This invention relates generally to the field of submersible pumping systems, and more particularly, but not by way of limitation, to a seal section for use with a submersible pumping system employing an auxiliary pump.
Submersible pumping systems are often deployed into wells to recover petroleum fluids from subterranean reservoirs. Typically, the submersible pumping system includes a number of components, including one or more fluid filled electric motors coupled to one or more high performance pumps located above the motor. When energized, the motor provides torque to the pump, which pushes wellbore fluids to the surface through production tubing. Each of the components in a submersible pumping system must be engineered to withstand the inhospitable downhole environment.
Components commonly referred to as “seal sections” protect the electric motors and are typically positioned between the motor and the pump. In this position, the seal section provide several functions, including transmitting torque between the motor and pump, restricting the flow of wellbore fluids into the motor, protecting the motor from axial thrust imparted by the pump, and accommodating the expansion and contraction of motor lubricant as the motor moves through thermal cycles during operation.
In certain applications, an auxiliary pump can be connected below the motor. Auxiliary pumps can be advantageously employed in applications where a portion or all of the pumping system is located below the perforations in the wellbore. Such a system is disclosed in U.S. Pat. No. 6,666,269, entitled “Method and Apparatus for Producing Fluid From a Well and For Limiting Accumulation of Sediments in the Well,” issued Dec. 23, 2003 to Bangash et al. and assigned to the owner of the present application (the “Bangash '269 patent”). As disclosed in the Bangash '269 patent, the auxiliary pump lifts fluids and sediment produced by the formation to a production pump located above the motor. The production pump pushes the fluid and sediment out of the well through production tubing. The auxiliary pump increases fluid flow around the motor, which moderates the temperature of the motor during operation.
The discharge head of the auxiliary pump in the Bangash '269 patent is connected directly to the motor. The auxiliary pump discharge head includes a mechanical seal designed to prevent wellbore fluids from migrating through the auxiliary pump discharge into the motor. Although generally effective, there is a need for alternative designs that can be used to provide additional protection to the motor in certain applications. It is to this and other needs that the present invention is directed.
Preferred embodiments of the present invention provide a submersible pumping system that includes a motor, a production pump and a seal section disposed between the motor and the production pump. The pumping system further comprises an auxiliary pump disposed below the motor and an auxiliary adapter connected between the motor and the auxiliary pump.
In accordance with a preferred embodiment of the present invention,
The pumping system 100 preferably includes a seal section 108, a motor 110, a production pump 112 and a production pump intake 114. The seal section 108 shields the motor 110 from axial thrust loading produced by the production pump 112 and ingress of fluids produced by the well. The seal section 108 also accommodates expansion and contraction of motor lubricant. The motor 110 is provided with power from the surface by a power cable 116.
Although only one production pump 112 and only one motor 110 are shown, it will be understood that more than one of each can be connected when appropriate. The production pump intake 114 allows wellbore fluids from the wellbore 104 to enter the production pump 112, where the wellbore fluid is forced to the surface through production tubing 102.
As shown in
Because the production pump intake 114 is located between the perforations 122 and the motor 110, fluids entering the wellbore 104 from the perforations 122 may not be effectively circulated about the motor 110. Without the circulation of wellbore fluids around the motor 110, the motor 110 may overheat or operate inefficiently. Additionally, due to the lack of fluid circulation below the production pump intake 114, sediment in the wellbore fluids may accumulate in the open rat hole 118 and fill-in around the pumping system 100.
To increase the flow of fluid around the motor 110 and limit the accumulation of sediment in the wellbore 104, the pumping system 100 includes an auxiliary pump 124, an auxiliary pump intake 126, an auxiliary pump discharge 128 and an auxiliary pump discharge tubing 130. The auxiliary pump 124 and auxiliary pump intake 126 are located below the motor 110. Wellbore fluids below the motor 110 are drawn into the auxiliary pump 124 through the auxiliary pump intake 126 and forced upward toward the production pump 112. In a particularly preferred embodiment, the auxiliary pump 124 discharges the wellbore fluids above the motor 110 and production pump intake 114 through the auxiliary pump discharge 128 and auxiliary pump discharge tubing 130. Through the operation of the auxiliary pump 124, wellbore fluids are circulated around the lower portions of the pumping system 100. The wellbore fluids and entrained sediment are preferably lifted to a position proximate the production pump intake 114 so that the wellbore fluids and sediment are drawn into the production pump 112 and pumped to the surface.
In the preferred embodiment depicted in
The pumping system 100 also preferably includes a lower seal section 132, which is more specifically referred to herein as an “auxiliary adapter” 132. In the preferred embodiment of
Turning to
To accommodate the expansion and contraction of lubricating oil resulting from the thermal cycles of the motor 110, a set of pistons 144 are provided inside the chambers 140 and 142. The pistons 144 move through the chambers 140, 142 in response to changes in the pressure gradient between the lubricating oil in the motor 110 and the fluid inside the auxiliary adapter 132. In this way, the pistons 144 work in combination with the chambers 140, 142 to create a positive barrier between the fluid in the auxiliary adapter 132 and the motor 110, while permitting the lubricating oil in the motor 110 to expand and contract during operation.
The auxiliary adapter 132 also preferably includes a thrust bearing 146. The thrust bearing 146 offsets axial thrust created by the auxiliary pump 124 which can be translated to the motor 110 along shaft 138. The thrust bearing 146 absorbs much of the shock created by the axial thrust so that the motor 110 is subjected to less thrust and shock.
Typical electrical submersible motors (such as motor 110) employ three-phase power using one of several wiring configurations known in the art, such as a wye or delta configuration. In a preferred embodiment, the auxiliary adapter 132 includes a wye point connection 148 near the interface with the motor 110. The wye point connection 148 completes the electric circuit for driving the motor 110 when the auxiliary adapter 132 is attached to the motor 110, thereby providing the desired termination. The wye point connection 148 can be adapted to provide a termination for any desired wiring configuration used for powering the motor 110. Termination of the wiring connection can be accomplished at the motor 110 (as shown in
It is to be understood that even though numerous characteristics and advantages of various embodiments of the present invention have been set forth in the foregoing description, together with details of the structure and functions of various embodiments of the invention, this disclosure is illustrative only, and changes may be made in detail, especially in matters of structure and arrangement of parts within the principles of the present invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. It will be appreciated by those skilled in the art that the teachings of the present invention can be applied to other systems without departing from the scope and spirit of the present invention.
This application is a continuation-in-part of prior application Ser. No. 10/459,193, filed Jun. 11, 2003, entitled Bottom Discharge Seal Section.
Number | Name | Date | Kind |
---|---|---|---|
1778787 | Arutunoff | Oct 1930 | A |
2236887 | Arutunoff | Apr 1941 | A |
2455022 | Schmidt | Nov 1948 | A |
3115840 | Feltus | Dec 1963 | A |
3404924 | Choate | Oct 1968 | A |
3502919 | Boyd et al. | Mar 1970 | A |
3571636 | Carle et al. | Mar 1971 | A |
4421999 | Beavers et al. | Dec 1983 | A |
4537257 | Todd | Aug 1985 | A |
4541782 | Mohn | Sep 1985 | A |
4667737 | Shaw et al. | May 1987 | A |
4992689 | Bookout | Feb 1991 | A |
5367214 | Turner, Jr. | Nov 1994 | A |
5979559 | Kennedy | Nov 1999 | A |
6033567 | Lee et al. | Mar 2000 | A |
6092600 | McKinzie et al. | Jul 2000 | A |
6167965 | Bearden et al. | Jan 2001 | B1 |
6201327 | Rivas | Mar 2001 | B1 |
6206093 | Lee et al. | Mar 2001 | B1 |
6268672 | Straub et al. | Jul 2001 | B1 |
6307290 | Scarsdale | Oct 2001 | B1 |
6325143 | Scarsdale | Dec 2001 | B1 |
6547003 | Bangash et al. | Apr 2003 | B1 |
6811382 | Buchanan et al. | Nov 2004 | B2 |
20030127223 | Branstetter et al. | Jul 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 10459193 | Jun 2003 | US |
Child | 11429569 | US |