The present disclosure is directed to a sighting device, such as for example a bow sight, with an eye alignment assembly. The eye alignment assembly includes the tapered inner surface substantially concealed behind the leading edge when the frame is located at a particular orientation relative to the user's eye. The eye alignment assembly provides an indication of orientation of a user's eye in the pitch and yaw directions relative to the bow. The eye alignment assembly assists the user to consistently positions her body in the correct orientation relative to the bow (or any other tool), so that over time the bow becomes an extension of the user's body.
Humans use a wide variety of tools where the orientation of the tool relative to the user is critical to safe and effective operation. For example, the orientation of a bow or gun relative to a shooter will determine the accuracy and repeatability of a shot. Golfers spend a great deal of time positioning themselves relative to the golf ball and golf clubs in order to develop a consistent and repeatable golf swing. In board riding athletic activities, such as skiing, surfing, snowboarding, windsurfing, and the like, the posture and position of the rider relative to the board is critical. Free-hand power tools, such as drills, planners, routers and saws, operate best and safest when consistently positioned relative to the user's body.
For many tools, however, it is not possible to align the user's line of sight with an operating axis/plane of the tool. Rather, the operating axis/plane of the tool and the line of sight of the user need to converge at a particular location. For example, the operating axis of a pool cue is along the axis of the cue. The pool player does not sight along the operating axis of the pool cue. Rather, the pool player's line of sight and the operating axis of the pool cue converge, typically at the cue ball. In another example, the operating axis of a bow is co-linear with the arrow. Modern bows, however, do not permit the user to sight along the axis of the arrow. Consequently, the user must position his or her body in a fixed relationship with the bow, as a surrogate to sighting along the operating axis of the arrow.
Over time a user can develop the skill to make the tool an extension of his or her body so the operating axis/plane of the tool and the user's line of sight converge in the correct location. The current mechanisms for accelerating this learning process, however, are crude and inaccurate.
Using archery as an example, the alignment of a shot can vary dramatically depending on where the archer positions his or her head, or more particularly, his or her shooting eye relative to the bow. If the archer's eye position varies from shot to shot, so will the accuracy and direction of each respective shot, leading to inconsistent or unpredictable shooting. U.S. Pat. No. 5,850,700 proposes an eye alignment apparatus that assures that the archer's shooting eye is consistently positioned relative to the bow and the bow sight, which is hereby incorporated by reference.
The present disclosure is directed to a sighting device, such as a bow sight, with an eye alignment assembly. The eye alignment assembly provides an indication of orientation of a user's eye in the pitch and yaw directions relative to the bow. The eye alignment assembly assists the user to consistently positions her body in the correct orientation relative to the bow (or any other tool), so that over time the bow becomes an extension of the user's body.
In one embodiment, the sighting device includes a mounting bracket adapted to attached to the bow. A frame is attached to the mounting bracket. The frame includes a leading edge oriented toward a user, a trailing edge oriented down range of the bow, and a tapered inner surface generally surrounding a viewing opening. The tapered inner surface tapering outward from the leading edge toward the trailing edge. A plurality of sight points on sight pins are located in the viewing opening. The sight points are configured to align the bow with a target viewed through the viewing opening. The eye alignment assembly includes the tapered inner surface substantially concealed behind the leading edge when the frame is located at a particular orientation relative to the user's eye.
The eye alignment assembly provides an indication of orientation of the user relative to the bow in at least two degrees of freedom, such as the pitch and yaw directions. The eye alignment assembly decouples the user's line of sight from an operating axis/plane of the bow. The eye alignment assembly also provides an indication of orientation of a user relative to the bow without aligning the user's line of sight with an operating axis/plane of the bow. In one embodiment, indicia are provided proximate the trailing edge to assist the user in positioning the tapered inner surface substantially behind the leading edge.
In one embodiment, the mounting bracket includes a bow portion pivotally attached to the bow at a first location, a slot in the bow portion, and a traveler located in the slot and attached to the bow at a second location. The bow portion can pivot around the first location while the travel slides in the slot. A spring biases the bow portion is a first direction of rotation. A set screw counteracts the bias of the spring to rotate the bow portion is a second opposite direction. The mounting bracket preferably permits the frame to be adjusted in both pitch and roll relative to the bow (or other tool).
In one embodiment, a secondary eye alignment assembly is mounted to the frame. The secondary eye alignment assembly includes a sight point of an optical fiber positioned a distance behind an alignment indicia on a lens. An adjustment system is adapted to reposition the sight point of the optical fiber relative to the alignment indicia on the lens. The secondary eye alignment assembly provides an indication of orientation of the user relative to the tool in at least two degrees of freedom.
The adjustment system permits the sight point of the optical fiber to be adjusted in at least two degrees of freedom relative to the lens. The lens optionally includes a magnification such that the sight point is only in focus when the lens is a predetermined distance from a user. In one embodiment, alignment indicia rotates relative to the lens to provide an indication of level. The alignment indicia on the lens is aligned with the sight point on the optical fiber only when the user is in a predetermined relationship with respect to the tool. In some embodiments, the secondary eye alignment assembly provides an indication of the user's position relative to the bow in six degrees of freedom.
The present disclosure is also directed to a sighting device for a tool. A mounting bracket is adapted to attached to the tool. A frame is attached to the mounting bracket. The frame includes a leading edge oriented toward a user, a trailing edge oriented away from the user, and a tapered inner surface generally surrounding a viewing opening. The tapered inner surface tapers outward from the leading edge toward the trailing edge such that the tapered inner surface is substantially concealed behind the leading edge when the frame is located at a particular orientation relative to the user's eye. The tool can be one of a bow, a firearm, a golf club, power tools, pool cue, tractor, or snow skis.
The present disclosure is also directed to a method of aligning a bow with a user. The method includes the step of mounting a sighting device with an eye alignment assembly to the bow. The eye alignment assembly is positioned with leading edge of a frame is oriented toward a user, a trailing edge oriented down range of the bow, and a tapered inner surface generally surrounding a viewing opening. The tapered inner surface tapers outward from the leading edge toward the trailing edge. The bow is positioned so the tapered inner surface is substantially concealed behind the leading edge. A sight point located in the viewing opening is aligned with a target and the bow is fired.
As used herein, “tool” includes any object that interfaces with a domain to facilitate more effective action. For example, tools include skies that interface with snow, a drill that interfaces with a work piece, a golf club that interfaces with a ball, etc. The operating axis/plane of a tool is located at an optimum interface between the tool and the domain. That interface is typically planar or linear. The present eye alignment assembly provides an indication of the optimum interface of the operating axis/plane of the tool, without requiring the user to align her line of sight with the operating axis/plane of the tool.
In operation, the tapered inner surface is substantially concealed behind the leading edge of the frame only when a user's eye is in a predetermined relationship with respect to the eye alignment assembly, and hence, the tool to which it is mounted. When properly adjusted, the user's line of sight converges with the operating axis/plane of the tool in the optimum location.
The eye alignment assembly 20 contemplated by this disclosure is not used as a sighting or aiming device. Rather, the eye alignment assembly 20 is used in combination with the bow sight 22 to provide an indication of orientation of a user's eye relative to the bow sight 22. Over time, the user learns to quickly and accurately position his or her body and shooting eye in the same position relative to the bow sight 22, allowing for consistent shooting.
Eye alignment assembly 20 is mounted in the frame 24 to provide an indication of orientation of the bow sight 22 in the pitch and yaw directions relative to the user's eye. Locating the eye alignment assembly 20 on the frame 24 permits the user to check alignment while viewing a target through opening 38 in the frame 24 that surrounds the sighting pins 34. The eye alignment assembly 20 is preferably located along axis 40 formed by the sight points 42.
In the illustrated embodiment, the eye alignment assembly 20 includes a lens 50 fixedly mounted to the frame 24. Alignment indicia 52 on the lens 50 are fixed relative to the sight 22. The initial alignment of the eye alignment assembly 20 relative to the sight 22 is preferably performed at the factory.
Distal end 418 of the phosphorescent optical fiber 404 acts as the sight point 420. In the illustrated embodiment, the phosphorescent optical fiber 404 is about five inches long with a diameter of about 0.0019 inches. Suitable phosphorescent optical fibers are available from NanOptics, Inc. located in Gainesville, Fla. The phosphorescent optical fibers 404 are preferably different colors (e.g., red, green, etc.) to assist the user in distinguishing the different sighting pins 34 in the sight pin array 32. The openings 406 permit that phosphorescent optical fiber 404 to gather ambient light. Once the phosphorescent optical fibers 404 are charged, they will illuminate the sight point 420 for hours.
The present bow sight 22 automatically adapts to the lighting conditions. The brightness of the phosphorescent optical fibers 404 relative to daylight conditions is very low. Consequently, when ambient light is high the phosphorescent material contributes a relatively small percentage of the light delivered to the sight point 420. In low light conditions, however, the brightness of the phosphorescent optical fiber 404 is significant compared to the ambient light and the luminescent material contributes a relatively large percentage of the light delivered to the sight pin 420.
Sensitivity of the eye alignment assembly 20 can be adjusted by changing the distance between the sight point 64 and the lens 50. The closer the sight point 64 is to the lens 50, the more sensitive the eye alignment assembly 20 will be. Sensitivity can also be adjusted by adding magnification to the lens 50.
When alignment indicia 52 on lens 50 is aligned with sight point 64 on phosphorescent optical fiber 62, the user's eye is in a predetermined relationship with respect to the eye alignment assembly 20, and hence, the sight 22. That is, alignment indicia 52 and sight point 64 can only be viewed in a predetermined way from a predetermined approximate angle, assuring that the archer's shooting eye is consistently positioned relative to the illuminated sight 22.
The eye alignment assembly 20 permits adjustment of the position of the sight point 64 relative to alignment indicia 52 on the lens 50 along axes 70, 72. The adjustment system permits the eye alignment assembly 20 to be easily adjusted for the shooting style of a particular shooter.
In one embodiment, the assembly 74 is permitted to rotate a small amount around guide pin 94 to adjust the distance between the sight point 64 and the lens 50. This feature permits the sensitivity of the eye alignment assembly 20 to be adjusted. In another embodiment, hole 95 in support block 80 is replaced with a slot (see e.g., slot 78) to permit forward and rearward movement of the assembly 74 along axis 97. An adjustment screw, such as the adjustment screw 82, can be provided for adjusting the location of the assembly 74 along the axis 97.
Rotating the screws 82, 98 moves the location of the sight point 64 relative to the indicia 52 on the lens 50 along the axes 70, 72 so the present eye alignment assembly 20 can be fine tuned for the particular shooting style, body shape, and other variable particular to the user.
The lens 50 can have a convex or a concave curvature on both of its sides, with the specific configuration of the lens variables, such as for example, the radii of curvature of the respective surfaces, the index of refraction, and the thickness of the lens, determining its characteristics, such as its focal length and magnification. By manipulating these variables, it is possible to create a lens 50 in which the alignment indicia 64 is not visible or not in focus when viewed by a human eye that is not in the proper or desired location relative to the sight 22. Therefore, it is possible to make an eye alignment assembly 20 with single alignment indicia.
In another embodiment, the lens 50 is coated with an opaque material that block light from the sight point 64, except in the center of the alignment indicia 52. Consequently, the user cannot see the sight point 64 unless he or her eye is in a predetermined relationship with respect to the sight 22. Luminescent material 100 is optionally optically coupled to proximal end 102 of the phosphorescent optical fiber 62.
In the illustrated embodiment, the bow 122 includes a series of sight pins 123 along with the user's line of sight 125 extends to a target. The operating axis/plane 127 of the bow 122, however, is located below the user's line of sight 125. The user's line of sight 125 is not co-linear with the operating axis/plane 127 of the bow 122.
Adjustment screws 126, 128 on the housing 124 permit adjustment of the position of the sight point 64 relative to alignment indicia 52 on the lens 50 along the axes 70, 72, as illustrated in
The present eye alignment assembly 120 can provide an indication of the user's eye relative to the bow 122 in along the X-axis 130, the Y-axis 132, the Z-axis 134, as well as in pitch 136 and yaw 138 relative to the bow 122. Position along the Y-axis is typically proved by using a lens 50 with a particular focal length such that the sight point 64 is visible and/or in focus, only at a particular distance along the Y-axis 132. Roll position 140 is typically indicated by level 36.
The eye alignment assembly 504 is particularly useful for providing an indication of pitch and roll of the bow sight 500 relative to the user. Although the illustrated frame 502 has a generally circular cross-sectional shape, other non-circular shapes are possible. The frame 502 can also form a continuous or discontinuous structure around the viewing opening 516.
In one embodiment, indicia 520, such as for example, an optical fiber or an illuminated material, are located proximate trailing edge 512 of the frame 502 to assist the user in verifying that the bow sight 500 is in the desired location relative to the user's body. In particular, when the indicia 520 are substantially concealed behind the leading edge 514 of the frame 502, the bow sight 500 is correctly positioned relative to the user. Over time, the user learns to quickly and accurately position his or her body and shooting eye in the same position relative to the bow sight 500, allowing for consistent shooting.
The present eye alignment assembly 504 can be used alone or in combination with eye alignment assembly 20 discussed above. In one embodiment, the user initially positions the bow sight 500 (and hence the bow) using the eye alignment assembly 504 and then fine tunes positioning using the eye alignment assembly 20. For example, the tapered surface 506 can provide a course eye alignment function and the eye alignment assembly 20 a fine eye alignment function.
As illustrated in
The present bow sight 500 needs to be adjusted for the particular user's shooting style. The user preferably adjust primarily the pitch 136 and yaw 138 (see e.g.,
The eye alignment assembly 220 aligns with golfer's eyes 224 with respect to the club head 228 at the desired orientation. As a result, even inexperienced golfers can quickly learn to consistently position their body with respect to the golf club 222 and the ball 232, accelerating the learning process. In an alternate embodiment, the eye alignment assembly 220 is located on the shaft 234 of the golf club 222.
The eye alignment assembly 240 permits the user 252 to practice orienting the firearm 252 at a fixed orientation with respect to his body 250. By properly adjusting the eye alignment assembly 252, operating axis/plane 254 of the firearm 242 converges at the target 250 with the user's line of sight 256. Over time muscle memory will be developed and the user 252 will be able to sight the weapon 242 without use of sight 244. The weapon 242 becomes an extension of the user's 252 body, greatly accelerating the aiming process.
The technique illustrated in
The present eye alignment assembly can also be used in dynamic interfaces with tools.
Surgeons frequently prepare bones using such power tools 300 freehand, without a cutting guide. The present eye alignment assembly 302 provides an indication of the orientation of the blade 306 relative to the surgeon, without the surgeon needing to sight along the operating axis/plane 305 of the power tool 300.
In another embodiment, the orientation of the bone 304 is known and the eye alignment assembly 302 can be adjusted so the blade 306 is in the proper orientation to make the cut 308. In yet another embodiment, a second eye alignment assembly 310 is temporarily attached to the bone 304, such as by using a K-wire. The two eye alignment assemblies 302, 310 can be adjusted so the blade 306 is in the proper orientation relative to the bone 304.
In one embodiment, phosphorescent material is incorporated into the material comprising the cladding 404 and/or the buffer layer 406 during the manufacturing process. Doping in the range of about 5% to about 20% has been found to be suitable for use in an eye alignment assembly of the present disclosure. A common phosphorescent material is strontium aluminate. Strontium aluminate based afterglow pigments are marketed under brand names like Super-LumiNova or NoctiLumina. Super-LumiNova is a strontium aluminate based non-radioactive and non-toxic photoluminescent or afterglow pigments for illuminating markings. This technology offers up to 10 times better brightness than previous zinc sulphide based materials.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the disclosure. The upper and lower limits of these smaller ranges which may independently be included in the smaller ranges is also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either both of those included limits are also included in the disclosure.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which these inventions belong. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present inventions, the preferred methods and materials are now described. All patents and publications mentioned herein, including those cited in the Background of the application, are hereby incorporated by reference to disclose and described the methods and/or materials in connection with which the publications are cited.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present inventions are not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
Other embodiments of the invention are possible. Although the description above contains much specificity, these should not be construed as limiting the scope of the invention, but as merely providing illustrations of some of the presently preferred embodiments of this invention. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of at least some of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above.
Thus the scope of this invention should be determined by the appended claims and their legal equivalents. Therefore, it will be appreciated that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural, chemical, and functional equivalents to the elements of the above-described preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims.
The present application is a continuation-in-part of U.S. patent application Ser. No. 12/791,503 entitled EYE ALIGNMENT ASSEMBLY WITH PHOSPHORESCENT FIBER, filed Jun. 1, 2010, which is a continuation-in-part of U.S. patent application Ser. No. 12/726,594 entitled EYE ALIGNMENT ASSEMBLY, filed Mar. 18, 2010, which is a continuation-in-part of U.S. patent application Ser. No. 12/684,775 entitled EYE ALIGNMENT ASSEMBLY FOR TARGETING SYSTEMS, filed Jan. 8, 2010, the entire disclosures of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12791503 | Jun 2010 | US |
Child | 12941229 | US | |
Parent | 12726594 | Mar 2010 | US |
Child | 12791503 | US | |
Parent | 12684775 | Jan 2010 | US |
Child | 12726594 | US |