Bottom set downhole plug

Information

  • Patent Grant
  • 9309744
  • Patent Number
    9,309,744
  • Date Filed
    Friday, December 16, 2011
    12 years ago
  • Date Issued
    Tuesday, April 12, 2016
    8 years ago
Abstract
A plug for isolating a wellbore. The plug can include a body having a first end and a second end, wherein the body is formed from one or more composite materials and adapted to receive a setting tool through the first end thereof, at least one malleable element disposed about the body, at least one slip disposed about the body, at least one conical member disposed about the body, and one or more shearable threads disposed on an inner surface of the body, adjacent the second end thereof, wherein the one or more shearable threads are adapted to receive at least a portion of a setting tool that enters the body through the first end thereof, and wherein the one or more shearable threads are adapted to engage the setting tool when disposed through the body and adapted to release the setting tool when exposed to a predetermined axial force.
Description
BACKGROUND

1. Field


Embodiments described generally relate to downhole tools. More particularly, embodiments described relate to downhole tools that are set within a wellbore with a lower shear mechanism.


2. Description of the Related Art


Bridge plugs, packers, and frac plugs are downhole tools that are typically used to permanently or temporarily isolate one wellbore zone from another. Such isolation is often necessary to pressure test, perforate, frac, or stimulate a zone of the wellbore without impacting or communicating with other zones within the wellbore. To reopen and/or restore fluid communication through the wellbore, plugs are typically removed or otherwise compromised.


Permanent, non-retrievable plugs and/or packers are typically drilled or milled to remove. Most non-retrievable plugs are constructed of a brittle material such as cast iron, cast aluminum, ceramics, or engineered composite materials, which can be drilled or milled. Problems sometimes occur, however, during the removal or drilling of such non-retrievable plugs. For instance, the non-retrievable plug components can bind upon the drill bit, and rotate within the casing string. Such binding can result in extremely long drill-out times, excessive casing wear, or both. Long drill-out times are highly undesirable, as rig time is typically charged by the hour.


In use, non-retrievable plugs are designed to perform a particular function. A bridge plug, for example, is typically used to seal a wellbore such that fluid is prevented from flowing from one side of the bridge plug to the other. On the other hand, drop ball plugs allow for the temporary cessation of fluid flow in one direction, typically in the downhole direction, while allowing fluid flow in the other direction. Depending on user preference, one plug type may be advantageous over another, depending on the completion and/or production activity.


Certain completion and/or production activities may require several plugs run in series or several different plug types run in series. For example, one well may require three bridge plugs and five drop ball plugs, and another well may require two bridge plugs and ten drop ball plugs for similar completion and/or production activities. Within a given completion and/or production activity, the well may require several hundred plugs and/or packers depending on the productivity, depths, and geophysics of each well. The uncertainty in the types and numbers of plugs that might be required typically leads to the over-purchase and/or under-purchase of the appropriate types and numbers of plugs resulting in fiscal inefficiencies and/or field delays.


There is a need, therefore, for a downhole tool that can effectively seal the wellbore at wellbore conditions; be quickly, easily, and/or reliably removed from the wellbore; and configured in the field to perform one or more functions.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting, illustrative embodiments are depicted in the drawings, which are briefly described below. It is to be noted, however, that these illustrative drawings illustrate only typical embodiments and are not to be considered limiting of its scope, for the invention can admit to other equally effective embodiments.



FIG. 1A depicts a partial section view of an illustrative insert for use with a plug for downhole use, according to one or more embodiments described.



FIG. 1B depicts a partial section view of another illustrative embodiment of the insert for use with a plug for downhole use, according to one or more embodiments described.



FIG. 2A depicts a partial section view of an illustrative plug configured with the insert of FIG. 1, according to one or more embodiments described.



FIG. 2B depicts a partial section view of the illustrative plug configured with the insert of FIG. 1 and a flapper valve, according to one or more embodiments described.



FIG. 2C depicts a partial section view of another illustrative plug with a lower shear mechanism disposed directly on the plug body, according to one or more embodiments.



FIG. 3A depicts a partial section view of the plug of FIG. 2A located within a casing prior to installation, according to one or more embodiments described.



FIG. 3B depicts a partial section view of the plug of FIG. 2B located within the casing prior to installation, according to one or more embodiments described.



FIG. 3C depicts a partial section view of the plug of FIG. 2A located in an expanded or actuated position within the casing, according to one or more embodiments described.



FIG. 3D depicts a partial section view of the plug of FIG. 2B located in an expanded or actuated position within the casing, according to one or more embodiments described.



FIG. 4 depicts a partial section view of the expanded plug depicted in FIGS. 3C and 3D, according to one or more embodiments described.



FIG. 5 depicts an illustrative, complementary set of angled surfaces that function as anti-rotation features to interact and/or engage between a first plug and a second plug in series, according to one or more embodiments described.



FIG. 6 depicts an illustrative, dog clutch anti-rotation feature, allowing a first plug and a second plug to interact and/or engage in series according to one or more embodiments described.



FIG. 7 depicts an illustrative, complementary set of flats and slots that serve as anti-rotation features to interact and/or engage between a first plug and a second plug in series, according to one or more embodiments described.



FIG. 8 depicts another illustrative, complementary set of flats and slots that serve as anti-rotation features to interact and/or engage between a first plug and a second plug in series, according to one or more embodiments described.





DETAILED DESCRIPTION

A plug for isolating a wellbore is provided. The plug can include one or more lower shear or shearable mechanisms for connecting to a setting tool. The lower shear or shearable mechanism can be located directly on the body of the plug or on a separate component or insert that is placed within the body of the plug. The lower shear or shearable mechanism is adapted to engage a setting tool and release the setting tool when exposed to a predetermined stress that is sufficient to deform the shearable threads to release the setting tool but is less than a stress sufficient to break the plug body. The term “stress” and “force” are used interchangeably, and are intended to refer to a system of forces that may in include axial force, radial force, and/or a combination thereof. The terms “shear mechanism” and “shearable mechanism” are used interchangeably, and are intended to refer to any component, part, element, member, or thing that shears or is capable of shearing at a predetermined stress that is less than the stress required to shear the body of the plug. The term “shear” means to fracture, break, or otherwise deform thereby releasing two or more engaged components, parts, or things or thereby partially or fully separating a single component into two or more components/pieces. The term “plug” refers to any tool used to permanently or temporarily isolate one wellbore zone from another, including any tool with blind passages, plugged mandrels, as well as open passages extending completely therethrough and passages that are blocked with a check valve. Such tools are commonly referred to in the art as “bridge plugs,” “frac plugs,” and/or “packers.” And such tools can be a single assembly (i.e. one plug) or two or more assemblies (i.e. two or more plugs) disposed within a work string or otherwise connected thereto that is run into a wellbore on a wireline, slickline, production tubing, coiled tubing or any technique known or yet to be discovered in the art.



FIG. 1A depicts a partial section view of an illustrative, shearable insert 100 for a plug, according to one or more embodiments. The insert 100 can include a body 102 having a first or upper end 112 and a second or lower end 114. A passageway or bore 110 can be completely or at least partially formed through the body 102. One or more threads 120 can be disposed or formed on an outer surface of the body 102. The threads 120 can be disposed on the outer surface of the body 102 toward the upper end 112. As discussed in more detail below with reference to FIGS. 2A-2C and FIGS. 3A-D, the threads 120 can be used to secure the insert 100 within a surrounding component, such as another insert 100, setting tool, tubing string, plug, or other tool.



FIG. 1B depicts a partial section view of an alternative embodiment of the illustrative, shearable insert 100B for a plug. The insert 100B can include any combination of features of insert 100, and additionally, a ball 150 or other solid impediment can seat against either or both ends of the bore 110 to regulate or check fluid flow therethrough. As depicted in FIG. 1B, the body 102 can include a shoulder 155 formed in, coupled to, or otherwise provided, which can be sized to receive the ball 150 and to seal therewith. Accordingly, the ball 150 can seat against the shoulder 155 to restrict fluid flow through the bore 110 from below the insert 100B. An adapter pin 160 can be inserted through the body 102 to cage the ball 150 or other solid impediment in the bore 110, between the pin 160 and the shoulder 155.


One or more shearable threads 130 can be disposed or formed on an inner surface of the body 102. The shearable threads 130 can be used to couple the insert 100, 100B to another insert 100, 100B, setting tool, tubing string, plug, or other tool. The shearable threads 130 can be located anywhere along the inner surface of the body 102, and are not dependent on the location of the outer threads 120. For example, the location of the shearable threads 130 can be located beneath or above the outer threads 120; toward the first end 112 of the insert 100, 100B, as depicted in FIGS. 1 and 1B; and/or toward the second end 114 of the insert 100, 100B.


Any number of shearable threads 130 can be used. The number, pitch, pitch angle, and/or depth of the shearable threads 130 can depend, at least in part, on the operating conditions of the wellbore where the insert 100, 100B will be used. The number, pitch, pitch angle, and/or depth of the shearable threads 130 can also depend, at least in part, on the materials of construction of both the insert 100, 100B and the component, e.g., another insert 100, 100B, a setting tool, another tool, plug, tubing string, etc., to which the insert 100, 100B is connected. The number of threads 130, for example, can range from about 2 to about 100, such as about 2 to about 50; about 3 to about 25; or about 4 to about 10. The number of threads 130 can also range from a low of about 2, 4, or 6 to a high of about 7, 12, or 20. The pitch between each thread 130 can also vary depending on the force required to shear, break, or otherwise deform the threads 130. The pitch between each thread 130 can be the same or different. For example, the pitch between each thread 130 can vary from about 0.1 mm to about 200 mm; 0.2 mm to about 150 mm; 0.3 mm to about 100 mm; or about 0.1 mm to about 50 mm. The pitch between each thread 130 can also range from a low of about 0.1 mm, 0.2 mm, or 0.3 mm to a high of about 2 mm, 5 mm or 10 mm.


The shearable threads 130 can be adapted to shear, break, or otherwise deform when exposed to a predetermined stress or force, releasing the component engaged within the body 102. The predetermined stress or force can be less than a stress and/or force required to fracture or break the body 102 of the insert 100, 100B. Upon the threads 130 shearing, breaking, or deforming, the component engaged within the body 102 can be freely removed or separated therefrom.


Any number of outer threads 120 can be used. The number of outer threads 120, for example, can range from about 2 to about 100, such as about 2 to about 50; about 3 to about 25; or about 4 to about 10. The number of threads 120 can also range from a low of about 2, 4, or 6 to a high of about 7, 12, or 20. The pitch between each thread 120 can also vary. The pitch between each thread 120 can be the same or different. For example, the pitch between each thread 120 can vary from about 0.1 mm to about 200 mm; 0.2 mm to about 150 mm; 0.3 mm to about 100 mm; or about 0.1 mm to about 50 mm. The pitch between each thread 120 can also range from a low of about 0.1 mm, 0.2 mm, or 0.3 mm to a high of about 2 mm, 5 mm or 10 mm.


The threads 120 and the shearable threads 130 can be right-handed and/or left-handed threads. For example, to facilitate connection of the insert 100, 100B to a setting tool when the setting tool is coupled to, for example, screwed into the insert 100, 100B, the threads 120 can be right-handed threads and the shearable threads 130 can be left-handed threads, or vice versa.


The outer surface of the insert 100, 100B can have a constant diameter, or its diameter can vary, as depicted in FIGS. 1A and 1B. For example, the outer surface can include a smaller first diameter portion or area 140 that transitions to a larger, second diameter portion or area 142, forming a ledge or shoulder 144 therebetween. The shoulder 144 can have a first end that is substantially flat, abutting the second diameter 142, a second end that gradually slopes or transitions to the first diameter 140, and can be adapted to anchor the insert into the plug. The shoulder 144 can be formed adjacent the outer threads 120 or spaced apart therefrom, and the outer threads 120 can be above or below the shoulder 144.


The insert 100, 100B and/or the shearable threads 130 can be made of an alloy that includes brass. Suitable brass compositions include, but are not limited to, admiralty brass, Aich's alloy, alpha brass, alpha-beta brass, aluminum brass, arsenical brass, beta brass, cartridge brass, common brass, dezincification resistant brass, gilding metal, high brass, leaded brass, lead-free brass, low brass, manganese brass, Muntz metal, nickel brass, naval brass, Nordic gold, red brass, rich low brass, tonval brass, white brass, yellow brass, and/or any combinations thereof.


The insert 100, 100B can also be formed or made from other metallic materials (such as aluminum, steel, stainless steel, copper, nickel, cast iron, galvanized or non-galvanized metals, etc.), fiberglass, wood, composite materials (such as ceramics, wood/polymer blends, cloth/polymer blends, etc.), and plastics (such as polyethylene, polypropylene, polystyrene, polyurethane, polyethylethylketone (PEEK), polytetrafluoroethylene (PTFE), polyamide resins (such as nylon 6 (N6), nylon 66 (N66)), polyester resins (such as polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene isophthalate (PEI), PET/PEI copolymer) polynitrile resins (such as polyacrylonitrile (PAN), polymethacrylonitrile, acrylonitrile-styrene copolymers (AS), methacrylonitrile-styrene copolymers, methacrylonitrile-styrene-butadiene copolymers; and acrylonitrile-butadiene-styrene (ABS)), polymethacrylate resins (such as polymethyl methacrylate and polyethylacrylate), cellulose resins (such as cellulose acetate and cellulose acetate butyrate); polyimide resins (such as aromatic polyimides), polycarbonates (PC), elastomers (such as ethylene-propylene rubber (EPR), ethylene propylene-diene monomer rubber (EPDM), styrenic block copolymers (SBC), polyisobutylene (PIB), butyl rubber, neoprene rubber, halobutyl rubber and the like)), as well as mixtures, blends, and copolymers of any and all of the foregoing materials.



FIG. 2A depicts a partial section view of an illustrative plug 200 configured with the insert 100, 100B and adapted to receive a ball type impediment or another type of impediment, according to one or more embodiments. The plug 200 can include a mandrel or body 210 having a first or upper end 207 and a second or lower end 208. A passageway or bore 255 can be formed at least partially through the body 210. The body 210 can be a single, monolithic component as shown, or the body 210 can be or include two or more components connected, engaged, or otherwise attached together. The body 210 serves as a centralized support member, made of one or more components or parts, for one or more outer components to be disposed thereon or thereabout.


The insert 100, 100B can be threaded or otherwise disposed within the plug 200 at a lower end 208 of the body 210. A setting tool, tubing string, plug, or other tool can enter the bore 255 through the first end 207 of the body 210 and can be threaded to or otherwise coupled to and/or disposed within the insert 100. As further described herein, the shearable threads 130 on the insert 100 can be sheared, fractured, or otherwise deformed, releasing the setting tool, tubing string, plug, or other tool from the plug 200.


The bore 255 can have a constant diameter throughout, or its diameter can vary, as depicted in FIG. 2A. For example, the bore 255 can include a larger, first diameter portion or area 226 that transitions to a smaller, second diameter portion or area 227, forming a seat or shoulder 228 therebetween. The shoulder 228 can have a tapered or sloped surface connecting the two diameter portions or areas 226, 227. Although not shown, the shoulder 228 can be flat or substantially flat, providing a horizontal or substantially horizontal surface connecting the two diameters 226, 227. As will be explained in more detail below, the shoulder 228 can serve as a seat or receiving surface for plugging off the bore 255 when a ball (shown in FIG. 3C) or other impediment, such as a flapper member 215 (shown in FIG. 3D), is placed within the bore 255.


At least one conical member (two are shown: 230, 235), at least one slip (two are shown: 240, 245), and at least one malleable element 250 can be disposed about the body 210. As used herein, the term “disposed about” means surrounding the component, e.g., the body 210, allowing for relative movement therebetween (e.g., by sliding, rotating, pivoting, or a combination thereof). A first section or second end of the conical members 230, 235 has a sloped surface adapted to rest underneath a complementary sloped inner surface of the slips 240, 245. As explained in more detail below, the slips 240, 245 travel about the surface of the adjacent conical members 230, 235, thereby expanding radially outward from the body 210 to engage an inner surface of a surrounding tubular or borehole. A second section or second end of the conical members 230, 235 can include two or more tapered pedals or wedges adapted to rest about an adjacent malleable element 250. One or more circumferential voids 236 can be disposed within or between the first and second sections of the conical members 230, 235 to facilitate expansion of the wedges about the malleable element 250. The wedges are adapted to hinge or pivot radially outward and/or hinge or pivot circumferentially. The groove or void 236 can facilitate such movement. The wedges pivot, rotate, or otherwise extend radially outward, and can contact an inner diameter of the surrounding tubular or borehole. Additional details of the conical members 230, 235 are described in U.S. Pat. No. 7,762,323.


The inner surface of each slip 240, 245 can conform to the first end of the adjacent conical member 230, 235. An outer surface of the slips 240, 245 can include at least one outwardly-extending serration or edged tooth to engage an inner surface of a surrounding tubular, as the slips 240, 245 move radially outward from the body 210 due to the axial movement across the adjacent conical members 230, 235.


The slips 240, 245 can be designed to fracture with radial stress. The slips 240, 245 can include at least one recessed groove 242 milled or otherwise formed therein to fracture under stress allowing the slips 240, 245 to expand outward and engage an inner surface of the surrounding tubular or borehole. For example, the slips 240, 245 can include two or more, for example, four, sloped segments separated by equally-spaced recessed grooves 242 to contact the surrounding tubular or borehole.


The malleable element 250 can be disposed between the conical members 230, 235. A three element 250 system is depicted in FIG. 2A, but any number of elements 250 can be used. The malleable element 250 can be constructed of any one or more malleable materials capable of expanding and sealing an annulus within the wellbore. The malleable element 250 is preferably constructed of one or more synthetic materials capable of withstanding high temperatures and pressures, including temperatures up to 450° F., and pressure differentials up to 15,000 psi. Illustrative materials include elastomers, rubbers, TEFLON®, blends and combinations thereof.


The malleable element(s) 250 can have any number of configurations to effectively seal the annulus defined between the body 210 and the wellbore. For example, the malleable element(s) 250 can include one or more grooves, ridges, indentations, or protrusions designed to allow the malleable element(s) 250 to conform to variations in the shape of the interior of the surrounding tubular or borehole.


At least one component, ring, or other annular member 280 for receiving an axial load from a setting tool can be disposed about the body 210 adjacent a first end of the slip 240. The annular member 280 for receiving the axial load can have first and second ends that are substantially flat. The first end can serve as a shoulder adapted to abut a setting tool (not shown). The second end can abut the slip 240 and transmit axial forces therethrough.


Each end of the plug 200 can be the same or different. Each end of the plug 200 can include one or more anti-rotation features 270, disposed thereon. Each anti-rotation feature 270 can be screwed onto, formed thereon, or otherwise connected to or positioned about the body 210 so that there is no relative motion between the anti-rotation feature 270 and the body 210. Alternatively, each anti-rotation feature 270 can be screwed onto or otherwise connected to or positioned about a shoe, nose, cap, or other separate component, which can be made of composite, that is screwed onto threads, or otherwise connected to or positioned about the body 210 so that there is no relative motion between the anti-rotation feature 270 and the body 210. The anti-rotation feature 270 can have various shapes and forms. For example, the anti-rotation feature 270 can be or can resemble a mule shoe shape (not shown), half-mule shoe shape (illustrated in FIG. 5), flat protrusions or flats (illustrated in FIGS. 7 and 8), clutches (illustrated in FIG. 6), or otherwise angled surfaces 285, 290, 295 (illustrated in FIGS. 2A, 2B, 2C, 3A, 3B, 3C, 3D and 5).


As explained in more detail below, the anti-rotation features 270 are intended to engage, connect, or otherwise contact an adjacent plug, whether above or below the adjacent plug, to prevent or otherwise retard rotation therebetween, facilitating faster drill-out or mill times. For example, the angled surfaces 285, 290 at the bottom of a first plug 200 can engage the sloped surface 295 at the top of a second plug 200 in series, so that relative rotation therebetween is prevented or greatly reduced.


A pump down collar 275 can be located about a lower end of the plug 200 to facilitate delivery of the plug 200 into the wellbore. The pump down collar 275 can be a rubber O-ring or similar sealing member to create an impediment in the wellbore during installation, so that a push surface or resistance can be created.



FIG. 2B depicts a partial section view of the illustrative plug 200 configured with a flapper-type impediment for regulating flow through the bore 255, according to one or more embodiments. The flapper-type impediment can include a flapper member 215 connected to the body 210 using one or more pivot pins 216. The flapper member 215 can be flat or substantially flat. Alternatively, the flapper member 215 can have an arcuate shape, with a convex upper surface and a concave lower surface. A spring (not shown) can be disposed about the one or more pivot pins 216 to urge the flapper member 215 from a run-in (“first” or “open”) position wherein the flapper member 215 does not obstruct the bore 255 through the plug 200, to an operating (“second” or “closed”) position, as depicted in FIG. 2B, where the flapper member 215 assumes a position proximate to the shoulder or valve seat 228, transverse to the bore 255 of the plug 200. At least a portion of the spring can be disposed upon or across the upper surface of the flapper member 215 providing greater contact between the spring and the flapper member 215, offering greater leverage for the spring to displace the flapper member 215 from the run-in position to the operating position. In the run-in position, bi-directional, e.g., upward and downward or side to side, fluid communication through the plug 200 can occur. In the operating position, unidirectional, e.g., upward. as shown.


As used herein the term “arcuate” refers to any body, member, or thing having a cross-section resembling an arc. For example, a flat, elliptical member with both ends along the major axis turned downwards by a generally equivalent amount can form an arcuate member. The terms “up” and “down”; “upward” and “downward”; “upper” and “lower”; “upwardly” and “downwardly”; “upstream” and “downstream”; “above” and “below”; and other like terms as used herein refer to relative positions to one another and are not intended to denote a particular spatial orientation since the tool and methods of using same can be equally effective in either horizontal or vertical wellbore uses. Additional details of a suitable flapper assembly can be found in U.S. Pat. No. 7,708,066, which is incorporated by reference herein in its entirety.



FIG. 2C depicts a partial section view of another illustrative plug 200 with a lower shear mechanism disposed directly on the plug body, according to one or more embodiments. This is an alternative configuration where one or more shearable threads 130A are formed directly on the inner surface of the bore 255. No insert 100, 100B is needed. The shearable threads 130A can be made of the same composite material as the body 210 of the plug 200, or can be made from a different material.


Any number of shearable threads 130A can be used. The number of shearable threads 130A can depend, at least in part, on the operating conditions and/or environment of the wellbore where the plug 200 will be used. The number of threads 130A, for example, can range from about 2 to about 100, such as about 2 to about 50; about 3 to about 25; or about 4 to about 10. The number of threads 130A can also range from a low of about 2, 4, or 6 to a high of about 7, 12, or 20.


The pitch of the threads 130A can also vary depending on the force required to shear, break, or otherwise deform the threads 130A. The pitch of the threads 130A can be the same or different. For example, the spacing between each thread 130A can vary from about 0.1 mm to about 200 mm; 0.2 mm to about 150 mm; 0.3 mm to about 100 mm; or about 0.1 mm to about 50 mm. The spacing between each thread 120 can also range from a low of about 0.1 mm, 0.2 mm, or 0.3 mm to a high of about 2 mm, 5 mm or 10 mm.


The shearable threads 130A can be adapted to shear, break, or otherwise deform when exposed to a predetermined stress or force, releasing the component engaged within the body 210. The predetermined stress or force is preferably less than a stress or force required to fracture, break, or otherwise significantly deform the body 210. Upon the threads 130A shearing, breaking, or deforming, the component engaged within the plug 200 can be freely removed or separated therefrom. The component engaged within the plug 200 via the shearable threads 130A or insert 100 will typically be a rod or extender from a setting tool used to install the plug 200 within a wellbore.



FIG. 3A depicts a partial section view of the plug 200 depicted in FIG. 2A, prior to installation or actuation but after being disposed within casing 300, according to one or more embodiments. FIG. 3B depicts a partial section view of the plug 200 depicted in FIG. 2B, prior to installation or actuation but after being disposed within casing 300, according to one or more embodiments.


The plug 200 can be installed in a vertical, horizontal, or deviated wellbore using any suitable setting tool adapted to engage the plug 200. One example of such a suitable setting tool or assembly includes a gas operated outer cylinder powered by combustion products and an adapter rod. The outer cylinder of the setting tool abuts an outer, upper end of the plug 200, such as against the annular member 280. The outer cylinder can also abut directly against the upper slip 240, for example, in embodiments of the plug 200 where the annular member 280 is omitted, or where the outer cylinder fits over or otherwise avoids bearing on the annular member 280. The adapter rod 310 is threadably connected to the body 210 and/or the insert 100. Suitable setting assemblies that are commercially-available include the Owen Oil Tools wireline pressure setting assembly or a Model 10, 20 E-4, or E-5 Setting Tool available from Baker Oil Tools, for example.


During the setting process, the outer cylinder (not shown) of the setting tool exerts an axial force against the outer, upper end of the plug 200 in a downward direction that is matched by the adapter rod 310 of the setting tool exerting an equal and opposite force from the lower end of the plug 200 in an upward direction. For example, in the embodiment illustrated in FIGS. 3A and 3B, the outer cylinder of the setting assembly exerts an axial force on the annular member 280, which translates the force to the slips 240, 245 and the malleable elements 250 that are disposed about the body 210 of the plug 200. The translated force fractures the recessed groove(s) 242 of the slips 240, 245, allowing the slips 240, 245 to expand outward and engage the inner surface of the casing or wellbore 300, while at the same time compresses the malleable elements 250 to create a seal between the plug 200 and the inner surface of the casing or wellbore 300, as shown in FIG. 4. FIG. 4 depicts an illustrative partial section view of the expanded or actuated plug 200, according to one or more embodiments described.


After actuation or installation of the plug 200, the setting tool can be released from the shearable threads 130, 130A of the plug 200, or the insert 100 that is screwed into the plug 200 by continuing to apply the opposing, axial forces on the body 210 via the adapter rod 310 and the outer cylinder. The opposing, axial forces applied by the outer cylinder and the adapter rod 310 result in a compressive load on the body 210, which is borne as internal stress once the plug 200 is actuated and secured within the casing or wellbore 300. The force or stress is focused on the shearable threads 130, 130A, which will eventually shear, break, or otherwise deform at a predetermined amount, releasing the adapter rod 310 therefrom. The predetermined axial force sufficient to deform the shearable threads 130 and/or 130A to release the setting tool is less than an axial force sufficient to break the plug body 210.


Using a lower set mechanism, be it the insert 100 or shearable threads 130A directly on the body 210, allows the plug 200 to be squeezed from opposing ends. This provides a more balanced and efficient translation of force to the moveable components about the body 210, and reduces the stress directly applied to the body 210 itself. As such, the body 210 and a majority of the outer components of the plug 200 can be made of a softer, drillable material, such as a composite material, since the stress being asserted thereon during the setting process is reduced. Conventional cast iron and other metallic plugs are set from the upper end of the plug, which translates all of the force needed to squeeze and actuate the plug on the plug body itself. As such, the plug body had to be constructed of a more rigid material capable of withstanding such stress and torque. The lower set mechanism described herein, however, alleviates the torque and stress on the plug body 210, allowing the plug body 210 to be made of lighter, more easily drillable, non-metallic materials.


Once actuated and released from the setting tool, the plug 200 is left in the wellbore to serve its purpose, as depicted in FIGS. 3C and 3D. For example, a ball 320 can be dropped in the wellbore to constrain, restrict, and/or prevent fluid communication in a first direction through the body 210. For example, the dropped ball 320 can rest on the transition or ball seat 228 to form an essentially fluid-tight seal therebetween, as depicted in FIG. 3C, preventing downward fluid flow through the plug 200 (“the first direction”) while allowing upward fluid flow through the plug 200 (“the second direction”). Alternatively, the flapper member 215 can rotate toward the closed position to constrain, restrict, and/or prevent downward fluid flow through the plug 200 (“the first direction”) while allowing upward fluid flow through the plug 200 (“the second direction”), as depicted in FIG. 3D.


The ball 150, 320 or the flapper member 215 can be fabricated from one or more decomposable materials. Suitable decomposable materials will decompose, degrade, degenerate, or otherwise fall apart at certain wellbore conditions or environments, such as predetermined temperature, pressure, pH, and/or any combinations thereof. As such, fluid communication through the plug 200 can be prevented for a predetermined period of time, e.g., until and/or if the decomposable material(s) degrade sufficiently allowing fluid flow therethrough. The predetermined period of time can be sufficient to pressure test one or more hydrocarbon-bearing zones within the wellbore. In one or more embodiments, the predetermined period of time can be sufficient to workover the associated well. The predetermined period of time can range from minutes to days. For example, the degradable rate of the material can range from about 5 minutes, 40 minutes, or 4 hours to about 12 hours, 24 hours or 48 hours. Extended periods of time are also contemplated.


The pressures at which the ball 150, 320 or the flapper member 215 decompose can range from about 100 psig to about 15,000 psig. For example, the pressure can range from a low of about 100 psig, 1,000 psig, or 5,000 psig to a high about 7,500 psig, 10,000 psig, or about 15,000 psig. The temperatures at which the ball 320 or the flapper member 215 decompose can range from about 100° F. to about 750° F. For example, the temperature can range from a low of about 100° F., 150° F., or 200° F. to a high of about 350° F., 500° F., or 750° F.


The decomposable material can be soluble in any material, such as soluble in water, polar solvents, non-polar solvents, acids, bases, mixtures thereof, or any combination thereof. The solvents can be time-dependent solvents. A time-dependent solvent can be selected based on its rate of degradation. For example, suitable solvents can include one or more solvents capable of degrading the soluble components in about 30 minutes, 1 hour, or 4 hours to about 12 hours, 24 hours, or 48 hours. Extended periods of time are also contemplated.


The pHs at which the ball 150, 320 or the flapper member 215 can decompose can range from about 1 to about 14. For example, the pH can range from a low of about 1, 3, or 5 to a high about 9, 11, or about 14.


To remove the plug 200 from the wellbore, the plug 200 can be drilled-out, milled, or otherwise compromised. As it is common to have two or more plugs 200 located in a single wellbore to isolate multiple zones therein, during removal of one or more plugs 200 from the wellbore some remaining portion of a first, upper plug 200 can release from the wall of the wellbore at some point during the drill-out. Thus, when the remaining portion of the first, upper plug 200 falls and engages an upper end of a second, lower plug 200, the anti-rotation features 270 of the remaining portions of the plugs 200 will engage and prevent, or at least substantially reduce, relative rotation therebetween.



FIGS. 5-8 depict schematic views of illustrative anti-rotation features that can be used with the plugs 200 to prevent or reduce rotation during drill-out. These features are not intended to be exhaustive, but merely illustrative, as there are many other configurations that are effective to accomplish the same results. Each end of the plug 200 can be the same or different. For example, FIG. 5 depicts angled surfaces or half-mule anti-rotation features; FIG. 6 depicts dog clutch type anti-rotation features; and FIGS. 7 and 8 depict two flat and slot type anti-rotation features.


Referring to FIG. 5, a lower end of an upper plug 500A and an upper end of a lower plug 500B are shown within the casing 300 where the angled surfaces 285, 290 interact with, interface with, interconnect, interlock, link with, join, jam with or within, wedge between, or otherwise communicate with a complementary angled surface 295 and/or at least a surface of the wellbore or casing 300. The interaction between the lower end of the upper plug 500A and the upper end of the lower plug 500B and/or the casing 300 can counteract a torque placed on the lower end of the upper plug 500A, and prevent or greatly reduce rotation therebetween. For example, the lower end of the upper plug 500A can be prevented from rotating within the wellbore or casing 300 by the interaction with upper end of the lower plug 500B, which is held securely within the casing 300.


Referring to FIG. 6, dog clutch surfaces of the upper plug 600A can interact with interface with, interconnect, interlock, link with, join, jam with or within, wedge between, or otherwise communicate with a complementary dog clutch surface of the lower plug 600B and/or at least a surface of the wellbore or casing 300. The interaction between the lower end of the upper plug 600A and the upper end of the lower plug 600B and/or the casing 300 can counteract a torque placed on the lower end of the upper plug 600A, and prevent or greatly reduce rotation therebetween. For example, the lower end of the upper plug 600A can be prevented from rotating within the wellbore or casing 300 by the interaction with upper end of the lower plug 600B, which is held securely within the casing 300.


Referring to FIG. 7, the flats and slot surfaces of the upper plug 700A can interact with, interface with, interconnect, interlock, link with, join, jam with or within, wedge between, or otherwise communicate with complementary flats and slot surfaces of the lower plug 700B and/or at least a surface of the wellbore or casing 300. The interaction between the lower end of the upper plug 700A and the upper end of the lower plug 700B and/or the casing 300 can counteract a torque placed on the lower end of the upper plug 700A, and prevent or greatly reduce rotation therebetween. For example, the lower end of the upper plug 700A can be prevented from rotating within the wellbore or casing 300 by the interaction with upper end of the lower plug 700B, which is held securely within the casing 300. The protruding perpendicular surfaces of the lower end of the upper plug 700A can mate in the perpendicular voids of the upper end of the lower plug 700B. When the lower end of the upper plug 700A and the upper end of the lower plug 700B are mated, any further rotational force applied to the lower end of the upper plug 700A will be resisted by the engagement of the lower plug 700B with the wellbore or casing 300, translated through the mated surfaces of the anti-rotation feature 270, allowing the lower end of the upper plug 700A to be more easily drilled-out of the wellbore.


One alternative configuration of flats and slot surfaces is depicted in FIG. 8. The protruding cylindrical or semi-cylindrical surfaces 810 perpendicular to the base 801 of the lower end of the upper plug 800A mate with the complementary aperture(s) 820 in the complementary base 802 of the upper end of the lower plug 800B. Protruding surfaces 810 can have any geometry perpendicular to the base 801, as long as the complementary aperture(s) 820 match the geometry of the protruding surfaces 801 so that the surfaces 801 can be threaded into the aperture(s) 820 with sufficient material remaining in the complementary base 802 to resist rotational force that can be applied to the lower end of the upper plug 800A, and thus translated to the complementary base 802 by means of the protruding surfaces 801 being inserted into the aperture(s) 820 of the complementary base 802. The anti-rotation feature 270 may have one or more protrusions or apertures 830, as depicted in FIG. 8, to guide, interact with, interface with, interconnect, interlock, link with, join, jam with or within, wedge between, or otherwise communicate or transmit force between the lower end of the upper plug 800A and the upper end of the lower plug 800B. The protrusion or aperture 830 can be of any geometry practical to further the purpose of transmitting force through the anti-rotation feature 270.


The orientation of the components of the anti-rotation features 270 depicted in all figures is arbitrary. Because plugs 200 can be installed in horizontal, vertical, and deviated wellbores, either end of the plug 200 can have any anti-rotation feature 270 geometry, wherein a single plug 200 can have one end of a first geometry and one end of a second geometry. For example, the anti-rotation feature 270 depicted in FIG. 5 can include an alternative embodiment where the lower end of the upper plug 500A is manufactured with geometry resembling 500B and vice versa. Each end of each plug 200 can be or include angled surfaces, half-mule, mule shape, dog clutch, flat and slot, cleated, slotted, spiked, and/or other interdigitating designs. In the alternative to a plug with complementary anti-rotation feature 270 geometry on each end of the plug 200, a single plug 200 can include two ends of differently-shaped anti-rotation features, such as the upper end may include a half-mule anti-rotation feature 270, and the lower end of the same plug 200 may include a dog clutch type anti-rotation feature 270. Further, two plugs 200 in series may each comprise only one type of anti-rotation feature 270 each, however the interface between the two plugs 200 may result in two different anti-rotation feature 270 geometries that can interface with, interconnect, interlock, link with, join, jam with or within, wedge between, or otherwise communicate or transmit force between the lower end of the upper plug 200 with the first geometry and the upper end of the lower plug 200 with the second geometry.


Any of the aforementioned components of the plug 200, including the body, rings, cones, elements, shoe, anti-rotation features, etc., can be formed or made from any one or more non-metallic materials or one or more metallic materials (such as aluminum, steel, stainless steel, brass, copper, nickel, cast iron, galvanized or non-galvanized metals, etc.). Suitable non-metallic materials include, but are not limited to, fiberglass, wood, composite materials (such as ceramics, wood/polymer blends, cloth/polymer blends, etc.), and plastics (such as polyethylene, polypropylene, polystyrene, polyurethane, polyethylethylketone (PEEK), polytetrafluoroethylene (PTFE), polyamide resins (such as nylon 6 (N6), nylon 66 (N66)), polyester resins (such as polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene isophthalate (PEI), PET/PEI copolymer) polynitrile resins (such as polyacrylonitrile (PAN), polymethacrylonitrile, acrylonitrile-styrene copolymers (AS), methacrylonitrile-styrene copolymers, methacrylonitrile-styrene-butadiene copolymers; and acrylonitrile-butadiene-styrene (ABS)), polymethacrylate resins (such as polymethyl methacrylate and polyethylacrylate), cellulose resins (such as cellulose acetate and cellulose acetate butyrate); polyimide resins (such as aromatic polyimides), polycarbonates (PC), elastomers (such as ethylene-propylene rubber (EPR), ethylene propylene-diene monomer rubber (EPDM), styrenic block copolymers (SBC), polyisobutylene (PIB), butyl rubber, neoprene rubber, halobutyl rubber and the like)), as well as mixtures, blends, and copolymers of any and all of the foregoing materials.


However, as many components as possible are made from one or more non-metallic materials, and preferably made from one or more composite materials. Desirable composite materials can be or include polymeric composite materials that are wound and/or reinforced by one or more fibers such as glass, carbon, or aramid, for example. The individual fibers can be layered parallel to each other, and wound layer upon layer. Each individual layer can be wound at an angle of from about 20 degrees to about 160 degrees with respect to a common longitudinal axis, to provide additional strength and stiffness to the composite material in high temperature and/or pressure downhole conditions. The particular winding phase can depend, at least in part, on the required strength and/or rigidity of the overall composite material.


The polymeric component of the composite can be an epoxy blend. The polymer component can also be or include polyurethanes and/or phenolics, for example. In one aspect, the polymeric composite can be a blend of two or more epoxy resins. For example, the polymeric composite can be a blend of a first epoxy resin of bisphenol A and epichlorohydrin and a second cycoaliphatic epoxy resin. Preferably, the cycloaphatic epoxy resin is ARALDITE® liquid epoxy resin, commercially available from Ciga-Geigy Corporation of Brewster, N.Y. A 50:50 blend by weight of the two resins has been found to provide the suitable stability and strength for use in high temperature and/or pressure applications. The 50:50 epoxy blend can also provide suitable resistance in both high and low pH environments.


The fibers can be wet wound. A prepreg roving can also be used to form a matrix. The fibers can also be wound with and/or around, spun with and/or around, molded with and/or around, or hand laid with and/or around a metallic material or two or more metallic materials to create an epoxy impregnated metal or a metal impregnated epoxy.


A post cure process can be used to achieve greater strength of the material. A suitable post cure process can be a two stage cure having a gel period and a cross-linking period using an anhydride hardener, as is commonly known in the art. Heat can be added during the curing process to provide the appropriate reaction energy that drives the cross-linking of the matrix to completion. The composite may also be exposed to ultraviolet light or a high-intensity electron beam to provide the reaction energy to cure the composite material.


Certain embodiments and features have been described using a set of numerical upper limits and a set of numerical lower limits. It should be appreciated that ranges from any lower limit to any upper limit are contemplated unless otherwise indicated. Certain lower limits, upper limits and ranges appear in one or more claims below. All numerical values are “about” or “approximately” the indicated value, and take into account experimental error and variations that would be expected by a person having ordinary skill in the art.


Various terms have been defined above. To the extent a term used in a claim is not defined above, it should be given the broadest definition persons in the pertinent art have given that term as reflected in at least one printed publication or issued patent. Furthermore, all patents, test procedures, and other documents cited in this application are fully incorporated by reference to the extent such disclosure is not inconsistent with this application and for all jurisdictions in which such incorporation is permitted.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention can be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A shearable insert for a downhole plug, comprising: a body having a first end and a second end;a shoulder formed on an outer surface of the body, and located between the first and second ends of the body;one or more threads disposed on the outer surface of the body between the shoulder and the first end of the body, wherein the one or more threads on the outer surface of the body are adapted to couple with one or more threads of the downhole plug;one or more shearable threads disposed on the inner surface of the body between the shoulder and the first end of the body, wherein the shearable threads are adapted to couple with one or more threads of a setting tool and release the setting tool when exposed to a predetermined axial force; andwherein the body comprises a ball seat formed on the inner surface thereof, and located between the first shoulder and the second end of the body, wherein the one or more threads disposed on the outer surface of the body are positioned between the ball seat and the first end of the body, and wherein the one or more shearable threads disposed on the inner surface of the body are positioned between the ball seat and the first end of the body.
  • 2. The insert of claim 1, wherein the outer surface of the body comprises a larger diameter and a smaller diameter forming the shoulder therebetween, the shoulder adapted to anchor the body within the downhole plug.
  • 3. The insert of claim 2, wherein the shoulder comprises a first end that is substantially flat and a second end that transitions to the smaller diameter.
  • 4. The insert of claim 1, wherein the body is made of brass, and the downhole plug is a frac plug.
  • 5. The insert of claim 1, wherein the predetermined axial force is less than a force required to break the body.
  • 6. The insert of claim 1, wherein at least one of the shearable threads disposed on the inner surface of the body is radially opposed to at least one of the threads disposed on the outer surface of the body.
  • 7. The insert of claim 1, wherein the setting tool comprises an adapter rod and outer cylinder, and the adapter rod is adapted to threadably engage the shearable threads of the body.
  • 8. A shearable insert for a downhole plug, comprising: a body having a first end and a second end and a bore formed therethrough;a shoulder formed on an outer surface of the body, and located between the first end and the second end of the body;one or more threads disposed on the outer surface of the body;one or more shearable threads disposed on an inner surface of the body proximate the first end of the body, the one or more shearable threads adapted to threadably engage with a setting tool, wherein the shearable threads are adapted to break when exposed to a predetermined force to release the setting tool, wherein the predetermined force is less than a force required to break the body; andwherein the body comprises a ball seat formed on the inner surface thereof, wherein the one or more threads disposed on the outer surface of the body are positioned proximate the first end of the body, and wherein the one or more shearable threads disposed on the inner surface of the body are positioned between the ball seat and the first end of the body.
  • 9. The insert of claim 8, wherein the inner surface of the body comprises a larger diameter and a smaller diameter forming the ball seat therebetween.
  • 10. The insert of claim 9, further comprising an impediment adapted to seat against the ball seat, and restrict fluid flow in at least one direction through the bore.
  • 11. The insert of claim 10, wherein the impediment is a ball.
  • 12. The insert of claim 10, further comprising a pin that contains the impediment between the pin and the ball seat.
  • 13. The insert of claim 8, further comprising a shoulder formed on an inner surface of the body, and located between the shoulder on the outer surface of the body and the second end of the body.
  • 14. The insert of claim 8, wherein the setting tool comprises an adapter rod and outer cylinder, and the adapter rod is adapted to threadably engage the shearable threads of the body.
  • 15. A method for preparing a downhole plug, comprising: inserting a shearable insert into a bore of a downhole plug, the shearable insert comprising: a body having a first end and a second end, wherein the body comprises brass, cast iron, or a combination thereof;a shoulder formed on an outer surface of the body, and located between the first and second ends of the body;one or more threads disposed on the outer surface of the body between the shoulder and the first end of the body, wherein the one or more threads on the outer surface of the body are adapted to couple with one or more threads of the downhole plug; andone or more shearable threads disposed on an inner surface of the body between the shoulder and the first end of the body, wherein the shearable threads are adapted to couple with one or more threads of a setting tool and release the setting tool when exposed to a predetermined axial force,wherein the body comprises a ball seat formed on the inner surface thereof, wherein the one or more threads disposed on the outer surface of the body are positioned proximate the first end of the body, and wherein the one or more shearable threads disposed on the inner surface of the body are positioned between the ball seat and the first end of the body; andthreadably engaging the threads on the outer surface of the body with the threads of the downhole plug.
  • 16. The method of claim 15, further comprising threadably engaging the shearable threads with the threads of the setting tool.
  • 17. The method of claim 16, further comprising exposing the shearable threads to a setting axial force with the setting tool to set the downhole plug within a wellbore, wherein the setting axial force is less than the predetermined axial force.
  • 18. The method of claim 17, further comprising anchoring the insert within the downhole plug with the shoulder, wherein the shoulder comprises a first diameter portion on the outer surface of the body that transitions to a second diameter portion on the outer surface of the body.
  • 19. The method of claim 17, further comprising exposing the shearable threads to the predetermined axial force such that the shearable threads break and release the setting tool.
  • 20. The method of claim 15, further comprising inserting a ball into a bore formed through the body to restrict fluid flow therethrough.
  • 21. The method of claim 20, further comprising inserting an adapter pin into the body such that the ball is positioned between a shoulder of the body and the adapter pin.
  • 22. The insert of claim 15, wherein at least one of the shearable threads disposed on the inner surface of the body is radially opposed to at least one of the threads disposed on the outer surface of the body.
  • 23. The insert of claim 15, wherein the one or more shearable threads on the inner surface of the body are adapted to deform at an axial force less than that required to deform the one or more threads on the outer surface of the body.
  • 24. The method of claim 15, wherein a shoulder is formed on an inner surface of the body, and located between the shoulder on the outer surface of the body and the second end of the body.
  • 25. The method of claim 15, wherein the setting tool comprises an adapter rod and an outer cylinder, and the adapter rod is adapted to threadably engage the shearable threads of the body.
  • 26. A shearable insert for a downhole plug, comprising: a body having a first end and a second end;a shoulder formed on an outer surface of the body;one or more threads disposed on the outer surface of the body between the shoulder and the first end of the body; andone or more shearable threads disposed on an inner surface of the body between the shoulder and the first end of the body, wherein the shearable threads are adapted to release a setting tool when exposed to a predetermined axial force; wherein the body comprises a ball seat formed on the inner surface thereof, and wherein the one or more threads disposed on the outer surface of the body are axially aligned with the one or more shearable threads;wherein the shoulder is adapted to anchor the body within the downhole plug; andwherein the shoulder comprises a first end that is substantially flat and a second end that transitions to a smaller diameter.
  • 27. The insert of claim 26, wherein the body is made of brass, and the downhole plug is a frac plug.
  • 28. The insert of claim 26, wherein the predetermined axial force is less than a force required to break the body.
  • 29. The insert of claim 26, wherein the setting tool comprises an adapter rod and outer cylinder, and the adapter rod is adapted to threadably engage the shearable threads of the body.
  • 30. A method for preparing a downhole plug, comprising: positioning an insert into a bore of a downhole plug, the insert comprising: a body having a first end and a second end;a shoulder formed on an outer surface of the body;one or more threads disposed on the outer surface of the one or more shearable threads disposed on an inner surface of the body between the shoulder and the first end of the body, and wherein the shearable threads are adapted to release a setting tool when exposed to a predetermined axial forcewherein the body comprises a ball seat formed on the inner surface thereof, wherein the one or more threads disposed on the outer surface of the body are positioned proximate the first end of the body, and wherein the one or more shearable threads disposed on the inner surface of the body are positioned between the ball seat and the first end of the body; andengaging the threads on the outer surface of the body with an inner surface of the downhole plug.
  • 31. The method of claim 30, wherein the setting tool comprises an adapter rod and an outer cylinder, and the adapter rod is adapted to threadably engage the shearable threads of the body.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 13/194,871, which is a continuation-in-part of U.S. patent application Ser. No. 12/317,497, filed Dec. 23, 2008, the entirety of which is incorporated by reference herein.

US Referenced Citations (335)
Number Name Date Kind
1476727 Quigg Dec 1923 A
RE17217 Burch Feb 1929 E
2040889 Whinnen May 1933 A
2223602 Cox Oct 1938 A
2160228 Pustmueller May 1939 A
2286126 Thornhill Jul 1940 A
2230447 Bassinger Feb 1941 A
2331532 Bassinger Oct 1943 A
2376605 Lawrence May 1945 A
2593520 Baker et al. Oct 1945 A
2616502 Lenz Mar 1948 A
2555627 Baker Jun 1951 A
2589506 Morrisett Mar 1952 A
2630865 Baker Mar 1953 A
2637402 Baker et al. May 1953 A
2640546 Baker et al. Jun 1953 A
2671512 Ragan et al. Mar 1954 A
2695068 Baker et al. Nov 1954 A
2713910 Baker et al. Jul 1955 A
2714932 Thompson Aug 1955 A
2737242 Baker Mar 1956 A
2756827 Farrar Jul 1956 A
2815816 Baker Dec 1957 A
2830666 Rhodes Apr 1958 A
2833354 Sailers May 1958 A
3013612 Angel Dec 1961 A
3054453 Bonner Sep 1962 A
3062296 Brown Nov 1962 A
3082824 Taylor et al. Mar 1963 A
3094166 McCullough Jun 1963 A
3160209 Bonner Dec 1964 A
3163225 Perkins Dec 1964 A
3270819 Thrane et al. Sep 1966 A
3273588 Dollison Sep 1966 A
3282342 Mott Nov 1966 A
3291218 Lebourg Dec 1966 A
3298437 Conrad Jan 1967 A
3298440 Current Jan 1967 A
3306362 Urbanosky Feb 1967 A
3308895 Oxford et al. Mar 1967 A
3356140 Young Dec 1967 A
3387660 Berryman Jun 1968 A
3393743 Stanescu Jul 1968 A
3429375 Craig Feb 1969 A
3517742 Williams Jun 1970 A
3554280 Tucker Jan 1971 A
3602305 Kisling Aug 1971 A
3623551 Randermann, Jr. Nov 1971 A
3687202 Young et al. Aug 1972 A
3787101 Sugden Jan 1974 A
3818987 Ellis Jun 1974 A
3851706 Ellis Dec 1974 A
3860066 Pearce et al. Jan 1975 A
3926253 Duke Dec 1975 A
4035024 Fink Jul 1977 A
4049015 Brown Sep 1977 A
4134455 Read Jan 1979 A
4151875 Sullaway May 1979 A
4185689 Harris Jan 1980 A
4189183 Borowski Feb 1980 A
4250960 Chammas Feb 1981 A
4314608 Richardson Feb 1982 A
4381038 Sugden Apr 1983 A
4391547 Jackson Jul 1983 A
4405017 Allen et al. Sep 1983 A
4432418 Mayland Feb 1984 A
4436151 Callihan et al. Mar 1984 A
4437516 Cockrell Mar 1984 A
4457376 Carmody et al. Jul 1984 A
4493374 Magee, Jr. Jan 1985 A
4532995 Kaufman Aug 1985 A
4548442 Sugden et al. Oct 1985 A
4554981 Davies Nov 1985 A
4566541 Moussy et al. Jan 1986 A
4585067 Blizzard et al. Apr 1986 A
4595052 Kristiansen Jun 1986 A
4602654 Stehling et al. Jul 1986 A
4688641 Knieriemen Aug 1987 A
4708163 Deaton Nov 1987 A
4708202 Sukup et al. Nov 1987 A
D293798 Johnson Jan 1988 S
4776410 Perkin et al. Oct 1988 A
4784226 Wyatt Nov 1988 A
4792000 Perkin et al. Dec 1988 A
4830103 Blackwell et al. May 1989 A
4848459 Blackwell et al. Jul 1989 A
4893678 Stokley et al. Jan 1990 A
4898245 Braddick Feb 1990 A
5020590 McLeod Jun 1991 A
5074063 Vannette Dec 1991 A
5082061 Dollison Jan 1992 A
5095980 Watson Mar 1992 A
5113940 Glaser May 1992 A
5117915 Mueller et al. Jun 1992 A
5154228 Gambertoglio et al. Oct 1992 A
5183068 Prosser Feb 1993 A
5188182 Echols, III et al. Feb 1993 A
5207274 Streich et al. May 1993 A
5209310 Clydesdale May 1993 A
5216050 Sinclair Jun 1993 A
5219380 Young et al. Jun 1993 A
5224540 Streich et al. Jul 1993 A
5230390 Zastresek et al. Jul 1993 A
5234052 Coone et al. Aug 1993 A
5253705 Clary et al. Oct 1993 A
5271468 Streich et al. Dec 1993 A
5295735 Cobbs et al. Mar 1994 A
5311939 Pringle et al. May 1994 A
5316081 Baski et al. May 1994 A
5318131 Baker Jun 1994 A
D350887 Sjolander et al. Sep 1994 S
5343954 Bohlen et al. Sep 1994 A
D353756 Graves Dec 1994 S
D355428 Hatcher Feb 1995 S
5390737 Jacobi et al. Feb 1995 A
5392540 Cooper et al. Feb 1995 A
5419399 Smith May 1995 A
RE35088 Gilbert Nov 1995 E
5484191 Sollami Jan 1996 A
5490339 Accettola Feb 1996 A
5540279 Branch et al. Jul 1996 A
5564502 Crow et al. Oct 1996 A
5593292 Ivey Jan 1997 A
D377969 Grantham Feb 1997 S
5655614 Azar Aug 1997 A
5688586 Shiiki et al. Nov 1997 A
5701959 Hushbeck et al. Dec 1997 A
5785135 Crawley et al. Jul 1998 A
5791825 Gardner et al. Aug 1998 A
5803173 Fraser, III et al. Sep 1998 A
5810083 Kilgore Sep 1998 A
5819846 Bolt, Jr. Oct 1998 A
5853639 Kawakami et al. Dec 1998 A
5908917 Kawakami et al. Jun 1999 A
D415180 Rosanwo Oct 1999 S
5961185 Friant et al. Oct 1999 A
5984007 Yuan et al. Nov 1999 A
5988277 Vick, Jr. et al. Nov 1999 A
6001439 Kawakami et al. Dec 1999 A
6012519 Allen et al. Jan 2000 A
6046251 Kawakami et al. Apr 2000 A
6082451 Giroux et al. Jul 2000 A
6085446 Posch Jul 2000 A
6098716 Hromas et al. Aug 2000 A
6105694 Scott Aug 2000 A
6142226 Vick Nov 2000 A
6152232 Webb et al. Nov 2000 A
6159416 Kawakami et al. Dec 2000 A
6167963 McMahan Jan 2001 B1
6182752 Smith, Jr. et al. Feb 2001 B1
6183679 Kawakami et al. Feb 2001 B1
6199636 Harrison Mar 2001 B1
6220349 Vargus et al. Apr 2001 B1
6245437 Shiiki et al. Jun 2001 B1
6283148 Spears et al. Sep 2001 B1
6341823 Sollami Jan 2002 B1
6367569 Walk Apr 2002 B1
6394180 Berscheidt et al. May 2002 B1
6457267 Porter et al. Oct 2002 B1
6491108 Slup Dec 2002 B1
6543963 Bruso Apr 2003 B2
6578638 Guillory et al. Jun 2003 B2
6581681 Zimmerman et al. Jun 2003 B1
6604763 Ring et al. Aug 2003 B1
6629563 Doane Oct 2003 B2
6673403 Shiiki et al. Jan 2004 B1
6695049 Ostocke et al. Feb 2004 B2
6708768 Slup et al. Mar 2004 B2
6708770 Slup et al. Mar 2004 B2
6725935 Szarka et al. Apr 2004 B2
6739398 Yokley et al. May 2004 B1
6769491 Zimmerman et al. Aug 2004 B2
6779948 Bruso Aug 2004 B2
6796376 Frazier Sep 2004 B2
6799633 McGregor Oct 2004 B2
6834717 Bland Dec 2004 B2
6851489 Hinds Feb 2005 B2
6852827 Yamane et al. Feb 2005 B2
6854201 Hunter et al. Feb 2005 B1
6891048 Yamane et al. May 2005 B2
6902006 Myerley et al. Jun 2005 B2
6916939 Yamane et al. Jul 2005 B2
6918439 Dallas Jul 2005 B2
6938696 Dallas Sep 2005 B2
6944977 Deniau et al. Sep 2005 B2
6951956 Yamane et al. Oct 2005 B2
7017672 Owen Mar 2006 B2
7021389 Bishop et al. Apr 2006 B2
7040410 McGuire et al. May 2006 B2
7055632 Dallas Jun 2006 B2
7069997 Coyes et al. Jul 2006 B2
7107875 Haugen et al. Sep 2006 B2
7124831 Turley et al. Oct 2006 B2
7128091 Istre, Jr. Oct 2006 B2
7150131 Barker Dec 2006 B2
7168494 Starr et al. Jan 2007 B2
7235673 Yamane et al. Jun 2007 B2
7281584 McGarian et al. Oct 2007 B2
D560109 Huang Jan 2008 S
7325617 Murray Feb 2008 B2
7337847 McGarian et al. Mar 2008 B2
7350582 McKeachnie et al. Apr 2008 B2
7353879 Todd et al. Apr 2008 B2
7363967 Burris, II et al. Apr 2008 B2
7373973 Smith et al. May 2008 B2
7389823 Turley et al. Jun 2008 B2
7428922 Fripp et al. Sep 2008 B2
7501464 Sato et al. Mar 2009 B2
7527104 Branch et al. May 2009 B2
7538178 Sato et al. May 2009 B2
7538179 Sato et al. May 2009 B2
7552779 Murray Jun 2009 B2
D597110 Anitua Aldecoa Jul 2009 S
7600572 Slup et al. Oct 2009 B2
7604058 McGuire Oct 2009 B2
7622546 Sato et al. Nov 2009 B2
7637326 Bolding et al. Dec 2009 B2
7644767 Kalb et al. Jan 2010 B2
7644774 Branch et al. Jan 2010 B2
D612875 Beynon Mar 2010 S
7673677 King et al. Mar 2010 B2
7690436 Turley et al. Apr 2010 B2
7713464 Nakajima et al. May 2010 B2
D618715 Corcoran Jun 2010 S
7728100 Sato et al. Jun 2010 B2
7735549 Nish et al. Jun 2010 B1
7740079 Clayton et al. Jun 2010 B2
7775286 Duphorne Aug 2010 B2
7775291 Jacob Aug 2010 B2
7781600 Ogawa et al. Aug 2010 B2
7784550 Nutley et al. Aug 2010 B2
7785682 Sato et al. Aug 2010 B2
7798236 McKeachnie et al. Sep 2010 B2
7799837 Yamane et al. Sep 2010 B2
7810558 Shkurti et al. Oct 2010 B2
7812181 Ogawa et al. Oct 2010 B2
D629820 Van Ryswyk Dec 2010 S
7866396 Rytlewski Jan 2011 B2
7878242 Gray Feb 2011 B2
7886830 Bolding et al. Feb 2011 B2
7900696 Nish et al. Mar 2011 B1
7909108 Swor et al. Mar 2011 B2
7909109 Angman et al. Mar 2011 B2
D635429 Hakki Apr 2011 S
7918278 Barbee Apr 2011 B2
7921923 McGuire Apr 2011 B2
7921925 Maguire et al. Apr 2011 B2
7926571 Hofman Apr 2011 B2
7976919 Sato et al. Jul 2011 B2
7998385 Yamane et al. Aug 2011 B2
8003721 Suzuki et al. Aug 2011 B2
8039548 Ogawa et al. Oct 2011 B2
8074718 Roberts Dec 2011 B2
8079413 Frazier Dec 2011 B2
8104539 Stanojcic et al. Jan 2012 B2
8113276 Greenlee et al. Feb 2012 B2
8119699 Yamane et al. Feb 2012 B2
8127856 Nish et al. Mar 2012 B1
8133955 Sato et al. Mar 2012 B2
D657807 Frazier Apr 2012 S
8163866 Sato et al. Apr 2012 B2
8230925 Willberg et al. Jul 2012 B2
8231947 Vaidya et al. Jul 2012 B2
8267177 Vogel et al. Sep 2012 B1
8293826 Hokari et al. Oct 2012 B2
8304500 Sato et al. Nov 2012 B2
8318837 Sato et al. Nov 2012 B2
8362158 Sato et al. Jan 2013 B2
8404868 Yamane et al. Mar 2013 B2
8424610 Newton et al. Apr 2013 B2
8459346 Frazier Jun 2013 B2
8496052 Frazier Jul 2013 B2
20010040035 Appleton et al. Nov 2001 A1
20030024706 Allamon Feb 2003 A1
20030188860 Zimmerman et al. Oct 2003 A1
20040150533 Hall et al. Aug 2004 A1
20050173126 Starr et al. Aug 2005 A1
20050175801 Yamane et al. Aug 2005 A1
20060001283 Bakke Jan 2006 A1
20060011389 Booth et al. Jan 2006 A1
20060047088 Yamane et al. Mar 2006 A1
20060278405 Turley et al. Dec 2006 A1
20070051521 Fike et al. Mar 2007 A1
20070068670 Booth et al. Mar 2007 A1
20070107908 Vaidya et al. May 2007 A1
20070151722 Lehr Jul 2007 A1
20070227745 Roberts et al. Oct 2007 A1
20070240883 Telfer Oct 2007 A1
20080060821 Smith et al. Mar 2008 A1
20080110635 Loretz et al. May 2008 A1
20090044957 Clayton et al. Feb 2009 A1
20090081396 Hokari et al. Mar 2009 A1
20090114401 Purkis May 2009 A1
20090126933 Telfer May 2009 A1
20090211749 Nguyen et al. Aug 2009 A1
20100064859 Stephens Mar 2010 A1
20100084146 Roberts Apr 2010 A1
20100093948 Sato et al. Apr 2010 A1
20100101807 Greenlee et al. Apr 2010 A1
20100132960 Shkurti et al. Jun 2010 A1
20100155050 Frazier Jun 2010 A1
20100184891 Akutsu et al. Jul 2010 A1
20100215858 Yamane et al. Aug 2010 A1
20100252252 Harris et al. Oct 2010 A1
20100263876 Frazier Oct 2010 A1
20100276159 Mailand et al. Nov 2010 A1
20100286317 Sato et al. Nov 2010 A1
20100288503 Cuiper et al. Nov 2010 A1
20110005779 Lembcke Jan 2011 A1
20110008578 Yamane et al. Jan 2011 A1
20110027590 Abe Feb 2011 A1
20110036564 Williamson Feb 2011 A1
20110061856 Kellner et al. Mar 2011 A1
20110088915 Stanojcic et al. Apr 2011 A1
20110103915 Tedeschi May 2011 A1
20110104437 Yamamura et al. May 2011 A1
20110108185 Hokari et al. May 2011 A1
20110168404 Telfer et al. Jul 2011 A1
20110190456 Itoh et al. Aug 2011 A1
20110198082 Stromquist et al. Aug 2011 A1
20110240295 Porter et al. Oct 2011 A1
20110259610 Shkurti et al. Oct 2011 A1
20110263875 Suzuki et al. Oct 2011 A1
20120046414 Sato et al. Feb 2012 A1
20120086147 Sato et al. Apr 2012 A1
20120125642 Chenault et al. May 2012 A1
20120130024 Sato et al. May 2012 A1
20120156473 Suzuki et al. Jun 2012 A1
20120193835 Suzuki et al. Aug 2012 A1
20120270048 Saigusa et al. Oct 2012 A1
20120289713 Suzuki et al. Nov 2012 A1
20130079450 Sato et al. Mar 2013 A1
20130081801 Liang et al. Apr 2013 A1
20130081813 Liang et al. Apr 2013 A1
20130087061 Marya et al. Apr 2013 A1
Foreign Referenced Citations (13)
Number Date Country
914030 Dec 1962 GB
WO02083661 Oct 2002 WO
WO02070508 Dec 2002 WO
WO03006525 Jan 2003 WO
WO03006526 Jan 2003 WO
WO03037956 May 2003 WO
WO03074092 Sep 2003 WO
WO03090438 Oct 2003 WO
WO03099562 Dec 2003 WO
WO2004033527 Apr 2004 WO
WO2005044894 May 2005 WO
WO2006064611 Jan 2006 WO
2010127457 Nov 2010 WO
Non-Patent Literature Citations (28)
Entry
“Teledyne Merla Oil Tools-Products-Services,” Teledyne Merla, Aug. 1990 (40 Pages).
“78/79 Catalog: Packers-Plugs-Completions Tools,” Pengo Industries, Inc., 1978-1979 (12 pages).
“MAP Oil Tools Inc. Catalog,” MAP Oil Tools, Apr. 1999 (46 pages).
“Lovejoy-where the world turns for couplings,” Lovejoy, Inc., Dec. 2000 (30 pages).
“Halliburton Services, Sales & Service Catalog,” Halliburton Services, 1970-1971 (2 pages).
“1975-1976 Packer Catalog,” Gearhart-Owen Industries Inc., 1975-1976 (52 Pages).
“Formation Damage Control Utilizing Composite-Bridge Plug Technology for Monobore, Multizone Stimulation Operations,” Gary Garfield, SPE, May 15, 2001 (8 pages).
“Composite Bridge Plug Technique for Multizone Commingled Gas Wells,” Gary Garfield, SPE, Mar. 24, 2001 (6 pages).
“Composite Research: Composite bridge plugs used in multi-zone wells to avoid costly kill-weight fluids,” Gary Garfield, SPE, Mar. 24, 2001 (4 pages).
“It's About Time-Quick Drill Composite Bridge Plug,” Baker Oil Tools, Jun. 2002 (2 pages).
“Baker Hughes-Baker Oil Tools-Workover Systems-QUIK Drill Composite Bridge Plug,” Baker Oil Tools, Dec. 2000 (3 pages).
“Baker Hughes 100 Years of Service,” Baker Hughes in Depth, Special Centennial Issue, Publication COR-07-13127, vol. 13, No. 2, Baker Hughes Incorporated, Jul. 2007 (92 pages).
“Halliburton Services, Sales & Service Catalog No. 43,” Halliburton Co. 1985 (202 pages).
“Alpha Oil Tools Catalog,” Alpha Oil Tools, 1997 (136 pages).
Petition for Inter Partes Review for U.S. Patent No. 8,079,413 (U.S. Appl. No. 13/194,871); Case No. 2013-00231; Filed Apr. 2, 2013; Administrative Patent Judge Sally C. Medley.
Petition for Inter Parties Review for U.S. Patent No. 8,079,413 (U.S. Appl. No. 13/194,871); Case No. 2013-00231; Filed Apr. 2, 2013; Administrative Patent Judge Sally C. Medley; Paper No, 31, Final Written Decision entered Sep. 2, 2014.
Petition for inter Parties Review for U.S. Patent No. 8,079,413 (U.S. Appl. No. 13/194,871); Case No. 2013/00231; Filed Apr. 2, 2013; Administrative Patent Judge Sally C, Medley; Paper No. 33, Decision on Request for Rehearing entered Oct. 29, 2014.
Petition for Inter Parties Review for U.S. Patent No. 8,079,413 (U.S. Appl. No. 13/194,871); Filed Apr. 2, 2013; Case No. 2013-00231; Administrative Patent Judge Sally C. Medley; Paper No, 35, Notice of Appeal entered Dec. 23, 2014.
Petition for Inter Parties Review for U.S. Patent No. 8,459,346 (U.S. Appl. No. 13/329,077); Case No. 2014-00993; Filed Jun. 19, 2014; Administrative Patent Judge Sally C, Medley; Paper No. 14, Decision to Institute Trial entered Dec. 1, 2014.
Petition for Inter Parties Review for U.S. Patent No. 8,459,346 (U.S. Appl. No. 13/329,077); Case No. 2014-00993; Filed Jun. 19, 2014; Administrative Patent Judge Sally C. Medley; Paper No. 18, Termination of the Proceeding , entered Dec. 11, 2014.
Petition for Inter Parties Review for U.S. Patent No. 8,079,413 (U.S. Appl. No. 13/194,871); Case No, 2013-00231; Filed Oct. 4, 2013; Administrative Patent Judge Sally C. Medley; Paper No, 16, Final Written Decision entered Sep. 23, 2013.
Magnum Oil Tools International, Ltd. vs. Tony D, McClinton, et al, etc., USDC Civ. Action No. 2:13-cv-00163; Filed Sep. 3, 2013; Plaintiff's First Amended Complaint and Application for Injunctive Relief.
Magnum Oil Tools International, Ltd. vs. Tony A McClinton, et al, etc., USDC Civ, Action No. 2:13-cv-00163; Filed Sep, 3, 2013; Patent Case-Scheduling Order.
Petition for Inter Partes Review for U.S. Patent No. 8,079,413 (U.S. Appl. No. 13/194,871); Case No. 2013-00231; Filed Apr. 2, 2013; Administrative Patent Judge Sally C. Medley; Paper No. 31, Final Written Decision entered Sep. 2, 2014.
Petition for Inter Partes Review for U.S. Patent No. 8,079,413 (U.S. Appl. No. 13/194,871); Case No. 2013-00231; Filed Apr. 2, 2013; Administrative Patent Judge Sally C. Medley; Paper No. 33, Decision on Request for Rehearing entered Oct. 29, 2014.
Petition for Inter Partes Review for U.S. Patent No. 8,079,413 (U.S. Appl. No. 13/194,871); Case No. 2013-00231; Filed Apr. 2, 2013; Administrative Patent Judge Sally C. Medley; Paper No. 35, Notice of Appeal entered Dec. 23, 2014.
Petition for Inter Partes Review for U.S. Patent No. 8,459,346 (U.S. Appl. No. 13/329,077); Case No. 2014-00993; Filed Jun. 19, 2014; Administrative Patent Judge Sally C. Medley; Paper No. 14, Decision to Institute Trial entered Dec. 1, 2014.
Petition for Inter Partes Review for U.S. Patent No. 8,459,346 (U.S. Appl. No. 13/329,077); Case No. 2014-00993; Filed Jun. 19, 2014; Administrative Patent Judge Sally C. Medley; Paper No. 18, Termination of the Proceeding entered Dec. 11, 2014.
Related Publications (1)
Number Date Country
20120145379 A1 Jun 2012 US
Divisions (1)
Number Date Country
Parent 13194871 Jul 2011 US
Child 13329096 US
Continuation in Parts (1)
Number Date Country
Parent 12317497 Dec 2008 US
Child 13194871 US