This disclosure relates to gas turbine engines, and more particularly to an apparatus, system and method for mitigating a bowed rotor start condition in a gas turbine engine.
Gas turbine engines are used in numerous applications one of which is for providing thrust to an airplane. When the gas turbine engine of an airplane has been shut off for example, after an airplane has landed at an airport, the engine is hot and due to heat rise, the upper portions of the engine will be hotter than lower portions of the engine. When this occurs thermal expansion may cause deflection of components of the engine which may result in a “bowed rotor” condition. If a gas turbine engine is in such a “bowed rotor” condition it is undesirable to restart or start the engine.
Accordingly, it is desirable to provide a method and/or apparatus for detecting and preventing a “bowed rotor” condition.
A bowed rotor start mitigation system for a gas turbine engine is provided. The bowed rotor start mitigation system includes a controller operable to receive a vibration input indicative of an actual vibration level of the gas turbine engine and a speed input indicative of a rotor speed of the gas turbine engine. The controller generates a bowed rotor start mitigation request based on comparing the actual vibration level to a modeled vibration level at the rotor speed.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include where comparing the actual vibration level to the modeled vibration level at the rotor speed is triggered to be performed at a rotor speed threshold that is below a resonance speed of the gas turbine engine.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include where the controller is operable to perform the comparing of the actual vibration level to the modeled vibration level during a dry motoring mode of the gas turbine engine below a resonance speed of the rotor.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include where the controller drives motoring of the gas turbine engine to a bowed rotor mode determination speed that is less than a dry motoring mode speed to perform the comparing of the actual vibration level to the modeled vibration level at a range of rotor speeds up to the bowed rotor mode determination speed prior to reaching the dry motoring mode speed.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include where the controller periodically performs the comparing of the actual vibration level to the modeled vibration level in the dry motoring mode to determine whether bowed rotor mitigation has completed prior to reaching an engine starting time.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include where a motoring controller determines whether to reduce a motoring time determined by a risk model based on a result of comparing the actual vibration level to the modeled vibration level at the rotor speed.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include a digital storage unit that stores time and temperature data for the risk model, where the digital storage unit is operable to continue monitoring of temperature data while the gas turbine engine is shutdown.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include where metrics of attempted bowed rotor mitigation are recorded based on determining that the attempted bowed rotor mitigation was unsuccessful or incomplete.
An embodiment includes a gas turbine engine that includes a motoring system operable to drive rotation of the gas turbine engine and a vibration monitoring system operable to monitor actual vibration of the gas turbine engine. The gas turbine engine also includes an electronic engine control operable to receive a vibration input indicative of an actual vibration level from the vibration monitoring system and a speed input indicative of a rotor speed of the gas turbine engine. The electronic engine control generates a bowed rotor start mitigation request that drives the motoring system to perform bowed rotor mitigation based on comparing the actual vibration level to a modeled vibration level at the rotor speed.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include where the actual vibration level is sampled below twenty-five percent of a resonance speed of the rotor to predict whether vibration amplitude of the rotor will be unacceptable for transiting the resonance speed.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include where a maintenance request is triggered based on the actual vibration level exceeding a maintenance action threshold after completing an attempt of bowed rotor mitigation.
A method of bowed rotor start mitigation for a gas turbine engine includes receiving a vibration input indicative of an actual vibration level of the gas turbine engine. A speed input indicative of a rotor speed of the gas turbine engine is received. A controller generates a bowed rotor start mitigation request based on comparing the actual vibration level to a modeled vibration level at the rotor speed.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include determining whether to reduce a motoring time determined by a risk model based on a result of comparing the actual vibration level to the modeled vibration level at the rotor speed, where the risk model maps core temperature model data with time data and ambient temperature data to establish the motoring time as an estimated period of motoring to mitigate a bowed rotor of the gas turbine engine.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include continuing monitoring of temperature data while the gas turbine engine is shutdown, and comparing monitored temperature data with modeled temperature data to validate one or more temperature models of the gas turbine engine.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include recording metrics of attempted bowed rotor mitigation based on determining that the attempted bowed rotor mitigation was unsuccessful or incomplete.
A technical effect of the apparatus, systems and methods is achieved by using a start sequence for a gas turbine engine as described herein.
The subject matter which is regarded as the present disclosure is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the present disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Various embodiments of the present disclosure are related to a bowed rotor start mitigation system in a gas turbine engine. Embodiments can include a reduced order thermal model used to estimate heat stored in an engine core at shutdown and identify a risk of a bowed rotor in the gas turbine engine. Information from the thermal model can be used by a risk model to calculate a bowed rotor risk parameter. As used herein the term “model” may be referred to in one non-limiting manner as a process for representing real world values, measurements or conditions through the use of a computer program or algorithm. The bowed rotor risk parameter may be used to take a control action to mitigate the risk of starting the gas turbine engine with a bowed rotor. The control action can include performing dry motoring as further described herein.
During dry motoring, a starter valve can be actively adjusted to deliver air pressure from an air supply to an engine starting system that controls starting rotor speed. Dry motoring may be performed by running an engine starting system at a lower speed with a longer duration than typically used for engine starting while dynamically adjusting the starter valve to maintain the rotor speed and/or follow a dry motoring profile. Some embodiments increase the rotor speed of the starting spool to approach a critical rotor speed gradually and as thermal distortion is decreased they then accelerate beyond the critical rotor speed to complete the engine starting process. The critical rotor speed refers to a major resonance speed where, if the temperatures are unhomogenized, the combination of a bowed rotor and similarly bowed casing and the resonance would lead to high amplitude oscillation in the rotor and high rubbing of blade tips on one side of the rotor, especially in the high pressure compressor if the rotor is straddle-mounted.
In some embodiments, a targeted rotor speed profile of the dry motoring profile can be adjusted as dry motoring is performed. As one example, if excessive vibration is detected as the rotor speed rises and approaches but remains well below the critical rotor speed, then the rate of rotor speed increases scheduled in the dry motoring profile can be reduced (i.e., a shallower slope) to extend the dry motoring time. Similarly, if vibration levels are observed below an expected minimum vibration level as the rotor speed increases, the dry motoring profile can be adjusted to a higher rate of rotor speed increases to reduce the dry motoring time.
A full authority digital engine control (FADEC) system or other system may send a message to the cockpit to extend time at idle to cool down the rotor prior to shut down. If the engine is in a ground test or in a test stand, a message can be sent to the test stand or cockpit based on the control-calculated risk of a bowed rotor. A test stand crew can be alerted regarding a requirement to bring the starting spool of the engine to a speed below the known resonance speed of the rotor in order to homogenize the temperature of the rotor and the casings about the rotor which also are distorted by temperature non-uniformity.
Vibration data can be used as an alternate or supplemental source of bowed rotor data in combination with the risk model. For example, the vibration data can be used to generate a bowed rotor start mitigation request including an estimated need and duration of dry motoring. The duration of dry motoring may be reduced based on vibration analysis results as compared to a motoring time computed by the risk model. Limiting the performance of dry motoring to engines at risk of a bowed rotor condition and lower motoring time reduces the impact to component life of the engine starting system. Further, vibration signatures can be monitored after bowed rotor mitigation is performed during an engine start sequence to confirm success of bowed rotor mitigation. If bowed rotor mitigation is unsuccessful or determined to be incomplete by the FADEC, resulting metrics (e.g., time, date, global positioning satellite (GPS) coordinates, vibration level vs. time, etc.) of the attempted bowed rotor mitigation can be recorded and/or transmitted to direct maintenance.
According to various embodiments, there are a number of options available to mitigate a bowed rotor start depending on a present operating state of the gas turbine engine, instrumentation, and monitoring systems implemented. For example, a control-calculated risk of a bowed rotor can be computed as a bowed rotor risk parameter as further described herein and used to trigger a cockpit message or test stand message to extend a time period to run at idle power prior to engine shutdown as a pre-shutdown mitigation. Alternatively, the bowed rotor risk parameter can trigger a request message or automated initiation of a dry motoring sequence prior to engine start. During a dry motoring sequence, a starter air pressure valve can be modulated to limit high rotor speed below high spool resonance speed and prevent rub during dry motoring operation. The bowed rotor risk parameter can also be used to limit dry motoring duration to reduce the impact on air starter turbine life. The monitoring of vibration signatures during the entire engine starting sequence can also or separately be used to assess the risk of a bowed rotor start and direct maintenance, for instance, in the case of suspected outer air seal rub especially in the high compressor.
Referring now to
The engine 10 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.
The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30 in the example of
The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.
A number of stations for temperature and pressure are defined with respect to the gas turbine engine 10 according to conventional nomenclature. Station 2 is at an inlet of low pressure compressor 44 having a temperature T2 and a pressure P2. Station 2.5 is at an exit of the low pressure compressor 44 having a temperature T2.5 and a pressure P2.5. Station 3 is at an inlet of the combustor 56 having a temperature T3 and a pressure P3. Station 4 is at an exit of the combustor 56 having a temperature T4 and a pressure P4. Station 4.5 is at an exit of the high pressure turbine 54 having a temperature T4.5 and a pressure P4.5. Station 5 is at an exit of the low pressure turbine 46 having a temperature T5 and a pressure P5.
Although
Turning now to
The starting system 100 can also include a data storage unit (DSU) 104 that retains data between shutdowns of the gas turbine engine 10 of
A motoring system 108 is operable to drive rotation of a starting spool (e.g., high speed spool 32) of the gas turbine engine 10 of
The controller 102 can monitor a speed sensor, such as speed pickup 122 that may sense the speed of the engine rotor through its connection to a gearbox 124 which is in turn connected to the high speed spool 32 via tower shaft 55 (e.g., rotational speed of high speed spool 32) or any other such sensor for detecting or determining the speed of the gas turbine engine 10 of
The discrete starter valve 116A is an embodiment of a starter valve that is designed as an on/off valve which is typically commanded to either fully opened or fully closed. However, there is a time lag to achieve the fully open position and the fully closed position. By selectively alternating an on-command time with an off-command time through the electromechanical device 110, intermediate positioning states (i.e., partially opened/closed) can be achieved. The controller 102 can modulate the on and off commands (e.g., as a duty cycle using pulse width modulation) to the electromechanical device 110 to further open the discrete starter valve 116A and increase a rotational speed of the starting spool of the gas turbine engine 10 of
In the example of
Similar to
The controller 102 can monitor a valve angle of the variable position starter valve 116B using valve angle feedback signals 152 provided to both channels of controller 102. As one example, in an active/standby configuration, both channels of the controller 102 can use the valve angle feedback signals 152 to track a current valve angle, while only one channel designated as an active channel outputs valve control signal 150. Upon a failure of the active channel, the standby channel of controller 102 can take over as the active channel to output valve control signal 150. In an alternate embodiment, both channels of controller 102 output all or a portion of a valve angle command simultaneously on the valve control signals 150. The controller 102 can establish an outer control loop with respect to rotor speed and an inner control loop with respect to the valve angle of the variable position starter valve 116B.
As in the example of
Engine parameter synthesis is performed by the onboard model 202, and the engine parameter synthesis may be performed using the technologies described in U.S. Patent Publication No. 2011/0077783, the entire contents of which are incorporated herein by reference thereto. Of the many parameters synthesized by onboard model 202 at least two are outputted to the core temperature model 204, T3, which is the compressor exit gas temperature of the engine 10 and W25, which is the air flow through the compressor. Each of these values are synthesized by onboard model 202 and inputted into the core temperature model 204 that synthesizes or provides a heat state (Tcore) of the gas turbine engine 10. Tcore can be determined by a first order lag or function of T3 and a numerical value X (e.g., f(T3, X)), wherein X is a value determined from a lookup table stored in memory of controller 102. Accordingly, X is dependent upon the synthesized value of W25. In other words, W25 when compared to a lookup table of the core temperature model 204 will determine a value X to be used in determining the heat state or Tcore of the engine 10. In one embodiment, the higher the value of W25 or the higher the flow rate through the compressor the lower the value of X.
The heat state of the engine 10 during use or Tcore is determined or synthesized by the core temperature model 204 as the engine 10 is being run. In addition, T3 and W25 are determined or synthesized by the onboard model 202 and/or the controller 102 as the engine 10 is being operated.
At engine shutdown, the current or most recently determined heat state of the engine or Tcore shutdown of the engine 10 is recorded into DSU 104, and the time of the engine shutdown tshutdown is recorded into the DSU 104. Time values and other parameters may be received on communication link 106. As long as electrical power is present for the controller 102 and DSU 104, additional values of temperature data may be monitored for comparison with modeled temperature data to validate one or more temperature models (e.g., onboard model 202 and/or core temperature model 204) of the gas turbine engine 10.
During an engine start sequence or restart sequence, a bowed rotor start risk model 206 of the controller 102 is provided with the data stored in the DSU 104, namely Tcore shutdown and the time of the engine shutdown tshutdown. In addition, the bowed rotor start risk model 206 is also provided with the time of engine start tstart and the ambient temperature of the air provided to the inlet of the engine 10 Tinlet or T2. T2 is a sensed value as opposed to the synthesized value of T3.
The bowed rotor start risk model 206 maps core temperature model data with time data and ambient temperature data to establish a motoring time tmotoring as an estimated period of motoring to mitigate a bowed rotor of the gas turbine engine 10. The motoring time tmotoring is indicative of a bowed rotor risk parameter computed by the bowed rotor start risk model 206. For example, a higher risk of a bowed rotor may result in a longer duration of dry motoring to reduce a temperature gradient prior to starting the gas turbine engine 10 of
Based upon these values (Tcore shutdown, tshutdown, tstart and T2) the motoring time tmotoring at a predetermined target speed Ntarget for the modified start sequence of the engine 10 is determined by the bowed rotor start risk model 206. Based upon the calculated time period tmotoring which is calculated as a time to run the engine 10 at a predetermined target speed Ntarget in order to clear a “bowed condition”. In accordance with an embodiment of the disclosure, the controller 102 can run through a modified start sequence upon a start command given to the engine 10 by an operator of the engine 10 such as a pilot of an airplane the engine is used with. It is understood that the motoring time tmotoring of the modified start sequence may be in a range of 0 seconds to minutes, which, of course, depends on the values of Tcore shutdown, tshutdown, tstart and T2.
In an alternate embodiment, the modified start sequence may only be run when the bowed rotor start risk model 206 has determined that the motoring time tmotoring is greater than zero seconds upon receipt of a start command given to the engine 10. In this embodiment and if the bowed rotor start risk model 206 has determined that tmotoring is not greater than zero seconds, a normal start sequence will be initiated upon receipt of a start command to the engine 10.
Accordingly and during an engine command start, the bowed rotor start risk model 206 of the system 200 may be referenced wherein the bowed rotor start risk model 206 correlates the elapsed time since the last engine shutdown time and the shutdown heat state of the engine 10 as well as the current start time tstart and the inlet air temperature T2 in order to determine the duration of the modified start sequence wherein motoring of the engine 10 at a reduced speed Ntarget without fuel and ignition is required. As used herein, motoring of the engine 10 in a modified start sequence refers to the turning of a starting spool by the starter 120 at a reduced speed Ntarget without introduction of fuel and an ignition source in order to cool the engine 10 to a point wherein a normal start sequence can be implemented without starting the engine 10 in a bowed rotor state. In other words, cool or ambient air is drawn into the engine 10 while motoring the engine 10 at a reduced speed in order to clear the “bowed rotor” condition, which is referred to as a dry motoring mode.
The bowed rotor start risk model 206 can output the motoring time tmotoring to a motoring controller 208. The motoring controller 208 uses a dynamic control calculation in order to determine a required valve position of the starter valve 116A, 116B used to supply an air supply or starter air supply 114 to the engine 10 in order to limit the motoring speed of the engine 10 to the target speed Ntarget due to the position of the starter valve 116A, 116B. The required valve position of the starter valve 116A, 116B can be determined based upon an air supply pressure as well as other factors including but not limited to ambient air temperature, parasitic drag on the engine 10 from a variety of engine driven components such as electric generators and hydraulic pumps, and other variables such that the motoring controller 208 closes the loop for an engine motoring speed target Ntarget for the required amount of time based on the output of the bowed rotor start risk model 206. In one embodiment, the dynamic control of the valve position (e.g., open state of the valve (e.g., fully open, ½ open, ¼ open, etc.) in order to limit the motoring speed of the engine 10) is controlled via duty cycle control (on/off timing using pulse width modulation) of electromechanical device 110 for discrete starter valve 116A.
When the variable position starter valve 116B of
The risk model 206 can determine a bowed rotor risk parameter that is based on the heat stored (Tcore) using a mapping function or lookup table. When not implemented as a fixed rotor speed, the bowed rotor risk parameter can have an associated dry motoring profile defining a target rotor speed profile over an anticipated amount of time for the motoring controller 208 to send control signals 210, such as valve control signals 150 for controlling variable position starter valve 116B of
The bowed rotor risk parameter may be quantified according to a profile curve 402 selected from a family of curves 404 that align with observed aircraft/engine conditions that impact turbine bore temperature and the resulting bowed rotor risk as depicted in the example graph 400 of
In some embodiments, an anticipated amount of dry motoring time can be used to determine a target rotor speed profile in a dry motoring profile for the currently observed conditions. As one example, one or more baseline characteristic curves for the target rotor speed profile can be defined in tables or according to functions that may be rescaled to align with the observed conditions. An example of a target rotor speed profile 1002 is depicted in graph 1000 of
The example of
With further reference to
As one example of an aircraft that includes systems as described herein, onboard model 202 and core temperature model 204 may run on controller 102 of the aircraft to track heat stored (Tcore) in the turbine at the time of engine shutdown. Modeling of potential heat stored in the system may be performed as a turbine disk metal temperature model in the core temperature model 204. When the aircraft lands, engines typically operate at idle for a cool down period of time, e.g., while taxiing to a final destination. When an engine shutdown is detected, model state data can be logged by the DSU 104 prior to depowering. When the controller 102 powers on at a later time and model state data can be retrieved from the DSU 104, and the bowed rotor start risk model 206 can be updated to account for the elapsed time. When an engine start is requested, a bowed rotor risk can be assessed with respect to the bowed rotor start risk model 206. Extended dry motoring can be performed during an engine start process until the bow risk has sufficiently diminished. Peak vibrations can be checked by the mitigation monitor 214 during the start processes to confirm that bowed rotor mitigation successfully removed the bowed rotor condition.
In reference to
At block 304, the controller 102 can generate a bowed rotor start mitigation request based on comparing the actual vibration level to a modeled vibration level 209 at the rotor speed. The modeled vibration level 209 may be determined based on the rotor speed and provided to initial assessment 211 along with vibration data 132 to generate the bowed rotor start mitigation request to motoring controller 208. Performance of the comparing of the actual vibration level to the modeled vibration level 209 at the rotor speed may be triggered at a rotor speed threshold that is below a resonance speed of the gas turbine engine 10. The controller 102 is operable to perform the comparing of the actual vibration level to the modeled vibration level 209 during a dry motoring mode of the gas turbine engine 10 below a resonance speed of the rotor. For example, the bowed rotor start risk model 206 may detect a likelihood of a bowed rotor condition and start dry motoring by increasing the rotor speed of the gas turbine engine 10 up to a dry motoring mode speed (e.g., Ntarget). The controller 102 can drive motoring of the gas turbine engine 10 to a bowed rotor mode determination speed that is less than the dry motoring mode speed to perform the comparing of the actual vibration level to the modeled vibration level 209 at a range of rotor speeds up to the bowed rotor mode determination speed prior to reaching the dry motoring mode speed.
Data for the bowed rotor start risk model 206 can be recorded in the DSU 104, including time and temperature data. The DSU 104 may be operable to continue monitoring and storing of temperature data while the gas turbine engine 10 is shutdown if electrical power is provided to the DSU 104 and controller 102. Extended monitoring after engine shutdown can be used to enhance modeling results, as less of a time gap exists between engine shutdown and start-up.
At block 306, bowed rotor start mitigation can be performed using motoring system 108, 108A to rotate a starting spool of the gas turbine engine 10. The controller 102 may periodically perform comparing of the vibration level to the modeled vibration level 209 in the dry motoring mode to determine whether bowed rotor mitigation has completed prior to reaching a motoring time tmotoring and prior to reaching an engine starting time. The motoring time tmotoring may be determined by the bowed rotor start risk model 206 as an expected amount of time need to run the air turbine starter 120 at a starter speed based on time and temperature values prior to starting the engine. Similarly, the bowed rotor start mitigation request from the initial assessment 211 may include an estimated need and duration of pre-start dry motoring. The motoring controller 208 can compare the duration of pre-start dry motoring to the motoring time determined by the risk model 206 and select a lesser value of the duration of pre-start dry motoring and the motoring time. For instance, the motoring time tmotoring determined by the bowed rotor start risk model 206 may be a worst case time that does not account for other factors that may cool the gas turbine engine 10 faster than modeled, such as wind. The initial assessment 211 may determine that a present bowed rotor condition is less than the modeled value, and thus the total actual motoring time can be reduced. In other words, the motoring controller 208 can determine whether to reduce the motoring time tmotoring based on a result of comparing the actual vibration level to the modeled vibration level at the rotor speed. Similarly, comparing the actual vibration level to the modeled vibration level may be used to adjust a dry motoring profile.
At block 308, based on determining that bowed rotor mitigation is complete, the controller 102 is operable to monitor the vibration level while sweeping through a range of rotor speeds including a critical rotor speed and determine whether bowed rotor mitigation was successful prior to starting the gas turbine engine 10. The mitigation monitor 214 may receive a completion signal from the motoring controller 208 when the motoring controller 208 has completed dry motoring, for instance, if the motoring time tmotoring has elapsed. If the mitigation monitor 214 determines that the bowed rotor condition still exists based on vibration data 132 collected, the motoring controller 208 may restart dry motoring, or a maintenance request or indicator can be triggered along with providing result metrics for further analysis. Metrics of attempted bowed rotor mitigation can be recorded in the DSU 104 based on determining that the attempted bowed rotor mitigation was unsuccessful or incomplete.
Referring now to
In the example of
Referring now to
The lowest rotor vibration vs. speed in
Accordingly and as mentioned above, it is desirable to detect, prevent and/or clear a “bowed rotor” condition in a gas turbine engine that may occur after the engine has been shut down. As described herein and in one non-limiting embodiment, the controller 102 may be programmed to automatically take the necessary measures in order to provide for a modified start sequence without pilot intervention other than the initial start request. In an exemplary embodiment, the controller 102 and/or DSU 104 comprises a microprocessor, microcontroller or other equivalent processing device capable of executing commands of computer readable data or program for executing a control algorithm and/or algorithms that control the start sequence of the gas turbine engine. In order to perform the prescribed functions and desired processing, as well as the computations therefore (e.g., the execution of Fourier analysis algorithm(s), the control processes prescribed herein, and the like), the controller 102 and/or DSU 104 may include, but not be limited to, a processor(s), computer(s), memory, storage, register(s), timing, interrupt(s), communication interfaces, and input/output signal interfaces, as well as combinations comprising at least one of the foregoing. For example, the controller 102 and/or DSU 104 may include input signal filtering to enable accurate sampling and conversion or acquisitions of such signals from communications interfaces. As described above, exemplary embodiments of the disclosure can be implemented through computer-implemented processes and apparatuses for practicing those processes.
While the present disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the present disclosure is not limited to such disclosed embodiments. Rather, the present disclosure can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the present disclosure. Additionally, while various embodiments of the present disclosure have been described, it is to be understood that aspects of the present disclosure may include only some of the described embodiments. Accordingly, the present disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1951875 | Laabs | Mar 1934 | A |
2617253 | Fusner et al. | Nov 1952 | A |
2962597 | Evans | Nov 1960 | A |
3057155 | Rizk | Oct 1962 | A |
3151452 | Bunger et al. | Oct 1964 | A |
3290709 | Whitenack, Jr. et al. | Dec 1966 | A |
3360844 | Wonneman | Jan 1968 | A |
3764815 | Habock et al. | Oct 1973 | A |
3793905 | Black et al. | Feb 1974 | A |
3898439 | Reed et al. | Aug 1975 | A |
3951008 | Schneider et al. | Apr 1976 | A |
4044550 | Vermilye | Aug 1977 | A |
4069424 | Burkett | Jan 1978 | A |
4120159 | Matsumoto | Oct 1978 | A |
4144421 | Sakai | Mar 1979 | A |
4302813 | Kurihara | Nov 1981 | A |
4353604 | Dulberger et al. | Oct 1982 | A |
4380146 | Yannone et al. | Apr 1983 | A |
4426641 | Kurihara | Jan 1984 | A |
4435770 | Shiohata | Mar 1984 | A |
4437163 | Kurihara | Mar 1984 | A |
4453407 | Sato et al. | Jun 1984 | A |
4485678 | Fanuele | Dec 1984 | A |
4488240 | Kapadia | Dec 1984 | A |
4496252 | Horler et al. | Jan 1985 | A |
4598551 | Dimitroff, Jr. et al. | Jul 1986 | A |
4627234 | Schuh | Dec 1986 | A |
4642782 | Kemper | Feb 1987 | A |
4669893 | Chalaire et al. | Jun 1987 | A |
4713985 | Ando | Dec 1987 | A |
4733529 | Nelson et al. | Mar 1988 | A |
4747270 | Klie et al. | May 1988 | A |
4854120 | Nelson et al. | Aug 1989 | A |
4856272 | Putman | Aug 1989 | A |
4862009 | King | Aug 1989 | A |
4979362 | Vershure, Jr. | Dec 1990 | A |
5103629 | Mumford et al. | Apr 1992 | A |
5123239 | Rodgers | Jun 1992 | A |
5127220 | Jesrai et al. | Jul 1992 | A |
5174109 | Lampe | Dec 1992 | A |
5184458 | Lampe et al. | Feb 1993 | A |
5201798 | Hogan | Apr 1993 | A |
5349814 | Ciokajlo et al. | Sep 1994 | A |
5388960 | Suzuki | Feb 1995 | A |
6146090 | Schmidt | Nov 2000 | A |
6168377 | Wolfe et al. | Jan 2001 | B1 |
6190127 | Schmidt | Feb 2001 | B1 |
6318958 | Giesler et al. | Nov 2001 | B1 |
6478534 | Bangert et al. | Nov 2002 | B2 |
6498978 | Leamy et al. | Dec 2002 | B2 |
6517314 | Burnett et al. | Feb 2003 | B1 |
6558118 | Brisson et al. | May 2003 | B1 |
6681579 | Lane et al. | Jan 2004 | B2 |
6762512 | Nelson | Jul 2004 | B2 |
7104072 | Thompson | Sep 2006 | B2 |
7133801 | Song | Nov 2006 | B2 |
7409319 | Kant et al. | Aug 2008 | B2 |
7428819 | Cataldi et al. | Sep 2008 | B2 |
7507070 | Jones | Mar 2009 | B2 |
7543439 | Butt et al. | Jun 2009 | B2 |
7587133 | Franke et al. | Sep 2009 | B2 |
7742881 | Muralidharan et al. | Jun 2010 | B2 |
7798720 | Walsh | Sep 2010 | B1 |
7909566 | Brostmeyer | Mar 2011 | B1 |
7972105 | Dejoris et al. | Jul 2011 | B2 |
8090456 | Karpman et al. | Jan 2012 | B2 |
8291715 | Libera et al. | Oct 2012 | B2 |
8306776 | Ihara et al. | Nov 2012 | B2 |
8770913 | Negron et al. | Jul 2014 | B1 |
8776530 | Shirooni et al. | Jul 2014 | B2 |
8820046 | Ross et al. | Sep 2014 | B2 |
8918264 | Jegu et al. | Dec 2014 | B2 |
9086018 | Winston et al. | Jul 2015 | B2 |
9121309 | Geiger | Sep 2015 | B2 |
9429510 | Belsom et al. | Aug 2016 | B2 |
9699833 | Broughton et al. | Jul 2017 | B2 |
9845730 | Betti et al. | Dec 2017 | B2 |
9988928 | Popescu et al. | Jun 2018 | B2 |
20020173897 | Leamy et al. | Nov 2002 | A1 |
20030145603 | Reed et al. | Aug 2003 | A1 |
20040065091 | Anderson | Apr 2004 | A1 |
20040131138 | Correia et al. | Jul 2004 | A1 |
20060032234 | Thompson | Feb 2006 | A1 |
20060188372 | Hansen | Aug 2006 | A1 |
20060260323 | Moulebhar | Nov 2006 | A1 |
20070031249 | Jones | Feb 2007 | A1 |
20070151258 | Gaines et al. | Jul 2007 | A1 |
20080072568 | Moniz et al. | Mar 2008 | A1 |
20090246018 | Kondo et al. | Oct 2009 | A1 |
20090301053 | Geiger | Dec 2009 | A1 |
20090314002 | Libera et al. | Dec 2009 | A1 |
20100095791 | Galloway | Apr 2010 | A1 |
20100132365 | Labala | Jun 2010 | A1 |
20100293961 | Tong et al. | Nov 2010 | A1 |
20100326085 | Veilleux | Dec 2010 | A1 |
20110077783 | Karpman et al. | Mar 2011 | A1 |
20110146276 | Sathyanarayana et al. | Jun 2011 | A1 |
20110153295 | Yerramalla et al. | Jun 2011 | A1 |
20110296843 | Lawson, Jr. | Dec 2011 | A1 |
20110308345 | Makulec et al. | Dec 2011 | A1 |
20120031067 | Sundaram et al. | Feb 2012 | A1 |
20120240591 | Snider et al. | Sep 2012 | A1 |
20120266601 | Miller | Oct 2012 | A1 |
20120297781 | Manchikanti et al. | Nov 2012 | A1 |
20120316748 | Jegu et al. | Dec 2012 | A1 |
20130031912 | Finney et al. | Feb 2013 | A1 |
20130091850 | Francisco | Apr 2013 | A1 |
20130101391 | Szwedowicz et al. | Apr 2013 | A1 |
20130134719 | Watanabe et al. | May 2013 | A1 |
20130251501 | Araki et al. | Sep 2013 | A1 |
20140060076 | Cortelli et al. | Mar 2014 | A1 |
20140123673 | Mouze et al. | May 2014 | A1 |
20140199157 | Haerms et al. | Jul 2014 | A1 |
20140236451 | Gerez et al. | Aug 2014 | A1 |
20140241878 | Herrig et al. | Aug 2014 | A1 |
20140271152 | Rodriguez | Sep 2014 | A1 |
20140301820 | Lohse et al. | Oct 2014 | A1 |
20140318144 | Lazzeri et al. | Oct 2014 | A1 |
20140334927 | Hammerum | Nov 2014 | A1 |
20140366546 | Bruno et al. | Dec 2014 | A1 |
20140373518 | Manneville et al. | Dec 2014 | A1 |
20140373552 | Zaccaria et al. | Dec 2014 | A1 |
20140373553 | Zaccaria et al. | Dec 2014 | A1 |
20140373554 | Pech et al. | Dec 2014 | A1 |
20150016949 | Smith | Jan 2015 | A1 |
20150115608 | Draper | Apr 2015 | A1 |
20150121874 | Yoshida et al. | May 2015 | A1 |
20150128592 | Filiputti et al. | May 2015 | A1 |
20150159625 | Hawdwicke, Jr. et al. | Jun 2015 | A1 |
20150219121 | King | Aug 2015 | A1 |
20150377141 | Foiret | Dec 2015 | A1 |
20160236369 | Baker | Aug 2016 | A1 |
20160245312 | Morice | Aug 2016 | A1 |
20160265387 | Duong et al. | Sep 2016 | A1 |
20160288325 | Naderer et al. | Oct 2016 | A1 |
20170030265 | O'Toole et al. | Feb 2017 | A1 |
20170218848 | Alstad et al. | Aug 2017 | A1 |
20170233103 | Teicholz et al. | Aug 2017 | A1 |
20170234158 | Savela | Aug 2017 | A1 |
20170234166 | Dube et al. | Aug 2017 | A1 |
20170234167 | Stachowiak et al. | Aug 2017 | A1 |
20170234230 | Schwarz et al. | Aug 2017 | A1 |
20170234232 | Sheridan et al. | Aug 2017 | A1 |
20170234233 | Schwarz et al. | Aug 2017 | A1 |
20170234235 | Pech | Aug 2017 | A1 |
20170234236 | Feulner et al. | Aug 2017 | A1 |
20170234238 | Schwarz et al. | Aug 2017 | A1 |
20170236064 | Kirschnick | Aug 2017 | A1 |
20170274390 | Clauson et al. | Sep 2017 | A1 |
20180010480 | Hockaday et al. | Jan 2018 | A1 |
20180265223 | Teicholz et al. | Sep 2018 | A1 |
20180274390 | Clauson et al. | Sep 2018 | A1 |
20180327117 | Teicholz et al. | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
1396611 | Mar 2004 | EP |
1533479 | May 2005 | EP |
1862875 | Dec 2007 | EP |
2006496 | Dec 2008 | EP |
2305986 | Apr 2011 | EP |
2363575 | Sep 2011 | EP |
2871333 | May 2015 | EP |
3051074 | Aug 2016 | EP |
2933131 | Jan 2010 | FR |
1374810 | Nov 1974 | GB |
2117842 | Oct 1983 | GB |
2218751 | Nov 1989 | GB |
201408865 | May 2015 | IN |
2002371806 | Dec 2002 | JP |
2004036414 | Feb 2004 | JP |
9900585 | Jan 1999 | WO |
2013007912 | Jan 2013 | WO |
2014152701 | Sep 2014 | WO |
2015030946 | Mar 2015 | WO |
2016069303 | May 2016 | WO |
Entry |
---|
U.S. Appl. No. 15/042,331 Non-Final Office Action dated Sep. 9, 2016, 37 pages. |
EP Application No. 17155584 Extended European Search Report dated Jul. 6, 2017, 9 pages. |
EP Application No. 17155601 Extended European Search Report dated Jun. 30, 2017, 7 pages. |
EP Application No. 17155612 Extended European Search Report dated Jul. 4, 2017, 8 pages. |
EP Application No. 17155613 Extended European Search Report dated Jun. 27, 2017, 10 pages. |
EP Application No. 17155683 Extended European Search Report dated Jun. 30, 2017, 8 pages. |
EP Application No. 17155687 Extended European Search Report dated Jun. 16, 2017, 9 pages. |
EP Application No. 17155698 Extended European Search Report dated Jun. 21, 2017, 9 pages. |
EP Application No. 17155721 Extended European Search Report dated Jun. 27, 2017, 8 pages. |
EP Application No. 17155793 Extended European Search Report dated Jun. 30, 2017, 10 pages. |
EP Application No. 17155798 Extended European Search Report dated Jun. 30, 2017, 9 pages. |
EP Application No. 17155807 Extended European Search Report dated Jul. 3, 2017, 8 pages. |
Extended European Search Report for Application No. 17179407.6-1610 dated Dec. 5, 2017 (8 pp.). |
EP Application No. 17155683 Office Action dated May 22, 2018, 2 pages. |
EP Application No. 17155612.9 Office Action dated Oct. 2, 2018, 3 pages. |
EP Application No. 17155698.8 Office Action dated Sep. 27, 2018, 3 pages. |
EP Application No. 17155798.6 Office Action dated Sep. 21, 2018, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20170234231 A1 | Aug 2017 | US |