The present invention relates to a bottom-pouring-type ladle comprising a stopper rod for opening and closing an upper opening of a nozzle, and a melt-pouring method using it.
A melt-pouring system controlling the amount of a metal melt cast into a mold from a nozzle of a bottom-pouring-type ladle by opening and closing an upper opening of the nozzle in the ladle bottom by a stopper rod is widely used in casting, because it is advantageous in permitting less inclusions floating on the melt in the ladle to enter the mold.
a) and 10(b) schematically show a conventional bottom-pouring-type ladle. This bottom-pouring-type ladle 21 comprises a ladle body 2, a nozzle 3 provided in a bottom portion of the ladle body 2, a stopper rod 4 for closing the nozzle 3, an arm 5 supporting the stopper rod 4, and an elevating mechanism 6 for vertically moving the arm 5. The nozzle 3, which is usually formed by heat-resistant ceramics, has a reverse-conically tapered surface, or a spherically tapered surface having a convexly arcuate cross section. The stopper rod 4 is usually constituted by a sleeve 41 made of refractory materials such as graphite, and a metal-made core shaft 42 supporting the sleeve 41. The sleeve 41 usually has a reverse-conically tapered or semispherical lower end portion 41a. The arm 5 is constituted by a vertical arm portion 5a and a horizontal arm portion 5b, and the core shaft 42 is threadably attached to a tip end portion of the horizontal arm portion 5b with support members 7. In the depicted example, the nozzle 3 has an upper opening 10 having a spherically tapered surface 3a with an inward projecting fan-shaped cross section, and the stopper rod 4 has a semispherical lower end portion 41a.
As shown in
After the melt is poured into the ladle body 2 in the closed state shown in
When more than an acceptable amount of a melt is poured into the mold by leakage, or when a melt leaking before the start of pouring flows into the mold, defects called melt ball and cold shut may occur. Though the stopper rod 4 may be strongly pushed to the nozzle 3 with a large load, it would likely break the heat-resistant sleeve 41 of the stopper rod 4 or the nozzle 3.
As a result of intensive research to solve such a problem as the leakage of a melt, it has been found that (a) while a melt is discharged, not only inclusions in the melt but also a semi-solid melt are attached to the spherically tapered surface 3a of the nozzle 3, that (b) the inclusions and the semi-solid melt attached to the spherically tapered surface 3a of the nozzle 3 hinder the semispherical lower end portion 41a of the stopper rod 4 from coming into close contact with the spherically tapered surface 3a of the nozzle 3, and that (c) when a load necessary for downward movement while crushing or sliding the inclusions and the semi-solid melt attached to the spherically tapered surface 3a of the nozzle 3 is applied to the stopper rod 4, one or both of the semispherical lower end portion 41a of the stopper rod 4 and the nozzle 3 are likely damaged.
To cope with such a problem, JP 3-124363 A discloses, as shown in
Japanese Utility Model Publication No. 1-28944 discloses, as shown in
Accordingly, the first object of the present invention is to provide a bottom-pouring-type ladle capable of preventing the leakage of a cast steel melt from a nozzle without applying a large load to a stopper rod, when a predetermined amount of a cast steel melt is poured through a nozzle.
The second object of the present invention is to provide a method for pouring a melt using such a bottom-pouring-type ladle, while preventing leakage through the nozzle.
As a result of intensive research in view of the above objects, the inventors have found that in a bottom-pouring-type melt ladle, by bringing a stopper rod into contact with a nozzle with a center axis of the stopper rod separate from a center axis of the nozzle, and then sliding the stopper rod down on the nozzle surface to close the nozzle, the nozzle can be completely closed only with a small load applied to the stopper rod, and melt leakage through the nozzle can be prevented even after repeating melt-pouring cycles. The present invention has been completed based on such finding.
Thus, the bottom-pouring-type melt ladle of the present invention comprises a melt-pouring nozzle, and a vertically movable stopper rod for opening and closing an upper opening of the nozzle;
an upper opening of the nozzle having a reverse-conically tapered surface or a spherically tapered surface providing an inward projecting fan-shaped cross section;
a lower end portion of the stopper rod having a reverse-conically tapered surface or a spherical surface, provided that it has a spherical surface when the upper opening of the nozzle has a reverse-conically tapered surface;
the stopper rod being upward separate from the nozzle, with a center axis of the stopper rod horizontally separate from a center axis of the nozzle, in a state where the nozzle is open;
when the lower end portion of the stopper rod moving downward comes into contact with the tapered surface of the nozzle, the horizontal distance between the center axis of the stopper rod and the center axis of the nozzle being 2 mm or more at their contact point; and
when the stopper rod further moves downward, the lower end portion of the stopper rod sliding downward on the tapered surface of the nozzle, thereby closing the upper opening of the nozzle.
In the above bottom-pouring-type ladle, it is preferable that (a) when the stopper rod is lifted from a state where the nozzle is closed, the stopper rod moves upward along the tapered surface of the nozzle, until the horizontal distance between the center axis of the stopper rod and the center axis of the nozzle becomes 2 mm or more at their contact point; and that (b) when the stopper rod is further lifted, the stopper rod is separated from the tapered surface of the nozzle to open the upper opening of the nozzle.
The method of the present invention for pouring a melt uses a bottom-pouring-type ladle comprising a melt-pouring nozzle, and a vertically movable stopper rod for opening and closing an upper opening of the nozzle;
the upper opening of the nozzle having a reverse-conically tapered surface or a spherically tapered surface providing an inward projecting fan-shaped cross section; and
the lower end portion of the stopper rod having a reverse-conically tapered surface or a spherical surface, provided that it has a spherical surface when the upper opening of the nozzle has a reverse-conically tapered surface; the method comprising
an opening step, in which the stopper rod is upward separate from the nozzle, with a center axis of the stopper rod horizontally separate from a center axis of the nozzle;
a first closing step, in which the stopper rod moves downward, such that the lower end portion of the stopper rod comes into contact with the tapered surface of the nozzle, at a position where the horizontal distance between the center axis of the stopper rod and the center axis of the nozzle is 2 mm or more; and
a second closing step, in which the lower end portion of the stopper rod further moves downward along the tapered surface of the nozzle, thereby closing the upper opening of the nozzle.
In the above method, the nozzle is preferably opened by
a first opening step, in which the stopper rod is lifted along the tapered surface of the nozzle, until the horizontal distance between the center axis of the stopper rod and the center axis of the nozzle becomes 2 mm or more at their contact point; and
a second opening step, in which the stopper rod is further lifted to completely open the upper opening of the nozzle.
When the lower end portion of the stopper rod moving downward comes into contact with the tapered surface of the nozzle, there are four combinations of their contact surfaces, depending on whether the lower end portion of the stopper rod has a spherical surface or a reverse conical surface, and whether the nozzle has a reverse-conically tapered surface or a spherically tapered surface. Among them, there are three combinations, in which at least one has a curved surface (spherical surface); (a) when a spherical lower end portion of the stopper rod moving downward comes into contact with a spherically tapered surface of the nozzle, (b) when a spherical lower end portion of the stopper rod moving downward comes into contact with a reverse-conically tapered surface of the nozzle, and (c) when a reverse-conical lower end portion of the stopper rod moving downward comes into contact with a spherically tapered surface of the nozzle. At their contact point, an angle between a normal line of the spherically tapered surface of the nozzle and the center axis of the nozzle [in the cases (a) and (c)], and an angle between a normal line of the spherical lower end portion of the stopper rod and the center axis of the nozzle [in the case (b)] are both preferably 25° or more.
When the nozzle is closed by the stopper rod, an angle between a normal line of the spherically tapered surface of the nozzle or the spherical lower end portion of the stopper rod and the center axis of the nozzle is preferably 60° or less at their contact point.
a) is a partially cross-sectional schematic view showing a bottom-pouring-type ladle according to the first embodiment of the present invention, in a state where a stopper rod is at an elevated position.
b) is a partially cross-sectional schematic view showing a bottom-pouring-type ladle according to the first embodiment of the present invention, in a state where a stopper rod is first brought into contact with a nozzle.
c) is a partially cross-sectional schematic view showing a bottom-pouring-type ladle according to the first embodiment of the present invention, in a state where a nozzle is closed by a stopper rod.
a) is a partially enlarged schematic view showing the relation between a lower end portion of the stopper rod and a tapered surface of the nozzle in the first closing step, in the second embodiment.
b) is a partially enlarged schematic view showing the relation between a lower end portion of the stopper rod and a tapered surface of the nozzle in the second closing step, in the second embodiment.
a) is a partially enlarged schematic view showing the relation between a lower end portion of the stopper rod and a tapered surface of the nozzle in the first closing step, in the third embodiment.
b) is a partially enlarged schematic view showing the relation between a lower end portion of the stopper rod and a tapered surface of the nozzle in the second closing step, in the third embodiment.
a) is a partially cross-sectional schematic view showing a conventional bottom-pouring-type ladle, in a state where a stopper rod is at an elevated position.
b) is a partially cross-sectional schematic view showing a conventional bottom-pouring-type ladle, in which a nozzle is closed by a stopper rod.
Though the embodiments of the present invention are explained in detail below, the present invention is not restricted thereto, but modifications may be made properly in a range not deviating from the scope of the present invention. Explanations of each embodiment are applicable to other embodiments unless otherwise mentioned.
As shown in
In this embodiment, the upper opening 10 of the nozzle 3 has a spherically tapered surface 3a providing an inward projecting fan-shaped cross section, which is axially symmetric with respect to a center axis O1. The lower end portion 41a of the sleeve 41 has a spherical surface, which is axially symmetric with respect to a center axis O2. The “spherical surface” is not restricted to a spherical surface having a completely constant radius, but may be a spherical surface having a radius slightly changing depending on the angle from the center axis O2. The lower end portion 41a of the sleeve 41 is preferably semispherical. The spherical lower end portion 41a of the stopper rod 4 abutting the spherically tapered surface 3a of the nozzle 3 with an inward projecting fan-shaped cross section can further move downward by sliding on the spherically tapered surface 3a with a small force. In addition, even when the nozzle 3 has a reverse-conically tapered surface, sufficiently close contact is secured regardless of the inclination of the stopper rod 4, as long as the curved-surface lower end portion 41a of the stopper rod 4 has a spherical surface.
The arm 5 is constituted by a vertical arm portion 5a vertically movable by the elevating mechanism 6 mounted to the ladle 2, and a horizontal arm portion 5b rectangularly fixed to the vertical arm portion 5a. The structure of the elevating mechanism 6 is not restricted, as long as the arm 5 is vertically movable. The elevating mechanism 6 may be, for example, a rack and pinion type or a hydraulic type.
As shown in
As shown in
In the example shown in
As described below, in the present invention, the center axis O2 of the stopper rod 4 is horizontally separate from the center axis O1 of the nozzle 3 when the stopper rod 4 is lifted, but the stopper rod 4 moves downward along the spherically tapered surface 3a of the nozzle 3, needing a mechanism capable of absorbing deviation by the movement. A mechanism for absorbing the horizontal movement of the center axis of the stopper rod 4 includes (a) swinging of the support 7, (b) swinging of the vertical arm portion 5a by the elevating mechanism 6, etc. From the aspect of an easy structure, it is preferable to make the support 7 swingable.
An example of swingable supports 7 comprises, as shown in
Another example of swingable supports 7 comprises, as shown in
Referring to
(a) Opening Step
When the stopper rod 4 is upward separate from the nozzle 3 as shown in
(b) First Closing Step
When the stopper rod 4 moves downward as shown in
As shown in
(c) Second Closing Step
As the stopper rod 4 further moves downward, the semispherical lower end portion 41a moves downward along the spherically tapered surface 3a of the nozzle 3, until their center axes O1 and O2 substantially overlap (their contact point lowers to the lowest point Y), thereby closing the upper opening 10 of the nozzle 3. When the stopper rod 4 moves downward to the lowest point Y, the center axis O1 of the nozzle 3 may not completely overlap the center axis O2 of the stopper rod 4. Even in such a case, the lower end portion 41a of the stopper rod 4 can come into close contact with the spherically tapered surface 3a of the nozzle 3, as long as the lower end portion 41a has a spherical surface.
As described above, in a state where both center axes O1 and O2 are separate from each other in the first closing step, the stopper rod 4 first comes into contact with the nozzle 3 at a point X, and then moves downward along the spherically tapered surface 3a of the nozzle 3, making the center axis O2 of the stopper rod 4 closer to the center axis O1 of the nozzle 3. As a result, a range in which the stopper rod 4 is in contact with the nozzle 3, or in which the stopper rod 4 is sufficiently close to the nozzle 3 to prevent the flowing of a melt, gradually expands, and the nozzle 3 is finally closed at the lowest point Y. At this time, the stopper rod 4 is inclined with the support 7 as a fulcrum, and the lower end portion 41a of the sleeve 41 of the stopper rod 4 moves along the spherically tapered surface 3a by several millimeters horizontally, without breaking the semispherical lower end portion 41a and the spherically tapered surface 3a.
As the semispherical lower end portion 41a of the stopper rod 4 slides along the spherically tapered surface 3a of the nozzle 3, a contact region of the stopper rod 4 with the nozzle 3 gradually increases, and inclusions and a semi-solid melt in the melt acting as resistance to the close contact of the stopper rod 4 with the nozzle 3 are gradually crushed or taken away, making it possible to close the nozzle 3 with a small load applied to the stopper rod 4.
As shown in
(d) First Opening Step
As the stopper rod 4 is lifted from the closed state to open the nozzle 3, oppositely to the above, the semispherical lower end portion 41a of the stopper rod 4 slides on the spherically tapered surface 3a of the nozzle 3 to the point X in a direction separating from the center axis O1 of the nozzle 3. As a result, a non-contact region of the stopper rod 4 with the nozzle 3 gradually increases.
(e) Second Opening Step
When the stopper rod 4 reaching the point X is further lifted, the upper opening 10 of the nozzle 3 is completely opened, so that a melt is poured from the bottom-pouring-type ladle 1 to a mold (not shown). As described above, the stopper rod 4 can be lifted with a small load, by conducting the first and second opening steps just oppositely to the first and second closing steps.
In this embodiment, as shown in
In the second embodiment, too, a horizontal distance d between the center axis O2 of the stopper rod 4 and the center axis O1 of the nozzle 13 is 2 mm or more in the first closing step, and the semispherical lower end portion 41a moves downward along the reverse-conically tapered surface 13a of the nozzle 13 (their contact point lowers to the lowest point Y), until their center axes O1 and O2 substantially overlap, thereby closing the upper opening of the nozzle 13, in the second closing step. In the first closing step, an angle α between a normal line of the semispherical lower end portion 41a of the stopper rod 4 and the center axis O1 of the nozzle 13 at the contact point X is preferably 25° or more. In the second closing step, a angle β between a normal line of the semispherical lower end portion 41a of the stopper rod 4 and the center axis O1 of the nozzle 13 at the lowest point Y is preferably 60° or less.
In this embodiment, as shown in
In the third embodiment, too, a horizontal distance d between the center axis O2 of the stopper rod 14 and the center axis O1 of the nozzle 3 in the first closing step is 2 mm or more, and the reverse-conical-tapered lower end portion 141a moves downward along the spherically tapered surface 3a of the nozzle 3 (their contact point lowers to the lowest point Y), until their center axes O1 and O2 substantially overlap, thereby closing the upper opening of the nozzle 3, in the second closing step. In the first closing step, an angle α between a normal line of the spherically tapered surface 3a of the nozzle 3 and the center axis O1 of the nozzle 3 at the contact point X is preferably 25° or more. In the second closing step, an angle 13 between a normal line of the spherically tapered surface 3a of the nozzle 3 and the center axis O1 of the nozzle 3 at the lowest point Y is preferably 60° or less.
The present invention will be explained in more detail by Examples below, without intention of restricting the present invention thereto. Though cast steel is taken for example in Examples, the present invention is of course not restricted thereto.
Using the bottom-pouring-type ladle 1 having the structure shown in
At a position at which the nozzle 3 was closed by the stopper rod 4, as shown in
The elevating mechanism 6 was operated from this state to elevate the vertical arm portion 5a, thereby lifting the stopper rod 4 by 50 mm to the state shown in
By operating the elevating mechanism 6, the stopper rod 4 was moved downward to abut the nozzle 3 with a distance d of 10 mm between the center axis O1 of the nozzle 3 and the center axis O2 of the stopper rod 4 as shown in
When the elevating mechanism 6 was operated to move the stopper rod 4 downward with a load of 130 N, the stopper rod 4 was inclined around the support 7, and the semispherical lower end portion 41a of the stopper rod 4 moved downward along the spherically tapered surface 3a of the nozzle 3 to substantially overlap the center axis O1 of the nozzle 3 to the center axis O2 of the stopper rod 4, thereby closing the nozzle 3. At this time, an angle (3 between a normal line 17 of the spherically tapered surface 3a of the nozzle 3 and the center axis O1 of the nozzle 3 at the lowest point Y of the stopper rod 4 was 42° as shown in
In this state, 500 kg of a cast steel melt at a temperature of 1600° C. was introduced into the ladle body 2. Considering buoyancy applied to the stopper rod 4 by the melt, the stopper rod 4 was pushed downward with a load of 130 N+170 N (buoyancy)=300 N, to keep the nozzle 3 closed.
To start pouring the cast steel melt, the stopper rod 4 was lifted with a pulling load of 120 N. With the stopper rod 4 lifted by 100 mm, the nozzle 3 was opened to pour about 12 kg of the melt into a mold (not shown), and the nozzle 3 was then closed through the same first and second closing steps as above. After repeating this cycle 30 times, no leakage occurred in the nozzle 3.
The melt-pouring cycle was repeated 30 times in the same manner as in Example 1, except for changing the distance d between the center axis O1 of the nozzle 3 and the center axis O2 of the stopper rod 4, and the angle α, as shown in Table 1. As a result, no leakage occurred in the nozzle during 30 cycles of melt-pouring.
The melt-pouring cycle was repeated 30 times in the same manner as in Example 1, except for changing the outer diameter of the sleeve 41 of the stopper rod 4 and the radius of the semispherical lower end portion 41a, with the distance d between the center axis O1 of the nozzle 3 and the center axis O2 of the stopper rod 4 fixed to 5 mm. No leakage occurred in the nozzle during 30 cycles of melt-pouring.
The above melt-pouring cycle was repeated 7 times, with no deviation of the center axis O2 of the stopper rod 4 from the center axis O1 of the nozzle 3, and with a closing load of 405 N. As a result, leakage occurred from the closed nozzle 3. Leakage stopped by increasing a load to the stopper rod 4 to 600 N, but the nozzle 3 was cracked at the eighth cycle after restarting pouring.
The melt-pouring was started in the same manner as in Comparative
Example 1, with no deviation of the center axis O2 of the stopper rod 43 from the center axis O1 of the nozzle 3, and with a load of 600 N applied to the stopper rod 4 from the beginning. As a result, the nozzle 3 was cracked at the 13th cycle after starting pouring.
It was found from Comparative Examples 1 and 2 that in a state where the center axis O1 of the nozzle 3 is not separate from the center axis O2 of the stopper rod 4, the stopper rod 4 should be pushed with a large load to prevent leakage from the closed nozzle 3, resulting in cracking in the nozzle 3. On the other hand, when the center axis O1 of the nozzle 3 is separate from the center axis O2 of the stopper rod 4 as in Examples 1-9, leakage from the nozzle 3 can be prevented, without a large closing load applied to the stopper rod 4. Small rod load and closing load were needed at the angle α of 25° or more, and a small pulling load was needed at the angle 13 of 60° or less.
Table 1 shows the diameter D3 and radius r3 of the sleeve 41 (semispherical lower end portion 41a), distance d, angles α and β, load to the stopper rod 4 (rod load), load to the stopper rod 4 (closing load) when the nozzle 3 was closed, load for lifting the stopper rod 4 (pulling load), leakage from the nozzle 3, and cracking of the nozzle 3, in Examples 1-9 and Comparative Examples 1 and 2.
(1) D3 represents the diameter of a sleeve.
(2) r3 represents the radius of a semispherical lower end portion.
(1) D3 represents the diameter of a sleeve.
(2) r3 represents the radius of a semispherical lower end portion.
Using the bottom-pouring-type ladle of the present invention, leakage from the nozzle can be prevented without applying a large load to the stopper rod in closing the nozzle, even with inclusions or a semi-solid melt attached to the tapered surface of the nozzle.
Number | Date | Country | Kind |
---|---|---|---|
2013-048909 | Mar 2013 | JP | national |
2013-270664 | Dec 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/056131 | 3/10/2014 | WO | 00 |