The present invention relates to a box template production system and a method for converting a fanfolded sheet material into box templates.
Shipping and packaging industries frequently use cardboard and other sheet material processing equipment that converts sheet materials into box templates. One advantage of such equipment is that a shipper may prepare boxes of required sizes as needed in lieu of keeping a stock of standard, pre-made boxes of various sizes. Consequently, the shipper can eliminate the need to forecast its requirements for particular box sizes as well as to store pre-made boxes of standard sizes. Instead, the shipper may store one or more bales of fanfold material, which can be used to generate a variety of box sizes based on the specific box size requirements at the time of each shipment. This allows the shipper to reduce storage space normally required for periodically used shipping supplies as well as reduce the waste and costs associated with the inherently inaccurate process of forecasting box size requirements, as the items shipped and their respective dimensions vary from time to time.
In addition to reducing the inefficiencies associated with storing pre-made boxes of numerous sizes, creating custom sized boxes also reduces packaging and shipping costs. In the fulfillment industry it is estimated that shipped items are typically packaged in boxes that are about 65% larger than the shipped items. Boxes that are too large for a particular item are more expensive than a box that is custom sized for the item due to the cost of the excess material used to make the larger box. When an item is packaged in an oversized box, filling material (e.g., Styrofoam, foam peanuts, paper, air pillows, etc.) is often placed in the box to prevent the item from moving inside the box and to prevent the box from caving in when pressure is applied (e.g., when boxes are taped closed or stacked). These filling materials further increase the cost associated with packing an item in an oversized box.
Customized sized boxes also reduce the shipping costs associated with shipping items compared to shipping the items in oversized boxes. A shipping vehicle filled with boxes that are 65% larger than the packaged items is much less cost efficient to operate than a shipping vehicle filled with boxes that are custom sized to fit the packaged items. In other words, a shipping vehicle filled with custom sized packages can carry a significantly larger number of packages, which can reduce the number of shipping vehicles required to ship the same number of items. Accordingly, in addition or as an alternative to calculating shipping prices based on the weight of a package, shipping prices are often affected by the size of the shipped package. Thus, reducing the size of an item's package can reduce the price of shipping the item. Even when shipping prices are not calculated based on the size of the packages (e.g., only on the weight of the packages), using custom sized packages can reduce the shipping costs because the smaller, custom sized packages will weigh less than oversized packages due to using less packaging and filling material.
A typical box template production system includes a converting part that cuts, scores, and/or creases sheet material to form a box template. The sheet material is provided to the system from fanfolded bales and needs to be guided correctly into the converting part of the system. Prior art systems often guide the sheet material up and over a top position by means of wheels or rails and down again to a suitable working height for entering the converting part of the system. The converting part is positioned such that the box template is delivered out from the converting part for example directly on a work table or conveyor belt provided next to the outlet of the system for further processing of the box template into a box. The guiding of the sheet material from the bales into the converting part of the machine requires force and precision. The force required is a function of the amount of material that is being accelerated, and how much friction is created due to its bending through the guide system, and the force required to control the precise direction of the material. It is therefore essential to limit these factors. This guiding of sheet material also requires space in the room.
An object of the present invention is to provide an improved method for converting a fanfolded sheet material into a box template and an improved box template production system.
This is achieved in a box template production system and a method according to the independent claims.
In one aspect of the invention a box template production system comprising a converting part which is configured for converting a fanfolded sheet material into box templates is provided. Said converting is accomplished to the sheet material when a feed direction of the sheet material through the converting part of the system is along an axis having an angle towards a plane of a floor onto which the system stands, wherein said angle is between 20 and 90 degrees.
In another aspect of the invention a method for converting a fanfolded sheet material into a box template is provided. Said method comprises the steps of:
Hereby a method for converting a fanfolded sheet material into a box template and a box template production system is achieved where reduced force is needed for guiding the sheet material into the converting part of the system. Furthermore reduced space is needed for this system compared to prior art systems because of the shortened way to travel for the sheet material before it enters the converting part of the system.
In one embodiment of the invention said angle is between 30 and 70 degrees.
In one embodiment of the invention said fanfolded sheet material is provided to the system from at least one fanfold bale positioned at an inlet side of the system, wherein said box template production system comprises at least one feed guide configured for receiving the sheet material from the fanfold bale and guiding it up to a top position, wherein the converting part of the system is configured for receiving the sheet material from the at least one feed guide or from one or more connecting guide parts on its way down from the top position.
In one embodiment of the invention only one feed guide is provided for each sheet material and said feed guide is configured for receiving the sheet material such that it slides over the feed guide. The at least one feed guide is configured for allowing the sheet material to tilt sideways around the feed guide on its way up to the top position thereby enabling correction of the feeding direction of the sheet material. Correction might be needed due to a material bale that is off the nominal position, or placed at an angle towards the feeding direction. Hereby the guiding of the sheet material will be facilitated and will be requiring less force. A shorter transport way before the sheet material enters the converting part and reduced friction will require less force than in prior art systems. Furthermore a fanfold bale provided in a slightly wrong position at the inlet to the system can still be handled because the direction of the sheet material through the system can be corrected.
In one embodiment of the invention the at least one feed guide is provided as an arc starting at a start position where the sheet material is provided to the feed guide, said arc further comprising the top position, wherein said feed guide has a width being less than one fifth of the width of the sheet material.
In one embodiment of the invention the system comprises a printer configured and positioned for printing on the sheet material in a direction being perpendicular to the feed direction of the sheet material when the sheet material is converted in the converting part of the system. Because of the tilted position of the printer printing capabilities are improved compared to prior art systems where printing often is provided directly from below, i.e. an underside of the sheet material is printed because this will later be an outside of the box and the printer is often provided together with the converting part in the system. However printing upwards is not ideal because dust and dirt can cover the printer heads and gravity force can counteract the printing effectivity. Hereby with this system the printing is provided to the sheet material not directly from below but from an angle corresponding to the angle defined above. This provides a more effective printing system which is less prone to the problems caused by dirt and dust covering the printer heads.
The invention relates to a box template production system comprising a converting part which is configured for converting a fanfolded sheet material into box templates. According to the invention said converting is accomplished to the sheet material when a feed direction of the sheet material through the converting part of the system is along an axis having an angle towards a plane of a floor onto which the system stands, wherein said angle is between 20 and 90 degrees or suitably between 30 and 70 degrees.
The sheet materials used for forming the box templates according to the invention could be e.g., paperboard, corrugated board or cardboard. The term cardboard is used in the text and claims and intends to cover all these examples. As used herein, the term “box template” shall refer to a substantially flat stock of material that can be folded into a box-like shape. A box template may have notches, cutouts, divides, and/or creases that allow the box template to be bent and/or folded into a box. Additionally, a box template may be made of any suitable material, generally known to those skilled in the art. For example, cardboard or corrugated paperboard may be used as the template material.
The system 100 comprises a feeding part 106 provided for guiding the sheet material 104a, 104b into a processing part 108 of the system. The processing part 108 of the system comprises a frame 117 holding a converting part 112 and some other parts briefly described below. The converting part 112 converts the sheet material into box templates by for example cutting and creasing the material as described above. The feeding part 106 comprises a frame 107 which holds one or more feed guides 108a, 108b. In this shown embodiment two feed guides 108a, 108b are provided, one for each bale 102a, 102b. The feed guides 108a, 108b are configured for receiving the sheet material 104a, 104b from the fanfold bales 102a, 102b and guiding it up to a top position 121a, 121b, wherein the converting part 112 of the system is configured for receiving the sheet material 104a, 104b from the at least one feed guide 108a, 108b or from one or more connecting guide parts on its way down from the top position 121a, 121b. In this embodiment a feed changer 110 is provided between the feed guides 108a, 108b and the converting part 112 of the system.
The feed changer 110 is in this embodiment a connecting guide part between the feed guides 108a, 108b and the converting part 112 of the system. The feed changer 110 controls from which bale 102a, 102b sheet material 104a, 104b should be provided into the converting part 112 of the system 100. In another embodiment further connecting guide parts could be provided between the feed guides 108a, 108b and the converting part 112.
In this embodiment it can be seen that the converting part 112 of the system 100 is provided in a tilted position, i.e. the feed direction of a sheet material when passing through the converting part 112 is not parallel to a plane of the floor as is the case in prior art systems. As described in the claims the converting of the sheet material into a box template is accomplished to the sheet material when a feed direction of the sheet material through the converting part of the system is along an axis A having an angle α towards a plane of a floor onto which the system stands, wherein said angle α is between 20 and 90 degrees or suitably between 30 and 70 degrees. In the embodiment shown in
In the embodiment of the invention shown in
Furthermore in the embodiment shown in
In the embodiment shown in
The system 200 comprises a feeding part 206 provided for guiding the sheet material 204a-204e into a processing part 208 of the system. The processing part 208 of the system comprises a frame 217 holding a converting part 212 and a feed changer 210. The converting part 112 converts the sheet material into box templates by for example cutting and creasing the material as described above. The feeding part 206 comprises a frame 207 which holds one or more feed guides 208a, 208b, 208c, 208d, 208e. In this shown embodiment five feed guides 208a, 208b, 208c, 208d, 208e are provided, one for each bale 202a, 202b, 202c, 202d, 202e. The feed guides 208a, 208b, 208c, 208d, 208e are configured for receiving the sheet material 204a-204e from the fanfold bales 202a, 202b, 202c, 202d, 202e and guiding it up to a respective top position 221a, 221b, 221c, 221d, 221e, wherein the converting part 212 of the system is configured for receiving the sheet material 204a-204e from the at least one feed guide 208a, 208b, 208c, 208d, 208e or from one or more connecting guide parts on its way down from the top position 221a, 221b, 221c, 221d, 221e. In this embodiment a feed changer 210 is provided between the feed guides 208a-208e and the converting part 212 of the system. The feed changer 210 is in this embodiment a connecting guide part between the feed guides 208a-208e and the converting part 212 of the system. The feed changer 210 controls from which bale 202a-202e sheet material 204a-204e should be provided into the converting part 212 of the system 200.
In the embodiment of the invention shown in
Furthermore in the embodiment shown in
In one embodiment of the invention the converting part 212 of the system 200 comprises a printer 231 configured and positioned for printing on the sheet material 204a-204e in a direction being perpendicular to the feed direction of the sheet material 204a-204e when the sheet material is converted in the converting part 212 of the system 200. In the embodiment shown in
S1: Feeding the sheet material 104a-b; 204a-e into a box template production system 100; 200, 300.
S2: Converting the sheet material 104a-b; 204a-e into box templates when a feed direction of the sheet material 104a-b; 204a-e through a converting part 112; 212; 312 of the box template production system 100; 200; 300 is along an axis having an angle towards a plane of a floor onto which the system stands, wherein said angle is between 20 and 90 degrees or in another embodiment between 30 and 70 degrees.
In one embodiment of the invention the step of feeding, S1, comprises guiding the sheet material 104a-b; 204a-e into the box template production system 100; 200; 300 by at least one feed guide 108a, 108b; 208a-208e, wherein said guiding comprises guiding the sheet material up to a top position 121a, 121b; 221a-221e and then further down from the top position to the converting part 112; 212; 312 of the system.
In one embodiment of the invention the step of feeding, S1, further comprises providing the sheet material 104a-b; 204a-e from at least one fanfold bale 102a, 102b; 202a-202e to only one feed guide 108a, 108b; 208a-208e for each sheet material 104a-b; 204a-e such that the feed guide 108a, 108b; 208a-208e is positioned somewhere in a middle third part of a width of the sheet material thus allowing the sheet material to tilt sideways around the feed guide on its way up to the top position thereby enabling correction of the feeding direction of the sheet material.
In one embodiment of the invention the method further comprises the optional step:
S3: Printing on the sheet material 104a-b; 204a-e in a direction being perpendicular to the feed direction of the sheet material when the sheet material is converted in the converting part 112; 212 of the system.
In another aspect of the invention a box template production system configured for converting a fanfolded sheet material into box templates is provided, wherein said box template production system comprises at least one feed guide configured for receiving sheet material from fanfold bales and guiding it up to a top position. In this aspect of the invention a conversion part of the system can be provided both tilted or not tilted, i.e. the converting of sheet material to a box template can be accomplished when a feed direction of the sheet material through the converting part of the system is along a floor plane or tilted as described above. In this aspect of the invention a converting part of the system is configured for receiving the sheet material from the at least one feed guide or from one or more connecting guide parts, wherein only one feed guide is provided for each sheet material and wherein said feed guide is configured for receiving the sheet material such that the sheet material slides over the feed guide. The at least one feed guide is configured for allowing the sheet material to tilt sideways around the feed guide on its way up to the top position thereby enabling correction of the feeding direction of the sheet material as described above.
In one embodiment of the invention the at least one feed guide is provided as an arc starting at a start position where the sheet material is provided to the feed guide, said arc further comprising the top position, wherein said feed guide has a width being less than one fifth of the width of the sheet material. The material and surface of the feed guide 108a, 108b; 208a-208e can be provided such that the sheet material 104a-b; 204a-e can slide over the feed guide and tilt sideways, such as for example low friction metal or plastics, or even a set of small wheels providing roller friction rather than glide friction.
Number | Date | Country | Kind |
---|---|---|---|
1651682-5 | Dec 2016 | SE | national |
This application claims priority to PCT Application No. PCT/US2017/036603, filed Jun. 8, 2017, entitled “A BOX TEMPLATE PRODUCTION SYSTEM AND METHOD”, which claims the benefit of and priority to U.S. Provisional Application Nos. 62/351,127 filed Jun. 16, 2016 and 62/425,457 filed Nov. 22, 2016 and Sweden Application No. 1651682-5 filed Dec. 19, 2016. All the aforementioned applications are incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/036603 | 6/8/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/218296 | 12/21/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1809853 | Knowlton | Jun 1931 | A |
2077428 | Robert | Apr 1937 | A |
2083351 | Sidebotham | Jul 1937 | A |
2181117 | Brenn | Nov 1939 | A |
2256082 | Feurt | Sep 1941 | A |
2449663 | Marcalus | Sep 1948 | A |
2609736 | Montgomery | Sep 1952 | A |
2631509 | Whytlaw | Mar 1953 | A |
2679195 | Whytlaw | May 1954 | A |
2699711 | Mobley | Jan 1955 | A |
2798582 | Monroe | Jul 1957 | A |
2904789 | Radin et al. | Sep 1959 | A |
3057267 | Johnson, Jr. | Oct 1962 | A |
3096692 | Crathern et al. | Jul 1963 | A |
3105419 | La Bombard | Oct 1963 | A |
3108515 | Stohlquist | Oct 1963 | A |
3153991 | Goodrich | Oct 1964 | A |
3285145 | Lieberman | Nov 1966 | A |
3303759 | Burke | Feb 1967 | A |
3308723 | Bergh, Jr. | Mar 1967 | A |
3332207 | Midnight | Jul 1967 | A |
3406611 | Gwinn | Oct 1968 | A |
3418893 | Stohlquist | Dec 1968 | A |
3469508 | Klapp | Sep 1969 | A |
3511496 | Zoglmann | May 1970 | A |
3543469 | Ullman | Dec 1970 | A |
3555776 | Nigrelli et al. | Jan 1971 | A |
3566755 | Smith et al. | Mar 1971 | A |
3611884 | Hottendorf | Oct 1971 | A |
3618479 | Shields | Nov 1971 | A |
3628408 | Rod et al. | Dec 1971 | A |
3646418 | Sterns et al. | Feb 1972 | A |
3743154 | Brewitz | Jul 1973 | A |
3763750 | Reichert | Oct 1973 | A |
3776109 | Clark et al. | Dec 1973 | A |
3803798 | Clancy | Apr 1974 | A |
3804514 | Jasinski | Apr 1974 | A |
3807726 | Hope | Apr 1974 | A |
3866391 | Puskarz et al. | Feb 1975 | A |
3882764 | Johnson | May 1975 | A |
3886833 | Gunn et al. | Jun 1975 | A |
3891203 | Schiff | Jun 1975 | A |
3912389 | Miyamoto | Oct 1975 | A |
3913464 | Flaum | Oct 1975 | A |
3949654 | Stehlin | Apr 1976 | A |
3986319 | Puskarz et al. | Oct 1976 | A |
4033217 | Flaum et al. | Jul 1977 | A |
4044658 | Mitchard | Aug 1977 | A |
4052048 | Shirasaka | Oct 1977 | A |
4056025 | Rubel | Nov 1977 | A |
4094451 | Wescoat | Jun 1978 | A |
4121506 | Van Grouw | Oct 1978 | A |
4123966 | Buschor | Nov 1978 | A |
4164171 | Meyers et al. | Aug 1979 | A |
4173106 | Garcia et al. | Nov 1979 | A |
4184770 | Pinior | Jan 1980 | A |
4191467 | Schieck | Mar 1980 | A |
4221373 | Muller Hans | Sep 1980 | A |
4224847 | Tokuno | Sep 1980 | A |
4252233 | Joice | Feb 1981 | A |
4261239 | Toboshi et al. | Apr 1981 | A |
4264200 | Tickner | Apr 1981 | A |
4295841 | Ward, Jr. | Oct 1981 | A |
4320960 | Ward et al. | Mar 1982 | A |
4342562 | Froeidh et al. | Aug 1982 | A |
4368052 | Bitsky et al. | Jan 1983 | A |
4373412 | Gerber et al. | Feb 1983 | A |
4375970 | Murphy | Mar 1983 | A |
4401250 | Carlsson | Aug 1983 | A |
4449349 | Roth | May 1984 | A |
4487596 | Livens et al. | Dec 1984 | A |
4563169 | Virta et al. | Jan 1986 | A |
4578054 | Herrin | Mar 1986 | A |
D286044 | Kando | Oct 1986 | S |
4638696 | Urwyler | Jan 1987 | A |
4684360 | Tokuno et al. | Aug 1987 | A |
4695006 | Pool | Sep 1987 | A |
4714946 | Bajgert | Dec 1987 | A |
4743131 | Atwell | May 1988 | A |
4749295 | Bankier | Jun 1988 | A |
4773781 | Bankier | Sep 1988 | A |
4838468 | Lesse | Jun 1989 | A |
4844316 | Keeny | Jul 1989 | A |
4847632 | Norris | Jul 1989 | A |
4878521 | Fredrickson | Nov 1989 | A |
4887412 | Takamura | Dec 1989 | A |
4923188 | Neir | May 1990 | A |
4932930 | Coalier et al. | Jun 1990 | A |
4979932 | Burnside | Dec 1990 | A |
4994008 | Haake et al. | Feb 1991 | A |
5005816 | Stemmler | Apr 1991 | A |
5030192 | Sager | Jul 1991 | A |
5039242 | Johnson | Aug 1991 | A |
5046716 | Lippold | Sep 1991 | A |
5058872 | Gladow | Oct 1991 | A |
5072641 | Urban et al. | Dec 1991 | A |
5074836 | Fechner et al. | Dec 1991 | A |
5081487 | Hoyer | Jan 1992 | A |
5090281 | Paulson | Feb 1992 | A |
5094660 | Okuzawa | Mar 1992 | A |
5106359 | Lott | Apr 1992 | A |
5111252 | Hamada | May 1992 | A |
5118093 | Makiura | Jun 1992 | A |
5120279 | Adami | Jun 1992 | A |
5120297 | Adami | Jun 1992 | A |
5123890 | Green | Jun 1992 | A |
5123894 | Bergeman | Jun 1992 | A |
5137172 | Wagner | Aug 1992 | A |
5137174 | Bell | Aug 1992 | A |
5148654 | Kisters | Sep 1992 | A |
5154041 | Schneider | Oct 1992 | A |
5157903 | Nakashima et al. | Oct 1992 | A |
5197366 | Paulson | Mar 1993 | A |
5240243 | Gompertz | Aug 1993 | A |
5241353 | Maeshima | Aug 1993 | A |
5259255 | Urban et al. | Nov 1993 | A |
5263785 | Negoro | Nov 1993 | A |
D344751 | Keong | Mar 1994 | S |
5321464 | Jessen | Jun 1994 | A |
2353419 | Smithson | Jul 1994 | A |
5335777 | Murphy | Aug 1994 | A |
5358345 | Damitio | Oct 1994 | A |
5369939 | Moen et al. | Dec 1994 | A |
5375390 | Frigo et al. | Dec 1994 | A |
5397423 | Bantz et al. | Mar 1995 | A |
5411252 | Lowell | May 1995 | A |
5584633 | Scharer | Dec 1996 | A |
5586758 | Kimura | Dec 1996 | A |
5624369 | Bidlack et al. | Apr 1997 | A |
5667468 | Bandura | Sep 1997 | A |
5671593 | Ginestra et al. | Sep 1997 | A |
5716313 | Sigrist et al. | Feb 1998 | A |
5727725 | Paskvich | Mar 1998 | A |
5767975 | Ahlen | Jun 1998 | A |
5836498 | Turek | Nov 1998 | A |
5902223 | Simmons | May 1999 | A |
5927702 | Ishii | Jul 1999 | A |
5941451 | Dexter | Aug 1999 | A |
5964686 | Bidlack et al. | Dec 1999 | A |
6000525 | Frulio | Dec 1999 | A |
6071223 | Reider et al. | Jun 2000 | A |
6113525 | Waechter | Sep 2000 | A |
6164045 | Focke | Dec 2000 | A |
6189933 | Felderman | Feb 2001 | B1 |
6245004 | Waters | Jun 2001 | B1 |
6321650 | Ogawa | Nov 2001 | B1 |
6397557 | Bassissi | Jun 2002 | B1 |
6428000 | Hara | Aug 2002 | B1 |
6471154 | Zsolt | Oct 2002 | B1 |
6553207 | Tsusaka | Apr 2003 | B2 |
6568865 | Fujioka | May 2003 | B1 |
6673001 | Toth | Jan 2004 | B2 |
6690476 | Hren | Feb 2004 | B1 |
6830328 | Cuyler, Jr. | Dec 2004 | B2 |
6837135 | Michalski | Jan 2005 | B2 |
6840898 | Pettersson | Jan 2005 | B2 |
6910997 | Yampolsky | Jun 2005 | B1 |
6968859 | Nagano et al. | Nov 2005 | B1 |
7060016 | Cipolli | Jun 2006 | B2 |
7100811 | Pettersson | Sep 2006 | B2 |
7115086 | Campbell, Jr. | Oct 2006 | B1 |
7121543 | Fujioka | Oct 2006 | B2 |
7201089 | Richter | Apr 2007 | B2 |
7237969 | Bartman | Jul 2007 | B2 |
7537557 | Holler | May 2009 | B2 |
7637857 | Coullery et al. | Dec 2009 | B2 |
7641190 | Hara | Jan 2010 | B2 |
7647752 | Magnell | Jan 2010 | B2 |
7648451 | Calugi | Jan 2010 | B2 |
7648596 | Sharpe et al. | Jan 2010 | B2 |
7690099 | Bapst et al. | Apr 2010 | B2 |
7997578 | Saito | Aug 2011 | B2 |
D703246 | Pettersson et al. | Apr 2014 | S |
8999108 | Nagao et al. | Apr 2015 | B2 |
9069151 | Conner | Jun 2015 | B2 |
9120284 | Capoia | Sep 2015 | B2 |
9199794 | Nadachi et al. | Dec 2015 | B2 |
9329565 | Osaki | May 2016 | B2 |
9352526 | Pettersson et al. | May 2016 | B2 |
9434496 | Sytema | Sep 2016 | B2 |
9969142 | Pettersson et al. | May 2018 | B2 |
10093438 | Pettersson | Oct 2018 | B2 |
10155352 | Sytema et al. | Dec 2018 | B2 |
10286621 | Toro | May 2019 | B2 |
10583943 | Feijen et al. | Mar 2020 | B2 |
10836516 | Pettersson | Nov 2020 | B2 |
10836517 | Ponti | Nov 2020 | B2 |
20020017754 | Kang | Feb 2002 | A1 |
20020066683 | Sanders | Jun 2002 | A1 |
20020091050 | Bacciottini | Jul 2002 | A1 |
20020115548 | Lin et al. | Aug 2002 | A1 |
20020125712 | Felderman | Sep 2002 | A1 |
20020139890 | Toth | Oct 2002 | A1 |
20030102244 | Sanders | Jun 2003 | A1 |
20030217628 | Michalski | Nov 2003 | A1 |
20040060264 | Miller | Apr 2004 | A1 |
20040082453 | Pettersson | Apr 2004 | A1 |
20040092374 | Chiu-Fu | May 2004 | A1 |
20040144555 | Buekers et al. | Jul 2004 | A1 |
20040173068 | Adachi | Sep 2004 | A1 |
20040198577 | Blumle | Oct 2004 | A1 |
20040214703 | Berens et al. | Oct 2004 | A1 |
20040261365 | White | Dec 2004 | A1 |
20050079965 | Moshier et al. | Apr 2005 | A1 |
20050103923 | Pettersson | May 2005 | A1 |
20050215409 | Abramson et al. | Sep 2005 | A1 |
20050280202 | Vila | Dec 2005 | A1 |
20060178248 | Coullery et al. | Aug 2006 | A1 |
20060180438 | Mosli et al. | Aug 2006 | A1 |
20060180991 | Nakahata et al. | Aug 2006 | A1 |
20060181008 | Van Gerven | Aug 2006 | A1 |
20070079575 | Monti | Apr 2007 | A1 |
20070227927 | Coltri-Johnson | Oct 2007 | A1 |
20070228119 | Barner | Oct 2007 | A1 |
20070287623 | Carlson | Dec 2007 | A1 |
20070289253 | Miller | Dec 2007 | A1 |
20080020916 | Magnell | Jan 2008 | A1 |
20080037273 | Muehlemann et al. | Feb 2008 | A1 |
20080066632 | Raueiser | Mar 2008 | A1 |
20080115641 | Freyburger et al. | May 2008 | A1 |
20080148917 | Pettersson | Jun 2008 | A1 |
20080300120 | Sato | Dec 2008 | A1 |
20090062098 | Inoue et al. | Mar 2009 | A1 |
20090178528 | Adami | Jul 2009 | A1 |
20090199527 | Wehr et al. | Aug 2009 | A1 |
20100041534 | Harding | Feb 2010 | A1 |
20100111584 | Shiohara | May 2010 | A1 |
20100206582 | Meyyappan et al. | Aug 2010 | A1 |
20100210439 | Goto | Aug 2010 | A1 |
20110026999 | Kohira | Feb 2011 | A1 |
20110053746 | Desertot et al. | Mar 2011 | A1 |
20110092351 | Hatano | Apr 2011 | A1 |
20110099782 | Schonberger | May 2011 | A1 |
20110110749 | Carter et al. | May 2011 | A1 |
20110171002 | Pettersson | Jul 2011 | A1 |
20110229191 | Nomi | Sep 2011 | A1 |
20110230325 | Harding et al. | Sep 2011 | A1 |
20110319242 | Pettersson | Sep 2011 | A1 |
20110283855 | Kwarta et al. | Nov 2011 | A1 |
20120021884 | Musha | Jan 2012 | A1 |
20120106963 | Huang et al. | May 2012 | A1 |
20120122640 | Pazdernik et al. | May 2012 | A1 |
20120129670 | Pettersson et al. | May 2012 | A1 |
20120139670 | Yamagata | Jun 2012 | A1 |
20120142512 | Keller | Jun 2012 | A1 |
20120319920 | Athley et al. | Dec 2012 | A1 |
20120328253 | Hurley et al. | Dec 2012 | A1 |
20130000252 | Pettersson et al. | Jan 2013 | A1 |
20130045847 | Capoia | Feb 2013 | A1 |
20130104718 | Tai | May 2013 | A1 |
20130108227 | Conner | May 2013 | A1 |
20130130877 | Su | May 2013 | A1 |
20130146355 | Strasser et al. | Jun 2013 | A1 |
20130210597 | Pettersson | Aug 2013 | A1 |
20130294735 | Burris et al. | Nov 2013 | A1 |
20130333538 | Long et al. | Dec 2013 | A1 |
20140078635 | Conner et al. | Mar 2014 | A1 |
20140091511 | Martin | Mar 2014 | A1 |
20140101929 | Kim | Apr 2014 | A1 |
20140140671 | Islam | May 2014 | A1 |
20140315701 | Pettersson | Oct 2014 | A1 |
20140336026 | Pettersson | Nov 2014 | A1 |
20140357463 | Kojima | Dec 2014 | A1 |
20150018189 | Pettersson et al. | Jan 2015 | A1 |
20150019387 | Pettersson | Jan 2015 | A1 |
20150053349 | Mori et al. | Feb 2015 | A1 |
20150055926 | Strasser et al. | Feb 2015 | A1 |
20150103923 | Rarasubramonian et al. | Apr 2015 | A1 |
20150148210 | Sibthorpe | May 2015 | A1 |
20150155697 | Loveless et al. | Jun 2015 | A1 |
20150224731 | Ponti | Aug 2015 | A1 |
20150273897 | Kato | Oct 2015 | A1 |
20150355429 | Villegas et al. | Dec 2015 | A1 |
20150360433 | Feijen et al. | Dec 2015 | A1 |
20150360801 | Sytema | Dec 2015 | A1 |
20160001441 | Osterhout et al. | Jan 2016 | A1 |
20160049782 | Strasser et al. | Feb 2016 | A1 |
20160122044 | Evers | May 2016 | A1 |
20160184142 | Vanvalkenburgh | Jun 2016 | A1 |
20160185065 | Sytema et al. | Jun 2016 | A1 |
20160185475 | Pettersson et al. | Jun 2016 | A1 |
20160241468 | Sabella et al. | Aug 2016 | A1 |
20160340067 | Winkler et al. | Nov 2016 | A1 |
20170190134 | Van et al. | Jul 2017 | A1 |
20170355166 | Jonker | Dec 2017 | A1 |
20170361560 | Osterhout | Dec 2017 | A1 |
20180178476 | Pettersson et al. | Jun 2018 | A1 |
20180201465 | Osterhout | Jul 2018 | A1 |
20180265228 | Hagestedt | Sep 2018 | A1 |
20190002137 | Pettersson | Jan 2019 | A1 |
20190184670 | Davies et al. | Jun 2019 | A1 |
20190308383 | Provoost et al. | Oct 2019 | A1 |
20190308761 | Provoost et al. | Oct 2019 | A1 |
20190389611 | Pettersson | Dec 2019 | A1 |
20200031506 | Ponti | Jan 2020 | A1 |
20200101686 | Fredander et al. | Apr 2020 | A1 |
20200407087 | Pettersson | Dec 2020 | A1 |
20210001583 | Osterhout | Jan 2021 | A1 |
20210039347 | Pettersson et al. | Feb 2021 | A1 |
20210261281 | Engleman et al. | Aug 2021 | A1 |
Number | Date | Country |
---|---|---|
2164350 | May 1994 | CN |
1191833 | Sep 1998 | CN |
1366487 | Aug 2002 | CN |
1449966 | Oct 2003 | CN |
1876361 | Dec 2006 | CN |
2925862 | Jul 2007 | CN |
201941185 | Aug 2011 | CN |
201990294 | Sep 2011 | CN |
102371705 | Mar 2012 | CN |
202412794 | Sep 2012 | CN |
102753442 | Oct 2012 | CN |
102791581 | Nov 2012 | CN |
104169073 | Nov 2014 | CN |
104185538 | Dec 2014 | CN |
102941592 | Apr 2015 | CN |
104812560 | Jul 2015 | CN |
104890208 | Sep 2015 | CN |
104985868 | Oct 2015 | CN |
204773785 | Nov 2015 | CN |
204773785 | Nov 2015 | CN |
106079570 | Nov 2016 | CN |
107614253 | Jan 2018 | CN |
1082227 | May 1960 | DE |
1212854 | Mar 1966 | DE |
2700004 | Jul 1978 | DE |
2819000 | Nov 1978 | DE |
3343523 | Jun 1985 | DE |
3825506 | Feb 1990 | DE |
19541061 | Nov 1996 | DE |
10355544 | Jun 2005 | DE |
102005063193 | Jul 2007 | DE |
102008035278 | Apr 2010 | DE |
0030366 | Jun 1981 | EP |
0234228 | Sep 1987 | EP |
0359005 | Mar 1990 | EP |
650827 | May 1995 | EP |
889779 | Jan 1999 | EP |
903219 | Mar 1999 | EP |
1065162 | Jan 2001 | EP |
1223107 | Jul 2002 | EP |
1373112 | Jan 2004 | EP |
1428759 | Jun 2004 | EP |
1997736 | Dec 2008 | EP |
1497049 | Mar 2010 | EP |
2228206 | Sep 2010 | EP |
2377764 | Oct 2011 | EP |
3231594 | Oct 2017 | EP |
428967 | Sep 1911 | FR |
1020458 | Feb 1953 | FR |
1592372 | May 1970 | FR |
2280484 | Feb 1976 | FR |
2626642 | Aug 1989 | FR |
2721301 | Dec 1995 | FR |
2770445 | May 1999 | FR |
2808722 | Nov 2001 | FR |
2814393 | Mar 2002 | FR |
2976561 | Dec 2012 | FR |
0166622 | Jul 1921 | GB |
983946 | Feb 1965 | GB |
1362060 | Jul 1974 | GB |
1546789 | May 1979 | GB |
49-099239 | Sep 1974 | JP |
50-078616 | Jun 1975 | JP |
51-027619 | Mar 1976 | JP |
S5557984 | Apr 1980 | JP |
S5689937 | Jul 1981 | JP |
S59176836 | Oct 1984 | JP |
59-198243 | Nov 1984 | JP |
S61118720 | Jul 1986 | JP |
62-172032 | Oct 1987 | JP |
01-133164 | May 1989 | JP |
03-070927 | Mar 1991 | JP |
3089399 | Sep 1991 | JP |
07-156305 | Jun 1995 | JP |
H08238690 | Sep 1996 | JP |
H08333036 | Dec 1996 | JP |
2000323324 | Nov 2000 | JP |
2003079446 | Mar 2003 | JP |
2003-112849 | Apr 2003 | JP |
2004-330351 | Nov 2004 | JP |
2005067019 | Mar 2005 | JP |
2005219798 | Aug 2005 | JP |
2006289914 | Oct 2006 | JP |
2008254789 | Oct 2008 | JP |
2009-023074 | Feb 2009 | JP |
2009132049 | Jun 2009 | JP |
2010-012628 | Jan 2010 | JP |
2011520674 | Jul 2011 | JP |
2011230385 | Nov 2011 | JP |
2016-074133 | May 2016 | JP |
2015030 | Jun 1994 | RU |
2004136918 | May 2006 | RU |
2334668 | Sep 2008 | RU |
2345893 | Feb 2009 | RU |
2398674 | Sep 2010 | RU |
2014123534 | Dec 2015 | RU |
2014123562 | Dec 2015 | RU |
450829 | Aug 1987 | SE |
450829 | Aug 1987 | SE |
515630 | Sep 2001 | SE |
40025 | Dec 1934 | SU |
992220 | Jan 1983 | SU |
1054863 | Nov 1983 | SU |
1121156 | Oct 1984 | SU |
1676825 | Sep 1991 | SU |
1718783 | Mar 1992 | SU |
1756211 | Aug 1992 | SU |
199614773 | Jun 1996 | WO |
1999017923 | Apr 1999 | WO |
0021713 | Apr 2000 | WO |
0104017 | Jan 2001 | WO |
0185408 | Nov 2001 | WO |
2003089163 | Oct 2003 | WO |
0397340 | Nov 2003 | WO |
2009093936 | Jul 2009 | WO |
2010091043 | Aug 2010 | WO |
2011007237 | Jan 2011 | WO |
2011100078 | Aug 2011 | WO |
2011135433 | Nov 2011 | WO |
2012003167 | Jan 2012 | WO |
2013071073 | May 2013 | WO |
2013071080 | Jul 2013 | WO |
2013106180 | Jul 2013 | WO |
2013114057 | Aug 2013 | WO |
2014048934 | Apr 2014 | WO |
2014117816 | Aug 2014 | WO |
2014117817 | Aug 2014 | WO |
2016176271 | Nov 2016 | WO |
2017203399 | Nov 2017 | WO |
2017203401 | Nov 2017 | WO |
2017218296 | Dec 2017 | WO |
2017218297 | Dec 2017 | WO |
Entry |
---|
U.S. Appl. No. 62/447,714, filed Jan. 18, 2017, Osterhout. |
U.S. Appl. No. 15/872,770, filed Jan. 16, 2018, Osterhout. |
International Search Report and Written Opinion for PCT/US2015/67375 dated Mar. 11, 2016. |
International Search Report and Written Opinion for PCT/US18/14275 dated Apr. 4, 2018. |
International Search Report and Written Opinion for PCT/US2018/020928 dated Jun. 7, 2018. |
International Search Report and Written Opinion PCT/IB2019/052794 dated Jun. 19, 2019. |
International Search Report and Written Opinion for PCT/US2019/038142 dated Aug. 2, 2019. |
International Search Report and Written Opinion PCT/IB2019/052793 dated Nov. 11, 2019. |
International Search Report and Written Opinion for PCT/US2019/049102 dated Dec. 2, 2019. |
International Search Report and Written Opinion for PCT/US19/62696 dated Feb. 4, 2020. |
U.S. Appl. No. 13/805,602, Mar. 21, 2016, Notice of Allowance. |
U.S. Appl. No. 14/370,729, May 21, 2018, Notice of Allowance. |
U.S. Appl. No. 15/901,089, Apr. 13, 2020, Office Action. |
U.S. Appl. No. 14/970,224, May 30, 2018, Office Action. |
U.S. Appl. No. 14/970,224, Aug. 13, 2018, Notice of Allowance. |
U.S. Appl. No. 16/109,261, Apr. 28, 2020, Office Action. |
U.S. Appl. No. 15/616,688, Mar. 19, 2020, Office Action. |
U.S. Appl. No. 15/872,770, Mar. 27, 2020, OfifceAction. |
International Search Report and Written Opinion for application No. PCT/US2010/022983 dated Apr. 13, 2010. |
International Search Report and Wirtten Opinion for application No. PCT/US2012/070719 dated Feb. 25, 2013. |
International Search Report and Written Opininon for application No. PCT/US2017/036606 dated Oct. 24, 2017. |
International Search Report for PCT/US2011/042096 dated Oct. 28, 2011. |
European Search Report for EP10739040 dated Jan. 31, 2013. |
European Search Report for EP80107577.1 dated Mar. 2, 1981. |
European Search Report for EP89115688.7 dated Nov. 2, 1989. |
International Search Report and Written Opinion for PCT/US2012/064414 dated Jan. 25, 2013. |
International Search Report and Written Opinion for PCT/US2012/064403 dated Apr. 8, 2013. |
European Search Report for EP12848321 dated Jul. 1, 2015. |
European Search Report for EP12865028 dated Jul. 7, 2015. |
European Search Report for EP16169030 dated Dec. 16, 2016, dated Jan. 5, 2017. |
European Search Report for application No. EP17175751 dated Aug. 25, 2017. |
Japanese Office Action for application No. 2017-000038 dated Sep. 22, 2017. |
U.S. Appl. No. 13/147,787, Aug. 27, 2014, Office Action. |
U.S. Appl. No. 13/147,787, Apr. 17, 2015, Final Office Action. |
U.S. Appl. No. 13/147,787, Sep. 30, 2015, Office Action. |
U.S. Appl. No. 13/147,787, Feb. 16, 2016, Final Office Action. |
U.S. Appl. No. 13/147,787, Oct. 28, 2016, Office Action. |
U.S. Appl. No. 13/147,787, Mar. 7, 2017, Final Office Action. |
U.S. Appl. No. 13/147,787, Jun. 26, 2017, Notice of Allowance. |
U.S. Appl. No. 13/805,602, Dec. 2, 2015, Office Action. |
U.S. Appl. No. 14/357,183, Jul. 16, 2015, Office Action. |
U.S. Appl. No. 14/357,183, Nov. 12, 2015, Final Office Action. |
U.S. Appl. No. 14/357,183, Jan. 29, 2016, Notice of Allowance. |
U.S. Appl. No. 14/357,190, Feb. 17, 2017, Office Action. |
U.S. Appl. No. 14/357,190, Aug. 1, 2017, Final Office Action. |
U.S. Appl. No. 14/357,190, Dec. 5, 2017, Notice of Allowance. |
U.S. Appl. No. 14/357,190, Jan. 12, 2018, Notice of Allowance. |
U.S. Appl. No. 14/370,729, Jan. 26, 2017, Office Action. |
U.S. Appl. No. 14/370,729, Jul. 12, 2017, Final Office Action. |
U.S. Appl. No. 14/370,729, Dec. 19, 2017, Office Action. |
U.S. Appl. No. 29/419,922, Aug. 6, 2013, Office Action. |
U.S. Appl. No. 29/419,922, Nov. 29, 2013, Notice of Allowance. |
International Search Report and Written Opinion, European International Search Authority, completed Sep. 28, 2017 completed, PCT/US2017/036603. |
Final Office Action received for U.S. Appl. No. 13/147,787 dated Apr. 17, 2015. |
Final Office Action received for U.S. Appl. No. 13/147,787 dated Feb. 16, 2016. |
Final Office Action received for U.S. Appl. No. 13/147,787 dated Mar. 7, 2017. |
Final Office Action received for U.S. Appl. No. 14/357,183 dated Nov. 12, 2015. |
Final Office Action received for U.S. Appl. No. 14/357,190 dated Aug. 1, 2017. |
International Search Report and Written Opinion for application No. PCT/US2017/036603 dated Oct. 18, 2017. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/049535, dated Jun. 9, 2020, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/012519, dated Jun. 26, 2020, 20 pages. |
International Search Report and Written Opinion, PCT/US2012/064414, US Search Authority, Completed Jan. 4, 2013, dated Jan. 25, 2013. |
Notification Concerning Transmittal of International Preliminary Report on Patentability for corresponding PCT Application No. PCT/IB2015/054179, dated Dec. 15, 2016, 10 pages. |
Office Action received for U.S. Appl. No. 13/147,787 dated Aug. 27, 2014. |
Office Action received for U.S. Appl. No. 13/147,787 dated Oct. 28, 2016. |
Office Action received for U.S. Appl. No. 13/147,787 dated Sep. 30, 2015. |
Office Action received for U.S. Appl. No. 13/805,602 dated Dec. 2, 2015. |
Office Action received for U.S. Appl. No. 14/357,183 dated Jul. 16, 2015. |
Office Action received for U.S. Appl. No. 14/357,190 dated Feb. 17, 2017. |
Office Action received for U.S. Appl. No. 14/370,729 dated Dec. 19, 2017. |
Office Action received for U.S. Appl. No. 29/419,922 dated Aug. 6, 2013. |
U. S. Patent Application mailed on Dec. 14, 2018, filed by Pettersson et al., U.S. Appl. No. 16/310,406. |
Final Office Action received for U.S. Appl. No. 15/872,770, dated Sep. 16, 2020, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/872,770, dated Nov. 10, 2020, 24 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2019/038142, dated Dec. 30, 2020, 8 pages. |
International Search Report and Written Opinion for corresponding PCT Application No. PCT/IB2015/054179, dated Aug. 28, 2015, 13 pages. |
International Search Report and Written Opinion issued in PCT/US2018/032311 dated Sep. 20, 2018. |
U.S. Appl. No. 16/435,252, filed Jun. 7, 2019. |
Non-Final Office Action received for U.S. Appl. No. 16/375,579, dated Feb. 18, 2021, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/375,588, dated Jul. 2, 2021, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/619,818, dated Aug. 31, 2021, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20190329513 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
62351127 | Jun 2016 | US | |
62425457 | Nov 2016 | US |