This application relates to bowed stringed musical instruments.
Bowed stringed musical instruments are instruments that produce sound by the vibration of a string that has been brought into contact with a bowing surface. Typically, in such instruments, bowing occurs as a frictioned surface moves relative to a string that is anchored at one end to a bridge; the string vibrates, the string's vibrational energy is transferred via the bridge to a soundboard or other mechanical structure, and sound is produced as the soundboard resonates.
This application describes a bowed stringed musical instrument that produces sound by bringing one or more vibratable strings into contact with a movable member, driven by a driving mechanism such as a rotating shaft and preferably coated with a high-friction substance such as rosin, whereby the resulting string vibrations are transferred to a soundboard by a bridge. In response, the soundboard resonates at frequencies within the range of the human auditory system to generate changes in acoustic pressure that the human ear detects and recognizes as sound. This sound generation mechanism is similar to stringed instruments such as the violin, where a rosined bow is drawn across one or more strings to generate string vibrations that are transferred to a resonant soundboard. The present instrument thus is capable of generating tones reminiscent of violin-like instruments. However, by employing a driving mechanism shaft to move a movable bowing surface—as opposed to a violin bow, for example, which is moved back and forth by the human arm—the instrument is capable of generating notes of indefinite sustain. Further, the strings can be brought into contact with this surface by any of a number of actuation mechanisms, such as piano-like keys, which operate as discrete note selectors. Each actuator displaces a corresponding string in a plane orthogonal to the plane tangent to the movable member at a point where the string will contact the surface. The resulting angle at which the string contacts the movable member helps achieve optimal transfer of any kinetic energy of the movable member to vibrational energy of the string. Further, by selecting notes by actuating these actuators, rather than by changing the length of a single vibrating string, as with a violin, the user can employ common piano and keyboard techniques to generate violin-like sounds. Further, by employing a greater number of fixed-length strings—as opposed to a lesser number of variable-length strings, as in a violin—the instrument may be made capable of generating complex harmonies that result from bowing many strings at once.
Certain implementations may provide other potential advantages. For example, one such advantage may be to improve the instrument's usability in diverse musical applications. One way this advantage may be achieved is by increasing the instrument's maximum attainable perceived sound volume relative to input kinetic energy. This improves the instrument's usability in band or orchestral settings, by making it better able to compete for volume with louder instruments, without the assistance of electrical amplification. It also improves the instrument's usability in recording settings, where the signal-to-noise ratio of the recorded instrument—a metric directly related to the sound quality of recorded music—increases with the instrument's natural acoustic volume. One way that certain implementations increase the maximum attainable perceived sound volume is by displacing a string such that as much of the moving surface's kinetic energy as possible is transferred to resultant vibrational energy of the string, which is related to the acoustic pressure, and thus the perceived sound volume, of the instrument. Another way is by encouraging a soundboard to resonate with maximum displacement, which helps translate more of a bowed string's vibrational energy to acoustic pressure, thereby increasing the perceived sound volume of the instrument. In some implementations, soundboard displacement is increased by employing a pivot post, coupled to the bridge at a single point of contact, such that vibration of a string causes the bridge to vibrate around the point of contact.
Another way that usability in diverse musical applications may be improved in certain implementations is by allowing the use of “drone” strings, which remain in contact with a moving surface without requiring actuation; these strings provide “pedal” tones which are highly characteristic of certain genres of music, such as the traditional music of Ireland, Scotland, and India.
Another way that usability in diverse musical applications may be improved in certain implementations is by enabling the use of dynamic acoustic effects, such as tremolo and phasing, and acoustic dampening effects.
Another way that usability in diverse musical applications may be improved in certain implementations is by converting string vibration to electrical signals, allowing the instrument to be interfaced with electrical amplification, electronic signal processing equipment, and recording equipment. This conversion may be performed, for example, by an electromagnetic pickup; a piezoelectric transducer; or a microphone.
Another way that usability in diverse musical applications may be improved in certain implementations is by allowing actuators to be controlled by Musical Instrument Digital Interface (MIDI) signals. For example, a MIDI signal could encode pitch and note velocity information and direct the strings of the instrument to produce notes of the encoded pitch and velocity.
Another potential advantage is improving ease of operation by musicians of various backgrounds and skill levels. For example, certain implementations help ensure uniformity of sound volume across all strings of the instrument by displacing strings toward a moving surface such that all strings contact the surface at the same angle. The instrument is made easier to operate because the operator can rely on all strings being bowed with roughly consistent amplitude, thus producing roughly consistent sound volume across strings—a desirable characteristic of stringed instruments—without the need for the operator to manually compensate for differences in volume across strings.
As another example, certain implementations feature a linear array of actuators, such as keys. This may improve ease of operation because musicians skilled with common instruments featuring linear keyboards, such as pianos or accordions, can transfer their skills directly to the presently described instrument.
Certain implementations also connect such actuators to strings via a cable linkage system, which helps allow the linear keyboard, which improves the instrument's ease of operation, to coexist with the orthogonal string displacement, which improves the instrument's usability in diverse musical applications.
Another potential advantage is ease of manufacturing, which results in a lower cost of manufacture. This advantage may be provided, for example, by implementations with a tubular soundboard, because it is easier for a manufacturer to attach a radial bridge (as might be used in bowed stringed musical instruments that employ a wheel) to a tubular soundboard than to a flat soundboard. This advantage may also be provided, for example, by implementations that have a radial keyboard, with actuators spaced around a curved surface, because the uniformity of the distance and positioning of each key relative to its respective string allows for an identical action for every note throughout the keyboard, which makes the instrument easier to manufacture.
Another potential advantage is compactness of the instrument, which assists portability and better enables the instrument to be used in small venues. This may be provided, for example, by implementations that have a radial keyboard, with actuators spaced around a curved surface. Radial keyboards take up less linear space than a linear keyboard with the same number and size of keys. This advantage may also be provided by implementations with a string tension adjustment mechanism, which increases the number of playable notes without increasing the number of strings required.
Another potential advantage is ease of user adjustment and calibration, which reduces the time and effort a manufacturer must spend to provide user support. This advantage may be provided, for example, by implementations that have a bridge coupled to a user-adjustable pivot post, because the user-adjustable pivot post allows the user to calibrate the bridge-and-soundboard system (and help achieve optimal acoustics) without disassembling the instrument, which presumably would require the assistance of the manufacturer.
Another potential advantage is consistency of volume among notes, which is a generally desirable characteristic of stringed instruments. This advantage may be provided for example by implementations that drive the moving surface with a motor, because motors can provide a more consistent rotational velocity and thus a more consistent bowing amplitude than can, for example, a human-powered moving surface.
Another potential advantage is energy efficiency, which may be provided for example by implementations that feature a human-powered moving surface, because this eliminates the need to power the moving surface with an external energy source, such as fuel or electricity.
Other aspects, features, and potential advantages will be apparent from the following figures and detailed description.
Referring to
Referring to
In a particular implementation, pictured in
In some implementations, such as shown in
Some implementations may feature a cable linkage system, an example of which is shown schematically in
Referring to
Soundboards 80 of various shapes may be employed.
The driving mechanism 10 can be motorized.
The driving mechanism 10 can also be human-powered.
Some implementations feature a means for converting string vibration to an electrical signal. For example,
Actuators 100 may comprise a plurality of electromagnetic switches, such as solenoids or relays, that each bring a corresponding vibratable string 30 into contact with the movable member 20 when the switch is opened or closed via an electrical or magnetic signal.
Some implementations employ one or more vibratable strings 30, known as “drone strings,” that remain in contact with the movable member 20 even without actuation. As one example, referring to
Some implementations feature a means for attenuating the amplitude of the vibrations of vibratable strings, for example, a string dampening mechanism that attenuates the amplitude of a vibrating string 30 to generate muffled or staccato tones. In
Some implementations feature a means for modulating the pitch or volume of a vibratable string while the string is vibrating, for example to simulate the finger-based volume and pitch adjustments possible with a violin. For example, the trill mechanism shown in
This application claims the benefit under 35 U.S.C. §119(e)(1) of U.S. Provisional Application No. 61/751,771, filed on Jan. 11, 2013, which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
727665 | Moen | May 1903 | A |
1190655 | Keller | Jul 1916 | A |
1326955 | Mueller | Jan 1920 | A |
1344497 | Fleming | Jun 1920 | A |
1409322 | Warner | Mar 1922 | A |
1555762 | Silen | Sep 1925 | A |
1577501 | Strawn | Mar 1926 | A |
1742057 | Corwin | Dec 1929 | A |
2327072 | Silen | Aug 1943 | A |
3049958 | Benioff | Aug 1962 | A |
3090274 | Fender | May 1963 | A |
3628414 | Elteto | Dec 1971 | A |
4084473 | Kitashima et al. | Apr 1978 | A |
4913026 | Kaneko et al. | Apr 1990 | A |
5212336 | Barcus | May 1993 | A |
5286911 | Murata et al. | Feb 1994 | A |
Entry |
---|
Ripin et al. Early Keyboard Instruments, (MacMillan, London, 1980) excepts on the geigenwerk. |
Obuchi, “Making a Bowed Keyboard Instrument”, http://obuchi.music.coocan.jp/Geigenwerk/Geigenwerk1/Report/REPORT.html, Mar. 29, 1993, 4 pages. |
Number | Date | Country | |
---|---|---|---|
61751771 | Jan 2013 | US |