Bag-in-box dispensers provide a user access to dispense liquid product (e.g., soap, oil, cleaner, wine, etc.) from a bag that is held within a box. In some cases, a user accesses a dispensing tap (e.g., opening, nozzle, valve, etc.) on the bag (often extending through a hole in the box) to dispense liquid from the bag, while the majority of the bag is stored within the box. Conventional box designs for bag-in-box dispensers include a corrugated box that is designed to be shipped on a pallet in an upright orientation (e.g., with other like boxes/product). Then, each bag-in-box product is taken off the pallet for use and/or stocking on a shelf for sale. Notably, shipping and handling under such circumstances puts predictable and largely unidirectional stress on the box such that box designs can afford to be limited while still maintaining the box and bag stored inside in working order through distribution to the final destination. For example, the strength characteristics for the box can be designed with the knowledge that the box will only be shipped in the upright orientation.
Embodiments of the present invention are directed to corrugated box designs that are designed to withstand the individual e-commerce shipping environment, which includes the same shipping and handling that occurs for other types of boxes in this environment (e.g., throwing the boxes, dropping the boxes in all orientations, vibration within a transport vehicle with weight stacked on top). Importantly, in the individual e-commerce shipping environment, there is no predictable orientation for the box design, and all of the above (and other) circumstances occur in all orientations. Thus, while prior box designs for bag-in-box dispensers could predict their orientation (e.g., upright) and had the benefit of relatively safe/professional handling and transfer, the present invention takes into account all of those uncertainties and likely occurrences to still deliver an intact box to the final destination.
For bag-in-box products, it is very important to keep the box (and any perforations) intact during shipping because otherwise the liquid product in the bag may spill out if the bag breaks, rips, or tears, as the bag is more susceptible to breaking and/or leaking if the box is compromised/weakened. That situation is of extra concern because spilled liquid can cause significant damage to other boxes or transportation equipment (e.g., trucks, conveyors, warehouse flooring, etc.) during shipping and is difficult to clean (e.g., in comparison to non-liquid products being shipped). In this regard, the box designs of the present invention are engineered to withstand and pass various standardized distribution sequences that are specifically designed to replicate harsh conditions that a box goes through during individual e-commerce shipping (e.g., through various known consumer-based shipping services). Such example safety test standards include the International Safe Transit Association (ISTA) test standards, including the Ship In Own Container (SIOC) test protocols. In such a regard, the resulting box designs of the present invention are the product of significant testing, as many other designs were disregarded after failing such tests.
Embodiments of the present invention provide example box designs for safely and successfully transporting a bag of liquid and still enabling conversion into a bag-in-box dispenser, where the bag-in-box dispenser is designed to enable dispensing of the liquid product therefrom, such as through a dispensing tap that extends through the front wall of the box. For example, a user may be able to activate the dispensing tap (e.g., press on a lever—though other types of dispensing taps are contemplated) to cause liquid to flow out of the bag. Such example liquid includes wine, juice, coffee, among other liquids that can be dispensed. Notably, the various box designs described herein are designed to hold a bag of liquid with volume ranging from 2 liters to 10 liters (though other ranges are contemplated) and/or a weight ranging from approximately 5 lbs. to 25 lbs. (though other ranges are contemplated). In some embodiments, such box designs may utilize a regular slotted container (RSC), although embodiments of the present invention are not meant to be limited to such a box design. In this regard, notably, embodiments of the present invention provide a box design with various features that are designed to aid in safe transport of the stored bag, while still providing for the conversion into a useful bag-in-box dispenser at the point of intended product usage.
To achieve such a goal, some embodiments of the present invention provide a system that includes a box and an insert. The box includes a perforation feature on a front wall, where a bottom of the perforation feature is spaced apart from the bottom of the box. The perforation feature is removable and/or movable with respect to the front wall so as to enable a dispensing tap of the bag stored inside to extend past or through the front wall of the box when the box is converted into the bag-in-box dispenser. The insert includes a top surface and defines a height such that, when it is positioned inside the box, the top surface supports the stored bag and positions the bottom of the bag at a vertical position that is proximate to the bottom of the perforation feature. In this regard, the bag-in-box dispenser can benefit from gravity to help full removal of the liquid contents from the bag (as the dispensing tap is at or near the lowest point of the bag) and is configured to limit the occurrence of the dispensing tap from being dispensed prematurely due to incidental pressure—also known as “burping” in the bag dispensing industry. Notably, upon arrival at the final destination, a user may remove/move the perforation feature and arrange the dispensing tap through the front wall so as to convert the box into the bag-in-box dispenser with the dispensing tap available for use. Various additional features, such as a finger openings in the insert and positioning of a side flange, among others described herein, are contemplated for some embodiments, and may aid in providing safe transport of the stored bag, while still providing for easy conversion into a useful bag-in-box dispenser upon arrival at the final destination.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
Some example embodiments now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all example embodiments are shown. Indeed, the examples described and pictured herein should not be construed as being limiting as to the scope, applicability or configuration of the present disclosure. Rather, these example embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like reference numerals refer to like elements throughout.
Notably, while some embodiments describe various positional qualifiers for various features, such as “top”, “bottom”, “front”, “back”, “side”, etc. embodiments described herein are not meant to be limited to such qualifiers unless otherwise stated. Along these lines, and as an example, the “top” is also contemplated to be a “bottom” depending on the box design/orientation or a “front” wall may be a “side” wall depending on the box design/orientation. The directional qualifiers herein are generally used to aid in describing the invention in the context of the drawings and/or description but are not otherwise intended to be limiting.
While some embodiments describe a “user”, use of such a term herein is not meant to be limited to a person or a single person, as the “user” may be an end user, a consumer, a manufacturer, among other types of users along a supply chain in relation to the box design. Further, when utilizing the word “user”, the actor(s) may be operating one or more machines/system that cause the intended function (e.g., forming the box or converting the box to a bag-in-box dispenser).
Various example embodiments of the present invention provide example box designs for safely shipping a bag of liquid and still enabling conversion into a bag-in-box dispenser from the shipped box, where the bag-in-box dispenser is designed to enable dispensing of the liquid product therefrom, such as through a dispensing tap that extends through the front wall of the box. For example, a user may be able to activate the dispensing tap (e.g., press on a lever—though other types of dispensing taps are contemplated) to cause liquid to flow out of the bag. For example, various box designs described herein are designed to hold a bag of liquid with volume ranging from 2 liters to 10 liters (though other ranges are contemplated) and/or a weight ranging from approximately 5 lbs. to 25 lbs. (though other ranges are contemplated). Some examples of possible liquids that may be shipped in such quantity include wine, juice, or any type of liquid that would benefit from being dispensed from the bag-in-box dispenser. Along these lines the term “liquid” used herein may refer to any type of substance in liquid state (e.g., fluid, creams, lotions, gels, water, etc.).
In some embodiments, such box designs may utilize a regular slotted container (RSC), although embodiments of the present invention are not meant to be limited to such a box design. Other example box designs include telescoping half-slotted containers, wraparounds, overlapping slotted containers, die-cut containers, among others. Various embodiments described herein provide one or more features that alone or in combination with each other provide a suitable box design for providing safe transport of the stored bag, while still providing for easy conversion into a useful bag-in-box dispenser upon arrival at the final destination.
Notably, example box designs of the present invention are designed to withstand and pass various laboratory distribution tests that are specifically designed to replicate harsh conditions a box goes through during individual e-commerce shipping (e.g., through various known shipping services). Such example safety test standards include the International Safe Transit Association (ISTA) test standards which includes Ship In Own Container (SIOC) test standards, such as the ISTA Series 6-Amazon.com-SIOC test protocol (i.e., the ISTA Series 6-Amazon.com-SIOC test for 2018, with a version date with a last technical change in March 2018 and a last editorial change in March 2018—where further details are available at www.ista.org). Based on the packaging weight and/or girth, the box may need to undergo an appropriate Type test (e.g., Type A for under 50 lbs. or Type B for over 50 lbs.). For example, the test standards require that the box be packaged as planned to be shipped and be put through a testing protocol that includes numerous drops from various heights with the box falling on different sides (e.g., walls, faces) and edges. This simulates possible drops that may occur during handling by shipping personnel. Next, the same box undergoes vibration testing that includes prolonged vibration (e.g., for 2.5 hours, although other durations are contemplated) with weight placed on top of the box—again at specified orientations (often required to be on the “weakest” face, e.g., an orientation which the corrugated flutes are not vertically oriented relative to the applied compression forces). This simulates travel within a transport vehicle (e.g., an airplane, train, truck, van, etc.) with other boxes being stacked on top of it. Finally, the same box then goes through more drops of varying height and on varying sides, corners, or edges, with one of the last drops being at a greater height and on the “weakest” side or edge. This once again simulates possible drops that may occur during handling by shipping personnel. Depending on the desired outcome, the box may need to pass certain test criteria in order to pass the tests. Notably, the ISTA Series 6-Amazon.com-SIOC test protocol acceptance criteria includes (i) the product is fully functional in its intended use, (ii) there are no leaks, (iii) any tamper evidence application is not compromised (e.g., seal integrity is intact), and (iv) any secondary packaging that is considered part of the product is free from serious damage/indentations/scratching.
The box may be designed to pass the ISTA Series 6-Amazon.com-SIOC test protocol or other shipping test protocol (e.g., to be able to ship using individual shipping options—such as the mail, truck delivery, etc.), and also maintain certain form standards that enable it to be converted into the bag-in-box dispenser upon reaching its final destination. In this regard, the box should survive (e.g., withstand) the entire test process while maintaining a desired form such that the flaps and any perforation features are intact, and with the bag maintained within the box without liquid spilling/leaking therefrom, such that the box may be converted into a functioning bag-in-box dispenser as intended. In some embodiments, the box may be considered to maintain a desired form even with some flexing, but without an undesirable degree of bulging, such as may include significant changes in the shape of the box to limit its function (e.g., cause perforations to tear or release prematurely, cause flaps to tear or open, cause adhesive joints to fail or open prematurely, cause the box to no longer fit in a designated spot at the final destination (e.g., in a storage rack or storage position) or be suitable for stacking or supporting additional loads (e.g., on top of the box), prevent full evacuation of the liquid in the bag, cause decreased overall rigidity or integrity of the box to hinder transportation or manipulation of the box). In such a regard, the resulting box designs of the present invention are the product of significant testing, as many other designs were disregarded after failing such tests.
An example system including a corrugated box 10 and an insert 40 that accomplishes such advantages, including passing the above noted test standards, is shown in
With further reference to
Returning to
With reference to
The insert 40, like the box 10, is formed of corrugated web product. The top surface 42 of the folded insert 40, with reference to
In this regard, in the illustrated embodiment, the insert 40 is designed to be formed by folding down at least one flap 44a-d such that it extends downwardly from the top surface 42, such as perpendicularly so as to allow the top surface 42 to be positioned above the flap(s) when installed within the opening 13 of the box 10. For example, with reference to
In some embodiments, the insert 40 may be designed such that, when formed and installed within the opening 13 of the box 10, the top surface 42 is angled, such as downwardly toward the perforation feature 50. This may, as described further herein, help encourage full removal of the contents of the bag that is resting on the top surface 42 by utilizing gravity to encourage the liquid to flow toward the dispensing tap (which is positioned through at least a portion of the now removed perforation feature 50). In order to accomplish the angled surface, in some embodiments, the front flap 44a may define a smaller length (e.g., measured from the front edge 49a of front flap 44a to the back edge 42a (e.g., fold line)) than the back flap 44c (e.g., measured from the front edge 49c of back flap 44c to the back edge 42c (e.g., fold line) such that when the front flap 44a and the back flap 44c are folded underneath the top surface 42 and the insert 40 is positioned within the opening 13 of the box 10, the greater length of the back flap 44c causes the back of the top surface 42 to sit at a vertical position higher within the box 10 than the front of the top surface 42 (as the front flap 44a is shorter). In some such embodiments, there may be no side flaps 44b, 44d or the side flaps 44b, 44d may define different lengths along their width, such that a portion of one or more of the side flaps 44a, 44d closer to the back flap 44c is longer than a portion closer to the front flap 44a. Such an embodiment may ensure that there is greater surface area of the edges of the side flaps that rest on the bottom of the box—thereby providing additional support for the bag.
Although the illustrated embodiment utilizes flaps that fold downwardly from the top surface 42 to enable the top surface 42 to be positioned at the desired height, other structures or ways to obtain the desired height are contemplated, such as forming another box (e.g., a regular slotted container, an upside-down half-slotted container, among others) to be inserted into the bottom of box 10 or assembling multiple distinct structures (e.g., a top surface 42 may be positioned on top of another structure that positions the top surface 42 at the desired height).
With reference back to
In some embodiments, the perforation feature 50 is defined by at least one series of perforations and is removable and/or movable with respect to the front wall to enable a dispensing tap of the bag stored in the box to be positioned into a dispensing position. In this regard, a benefit of the perforation feature 50 is that it facilitates removal of a portion of the box 10 to allow a user to access a dispensing tap 92 (e.g., opening, nozzle, valve, etc.) on the bag 90 that is held within the box 10 and enable repositioning of the dispensing tap 92 to a dispensing position, such as at least partially extending outside of the box 10 (and, thus, accessible by a user for dispensing the liquid from the bag).
In the illustrated embodiment, the perforation feature 50 comprises a first portion 52 and a second portion 54. Each of the first portion 52 and the second portion 54 is defined by at least one line of perforations 53, 55, respectively. The first portion 52 is defined by a continuous circle of perforations 53 and is removable from a remainder of the front wall 12. The first portion 52 defines a shape that corresponds to a portion 91 of the dispensing tap 92 such that a hole 57 in the front wall 12 formed by removal of the first portion 52 holds the dispensing tap 92 in position when the box 10 is converted into the bag-in-box dispenser (reference
With reference to
As noted herein and with reference to
Notably, in some embodiments, the height of the insert (indicated by H2) may correspond to the first vertical distance (H1) such that, when the insert 40 is positioned within the box 10, the top surface 42 is proximate to the bottom 93 of the perforation feature 50 (and will, thus, be proximate the bottom of the dispensing tap 92 after conversion of the box 10 into the bag-in-box dispenser). This is illustrated by the visual comparison of the height (H2) of the insert 40 in comparison to the first vertical distance (H1) and the relative vertical position of the dispensing tap 92 after being positioned into the dispensing position (illustrated with the line L that is shown in both
In this regard, in some embodiments, when the insert 40 is positioned within the box 10 and resting on an interior surface of the bottom of the box 10 (e.g., such that edges 49a-d rest on the interior surface of the bottom of the box 10), the top surface 42 of the insert 40 is positioned within a second vertical distance from the bottom 93 of the perforation feature 50. In some embodiments, the second vertical distance is approximately the difference between the first vertical distance H1 and the height H2 of the insert 40. Said differently, in some embodiments, the second vertical distance is the distance between the top surface 42 of the insert 40 and the bottom 93 of the perforation feature 50. Notably, in some embodiments, the first vertical distance is greater than the second vertical distance such that the top surface 42 is close to the bottom 93 of the perforation feature 50 (e.g., the bottom 93 of the first portion 52 of the perforation feature 50, such as corresponding to the planned position of the dispensing tap 92 once the box 10 is converted into the bag-in-box dispenser). As an example, in some embodiments, the second vertical distance is 2 inches such that the top surface 42 of the insert 40 is within 2 inches of the bottom 93 of the perforation feature 50. In some embodiments, the top surface 42 of the insert 40 is positioned at a vertical point such that, when the dispensing tap 92 is in the dispensing position, the dispensing tap 92 is aligned with the bottom of the bag. Notably, such example bag-in-box dispensers can benefit from gravity to help full removal of the liquid contents from the bag (as the dispensing tap is at or near the lowest point of the bag) and are configured to limit the occurrence of the dispensing tap from being dispensed prematurely due to incidental pressure—also known as “burping” in the bag dispensing industry.
In some embodiments, the top surface 42 of the insert 40 may include one or more installation features to aid in installation of the insert 40 into the opening 13 of the box 10. For example, the top surface 42 of the insert may include one or more circular/partially circular scores to create finger openings 46 that are each shaped to receive a finger of a user (or a portion of a machine) so as to enable the user (or machine) to position the insert 40 within the opening 13 of the box 10.
In some embodiments, the box 10 may include one or more installation guides that are provided to guide or force a specific orientation or position of the insert 40 therein. For example, the box 10 may include one or more tabs or protrusions that work with the shape of the insert 40 to force installation of the insert 40 in a specific manner. In some embodiments, the installation guides may be printed images or instructions (e.g., arrows, etc.) that aid a user in proper installation of the insert 40. In this regard, the installation guides (whether physical or visual) may help ensure proper positioning of the insert 40, such as may be beneficial if the top surface 42 is angled toward a front flap (such as described herein) so as to ensure that the user installs the insert 40 with the front flap adjacent the front wall 12 (and the perforation feature 50).
In some embodiments, the box 10 (or portions thereof) and/or insert 40 (or portions thereof) may be formed of single-walled corrugate. However, in some embodiments, the box 10 (or portions thereof) and/or insert 40 (or portions thereof) may be formed of double-walled corrugate to add strength thereto, such as may be beneficial for individual box shipping and/or passing the test standards noted herein. In some embodiments, the box 10 (or portions thereof) and/or insert 40 (or portions thereof) may be formed of additional layers of corrugate (e.g., triple-walled corrugate, or more), such as may be beneficial for further increased strength. In some embodiments, the box 10 (or portions thereof) and/or insert 40 (or portions thereof) may be formed of other types of material, such as cartonboard, microflute corrugate, etc.
Embodiments of the present invention provide methods and systems for forming a box, shipping the box with a bag stored therein, and converting the box into the bag-in-box dispenser, according to various embodiments described herein. In this regard, associated systems and methods for manufacturing, shipping, and forming example box designs and converting into corresponding bag-in-box dispensers described herein are contemplated by some embodiments of the present invention. Such systems and methods may include various machines and devices, including for example box forming devices (e.g., for folding, gluing, and/or taping boxes, among other things) and/or corrugators. In this regard, known corrugators utilize web product (e.g., liner) and flute medium to form corrugated web product (which may be formed into any number of layered corrugate, such as conventional corrugate (liner, flute medium, liner) or double-walled corrugate (liner, flute medium, liner, flute medium, and liner)). The formed corrugated web product may then be cut (e.g., scored, sliced, perforated, etc.) as needed to form a box blank of the desired box (e.g., any of the box designs described herein). An example corrugator is further described in U.S. Publication No. 2019/0016081, which was filed Jul. 12, 2018, and entitled “Controls for Paper, Sheet, and Box Manufacturing Systems”, the contents of which is incorporated by reference herein in its entirety.
Various examples of the operations performed in accordance with some embodiments of the present invention will now be provided with reference to
Operation 202 may comprise forming the corrugated web product, and operation 204 may comprise forming the box blank, such as may include both the box flat 10 and the insert 40. As noted above, such operations may be performed by various known machines/devices, such as a corrugator.
Operation 206 may comprise erecting (e.g., forming) the box 10 with open top, such as by gluing/folding some panels of the box 10 while leaving the top open, which may occur using a box forming machine and/or via a user. Similarly, operation 208 may comprise forming the insert, which may also occur using a box forming machine and/or via a user. Operation 210 may include inserting the insert into the opening of the box, and operation 212 may include inserting the bag of liquid into the box and on the top surface of the insert, and forming the completed box with stored bag therein by closing the top of the box. This may be completed by a machine/device and/or via a user.
Operation 214 may comprise shipping the box with stored bag therein, such as using individual box shipping means described herein. Then, such as upon arrival at the final destination, operation 216 may comprise converting the box into the bag-in-box dispenser, such as described further herein. This may be performed using a machine/device and/or via a user.
Many modifications and other embodiments of the inventions set forth herein may come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the embodiments of the invention are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the invention. Moreover, although the foregoing descriptions and the associated drawings describe example embodiments in the context of certain example combinations of elements and/or functions, it should be appreciated that different combinations of elements and/or functions may be provided by alternative embodiments without departing from the scope of the invention. In this regard, for example, different combinations of elements and/or functions than those explicitly described above are also contemplated within the scope of the invention. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Date | Country | |
---|---|---|---|
62886087 | Aug 2019 | US |