The present invention pertains generally to cutting implements and their method of manufacture. More particularly, the present invention pertains to methods for manufacturing box cutters. The present invention is particularly, but not exclusively useful as a method for manufacturing box cutters having high strength blades that are effectively shielded to prevent an unintentional or an intentional infliction of injury to the user or to another.
Many different laminar-shaped materials are used for many different purposes. As an example of a common use for such a material, consider a cardboard box. Cardboard boxes are well known for their use as shipping or storage containers. For this purpose they are typically configured as a unitary enclosure wherein the various panels of the enclosure are folded and sealed together with commercially available tapes. Typically, such boxes are designed for a one-time use, and it is expected the cardboard may eventually be cut to open the box and retrieve articles or items from inside the box. As another example, consider straps or belts that are used to hold or confine something. There are times when they too must be cut, rather than loosened in a more conventional manner. Many other examples can, of course, be given wherein laminar materials are used and may need to be cut.
Cutting laminar-shaped material can be a difficult task. This is particularly so if no edge to the material is directly and easily accessible (e.g. a box). In such cases, it is normally necessary to somehow first puncture the material in order to establish access for cutting the material. Also, if the material has any appreciable strength or thickness, the use of a common tool, such as a scissors, may be impractical; if not impossible. A consequence of all this is that special tools have been developed for purposes of cutting laminar-shaped materials.
Heretofore, an undesirable feature of lamina cutters has been the unprotected exposure of their cutting edge. Specifically, box-cutters and knives that will both penetrate the material, and then cut through the material, have been made with the expectation that the cutting edge will remain openly exposed and unprotected. On the other hand, lamina cutters that are specifically designed with protected blades have typically had to rely on some means, other than the tool itself, to provide initial access for the blade's cutting edge. Such access is needed to position the blade's cutting edge where it can make contact with the material that is to be cut.
In light of the above, it is an object of the present invention to provide a dual-function cutting tool that combines a blunt extension for penetrating through a laminar material, with a protected blade that is exposed, for cutting the material. Another object of the present invention is to provide a method for manufacturing a cutting tool having a two-piece construction that includes: 1) a dual-function cutting member having both an extension for penetrating the material to be cut and a cutting edge for actually cutting the material; and 2) a handle for holding the cutting member to position the cutting blade in a protected space between the extension and the handle. Yet another object of the present invention is to provide a cutting tool, and a method for its manufacture, that is simple to implement, is easy to use, and is comparatively cost effective.
In accordance with the present invention, a cutting tool and its method for manufacture involve a dual-function blade member that includes both an extension for puncturing a laminar material, and a protected cutting blade for subsequently cutting the laminar material. The cutting tool, itself, is an integrated two-piece device that includes only the blade member and a handle.
The blade member of the cutting tool is planar, and it has a substantially rectangular shaped body portion. Further, the blade member is flat and has a substantially uniform thickness “t”. The above-mentioned extension projects in alignment with, and along, a first side of the blade member. Additionally, the extension has an inside edge that is substantially parallel to the first side of the blade member. A cutting blade is formed on the blade member. Specifically, it is oriented to extend perpendicularly from the inside edge of the extension to a second side of the blade member. Within this orientation, the cutting blade is substantially perpendicular to both the inside edge of the extension and to the second side of the blade member.
The handle of the cutting tool for the present invention is formed with first and second flanges that extend parallel to each other. As so extended, the flanges establish a slit between them. There is a distance “d” between the two flanges (i.e. the width of the slit is “d”), and this distance “d” is equal to or slightly greater than the thickness “t” of the blade member. Each flange has a guiding edge that is located across the slit from the other flange, opposite each other.
For the manufacture of the cutting tool of the present invention, the second side of the blade member is positioned in the slit of the handle, between the first and second flanges (recall d≧t). This placement orients the cutting blade substantially perpendicular to the guiding edges on the handle. It also positions the inside edge on the extension of the blade member parallel to the guiding edges on the handle. This establishes a slot between them having a width “w”. Importantly, the width “w” is sufficiently small, and the cutting blade is sufficiently deep in the slot, so a person using the tool can not be cut by the cutting blade. The blade member is then secured between the flanges of the handle.
Preferably, the blade member with its extension is made of a sheet metal, and the blade member is created by die cutting the sheet metal. The cutting blade can then be formed on the blade member. Alternatively, the blade member can be made of a plastic material. If so, it can be formed by injection molding. In either case, the handle is preferably made of a plastic material, and is formed by injection molding. As envisioned for the present invention, the blade member can be secured to the handle by either glue or bolts. When both the blade member and the handle are made of plastic, the blade member can be secured to the handle by thermo-bonding.
The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:
Referring initially to
Referring now to
As shown in
As most clearly shown in
For an alternate embodiment of the present invention, a blade member 14′ can be shaped substantially as shown in
In the manufacture of the cutting tool 10 of the present invention, a blade member 14 is created. As indicated above, the blade member 14 is preferably made of a metal material that lends itself to a stamping or die cutting operation. Once a blank blade member 14 has been formed, the cutting blade 26 can be sharpened in a manner well known in the pertinent art. Also, as indicated above, the blade member 14 can be made of a strong durable plastic. If plastic is used, the blade member 14 and a sharpened cutting blade 26 can be created by a well-known injection molding operation.
The handle 12 can be manufactured in either of several ways. For one, if it is to be made of a plastic material, the handle 12, including the flanges 30a,b and the slit 32, can be injection molded. For another, if the handle 12 is to be made of a metal, it can be formed into two similar halves (not shown) that can be subsequently joined together. In this case, like the blade member 14, the metal halves for handle 12 can be stamped or die cut. The blade member 14 is then placed between the two halves prior to their being joined together.
Incorporation of the blade member 14 with the handle 12 depends, primarily, on how the handle 12 has been manufactured. For an injection molded plastic handle 12, the side 20 of blade member 14 is positioned inside the slit 32, substantially as shown in
It is an important aspect of the present invention, that the cutting tool 10 be manufactured using a minimum number of constituent parts (i.e. handle 12 and blade member 14). Further, it is important the methods used for joining these parts together be simplified.
While the particular Box Opener as herein shown and disclosed in detail is fully capable of obtaining the objects and providing the advantages herein before stated, it is to be understood that it is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2810194 | Unsinger | Oct 1957 | A |
3365798 | Cunningham | Jan 1968 | A |
3673687 | Phillips et al. | Jul 1972 | A |
3751806 | Patrick | Aug 1973 | A |
4134206 | Beermann | Jan 1979 | A |
4680861 | Meurer | Jul 1987 | A |
D294797 | Itoh | Mar 1988 | S |
5046253 | Ireland | Sep 1991 | A |
5127162 | Mansfield | Jul 1992 | A |
5282316 | Anderson | Feb 1994 | A |
5285577 | Carney et al. | Feb 1994 | A |
D352440 | Perigny | Nov 1994 | S |
5419044 | Valliere | May 1995 | A |
D381886 | Domenico | Aug 1997 | S |
5829321 | Domenico | Nov 1998 | A |
6513249 | Linton et al. | Feb 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20090178268 A1 | Jul 2009 | US |