure. The disclosed embodiments were chosen and described as non-limiting examples to enable others of ordinary skill in the art to understand these embodiments and other embodiments involving modifications suited to a particular implementation.
This Continuation-In-Part Application claims the benefit of priority of U.S. patent application Ser. No. 15/869,889 filed on Jan. 12, 2018, being incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
6394184 | Tolman | May 2002 | B2 |
20010050172 | Tolman | Dec 2001 | A1 |
20020020535 | Johnson | Feb 2002 | A1 |
20120175108 | Foubister | Jul 2012 | A1 |
20150075783 | Angman | Mar 2015 | A1 |
20160024902 | Richter | Jan 2016 | A1 |
20170138150 | Yencho | May 2017 | A1 |
20170268320 | Angman | Sep 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20220025751 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
62577176 | Oct 2017 | US | |
62557362 | Sep 2017 | US | |
62534200 | Jul 2017 | US | |
62479654 | Mar 2017 | US | |
62450558 | Jan 2017 | US | |
62449996 | Jan 2017 | US | |
62449033 | Jan 2017 | US | |
62447801 | Jan 2017 | US | |
62446512 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15869889 | Jan 2018 | US |
Child | 17467232 | US |