Embodiments of the present invention relate broadly to a method of construction and design of members of load bearing and braced frames and their connections to enhance and provide for high resistance and ductile behavior of the frames when subjected to loading such as gravity, seismic, and wind loading. More specifically, embodiments of the present invention relate to the design and construction of structural frame members and their connections that use gusset plates to join the beams and columns to the lateral load carrying frame brace members. Embodiments of the present invention may be used, but not necessarily exclusively used, in steel frame buildings, in new construction as well as modification of existing structures.
In the construction of modern structures such as buildings and bridges, braced frames including beams, columns, and frame braces are arranged and fastened or joined together, using known engineering principles and practices to form a skeletal load resisting framework of the structure. The arrangement of the beams, also known as girders, columns, and braces and their connections are designed to ensure the framework can support the gravity and lateral loads contemplated for the intended use of the bridge, building or other structure. Making appropriate engineering assessments of loads and how these loads are resisted represents current design methodology. These assessments are compounded in complexity when considering loads for wind and seismic events, and determining the forces, stresses, and strains. It is well known that during an earthquake, the dynamic horizontal and vertical inertia loads and stresses and strains imposed on a structure have the greatest impact on the connections of the beams, columns, and braces which constitute the seismic damage resistant frame. Under high seismic or wind loading or even from repeated exposure to milder loadings, the connections in the structure may fail, possibly resulting in the collapse of the structure and the loss of life.
The beams and columns are typically, but not limited to, conventional rolled or built up steel I-beams, also known as W sections or wide flange sections, or box sections also known as tube sections. The frame brace members may have similar shapes as the beams and columns but may also be single or double angles or channels or tubular or tee shaped members. The beams, columns and braces are usually joined using what is known in the structural engineering profession as gusset plates. The presence of these gusset plates, which may be typically either bolted or welded to the joined members, causes the structure members to be rigidly joined so that the structural frame becomes, in essence, a braced-moment frame which results in unintentional overloading of the frame members (Richard 1986). Results of full scale tests conducted by Tsai et al. (2003), Lopez et al (2002, 2004), Gross (1990), and Roeder et al. (2004) demonstrate that stiff beam-column-brace connections attract large force and moment demands, which can lead to high moments and shears in the beams and columns. These unintentional high moments and shears in the joined members of the braced frame can result in premature fracture modes of the structural members when the frame is subjected to the design gravity, seismic, and wind loadings because these forces are not considered in the frame design. Evaluation of the full scale tests by Walters et al (2004) have shown that in conventionally designed braced frames, the moment frame action caused by the unintentional and undesirable beam and column moments and shears alone will provide a large part of the braced frame's resistance to lateral loads.
As previously stated, in conventionally braced frame designs, moment frame action caused by the gusset plates result in unintentional and undesirable moments and shears in the beams and columns. This can lead to fractures in the beam and column flanges and/or webs when the frame is subjected to lateral seismic or wind loading. Conventionally braced frame designs resist lateral load in a combination of braced frame action and moment frame action.
In the current practice of braced frame design, the beam-to-column connection at the brace gusset is normally a rigid welded and/or bolted assembly to the beam and column which creates a stiff moment resisting connection that generates moments and shears in the braced frame that are not accounted for in the braced frame design rationale. Both analytical studies and full scale tests have demonstrated the drift or displacement related joint rotation can result in the following potentially serious structural effects on the components of the braced frame: (1) a pinching or an in-plane crushing effect of the gusset plate which can lead to the buckling of the gusset plate; (2) overload of the welds and/or bolts of the gusset plate connections to the beam and column caused by the buckling of the gusset plate; (3) yielding and/or fracture of the beam and column flanges and/or webs due to high moments and shears in these components due to moment frame action that is not accounted for in conventional braced frame design rationale; and (4) unintended moment frame action that resists a large portion of the braced frame lateral loads rather than braces. This moment frame action is typically not accounted for in the design of the braced frame so that the force distribution in the braced frame is significantly different than the assumed design forces.
The object and advantage of the embodiments of the invention will become more readily apparent to those of ordinary skill in the art after reviewing the following detailed description and accompanying documents wherein:
An embodiment of the present invention provides a new and improved beam-to-column-to-brace connection, which includes a gusset plate, that reduces the bending moments and shears in the beams and columns of conventionally joined braced frames when the structural framework may be subjected to gravity and lateral loads such as those caused by wind and seismic loadings. The improved connection may extend the useful life of new braced framed structures, as well as that of braced frames in existing structures when incorporated into a retrofit modification for existing structures
The moments and shears in the beams and columns may be reduced by two ways. First, a flexure mechanism may be provided to transfer the horizontal forces in the gusset plate to the beam. Second, a shear plate may be provided to bolt the beam web to the column flange connection such that the shear plate includes horizontally slotted holes.
The flexure mechanism may include either (1) a beam web slot under the gusset plate that separates the beam flange from the beam web or (2) a flexure plate or double framing angles assembly using spacer plates that transfers the gusset plate forces to the beam flange. These flexure mechanisms essentially may eliminate the pinching frame action that leads to buckling and collapse of the gusset plate. The flexure mechanisms also may reduce the moments and shears in the column.
A shear plate with horizontally slotted holes to connect and bolt the beam web to the column may eliminate the connection moment caused by the horizontal bolt forces in the beam web and the horizontal force in the gusset plate to column connection.
In one embodiment according to the invention, the structural frames resist lateral loads in a truss-like action consistent with braced frame design rationale which differs from conventionally braced frame designs as explained above. Conventionally braced frame designs resist lateral load in a combination of braced frame action and moment frame action.
Embodiments of the invention may reduce the stresses and strains in the joined members caused by moment frame action when the braced frame is subjected to lateral loadings such as wind or seismic events; may reduce or eliminate the undesirable effects of the kinematic end rotation of the brace and thereby improve the performance of the brace in resisting the braced frame lateral load; and/or may limit the forces in the beams and columns of the braced frame to primarily axial forces when the braced frame is subjected to lateral loadings, such as wind or seismic events.
Additional embodiments of the invention may limit the forces in the beams and columns of the braced frame to primarily axial forces to prevent damage to these components when the braced frame is subjected to lateral loadings such as wind or seismic events; may allow for joint rotations in the braced frame which reduces the moments and shears in the members of the braced frame; may either reduce or eliminate the need for beam web stiffeners in the proximity of the gusset plate; and/or may eliminate the need for horizontal and/or vertical stiffeners on the gusset plate.
Embodiments of the invention may prevent damage to the braced frame beams and columns when the braced frame is subjected to seismic loading by keeping the beams and columns essentially elastic and allowing only the braces to be stressed to their yield loads; may reduce the residue displacements in the braced frame after the frame has been subject to seismic forces; may reduce the size of the gusset plates that are required in conventionally designed braced systems; and/or may move the working point in conventionally braced frames from the intersection of the centerlines of the beam and column to the intersection of the beam and column flange thereby reducing the size of the gusset plate.
The embodiments of the invention may reduce the rigidity of the welded and/or bolted gusset plate connection assembly. A reduction in rigidity may eliminate or significantly reduce the moments and shears in the beam, column, and brace when the braced frame is subjected to lateral drift or displacement. Such lateral drift may be due to wind or seismic loading. To this end, the embodiments of the invention may provide for a hinging or flexure mechanism in the beam or in the gusset plate to beam connection.
The effect of the hinging or flexure mechanism may create a large reduction in the beam and column moments which essentially may eliminate the moment frame action in the braced structural frame. The hinging or flexure mechanism may also reduce the moment and shears in the brace and also may allow the gusset plate to rotate with the drift of the frame and thereby may reduce the tendency for the gusset plate to buckle or collapse. Gusset plate buckling may result in the fracture of the gusset plate connection to the beam and/or column. Moreover, the hinging or flexural mechanism may reduce the possibility of unintentional large moments and shears in the columns could result in the development of plastic hinges in the columns of the braced frame.
Embodiments of the invention may also provide for the braces to absorb or dissipate substantial amounts of energy when the frame may be subjected to lateral loads such as seismic and wind loads. The braces, which may react most effectively in a uniaxial state of stress, may provide for efficient use of material thereby achieving a robust structural system. Additionally, the lateral force resisting elements of the braced frame may be economically and expeditiously restored by replacing flexural elements and the braces if damaged by lateral wind or seismic loading.
Referring to
The gusset plate 300 may be coupled to the first column flange 101 of the column 100. The gusset plate 300 and first column flange 101 may be coupled by a weld connection. The gusset plate 300 may be coupled to the first beam flange 201 of the beam 200 by a weld connection. Conventional stiffeners 302, 304 may be welded to the edges of the gusset plate 300 to provide extra strength to the framework. A vertical beam stiffener 207 may be welded to the beam web 204 to provide reinforcement.
The beam 200 may be joined to the column 100 via a shear plate 400. A space L may be provided between the first column flange 201 and the beam web 204. The shear plate 400 may connect to the beam web 204 and to the first column flange 101. The shear plate 400 may be coupled to the first column flange 101 via a shop weld connection. The shear plate may also include round holes 412 to receive bolts to make the connection.
Structural analysis shows that when a structural framework such as the framework depicted in
The beam 200 may be connected to the column 100 via a shear plate 400 connection. The beam web 204 may be bolted to the shear plate 400 and the shear plate 400 may be welded to the first column flange 101. The shear plate may have long slotted holes 402 that are able to receive bolts. The bolts may also have a snug tight fit to allow for a semi-rigid connection. The long slotted holes with the snug tight bolts allow the structural frame to have more elasticity and allow the connections to be less rigid than conventional connections. The long slotted holes 402 in the shear plate 400 restrict the bolts to resisting only vertical loads.
As depicted in
As in
The analysis in
A total lateral force of 664677 pounds was calculated to cause the lateral displacement of 2.4 inches. The frame brace members experience a horizontal force component of 263639 pounds in tension and −285430 pounds in compression. Therefore, the total force resisted by the frame brace members is 549069 pounds (263639 lbs.+285430 lbs.=549069 lbs.). The force of 549069 lbs. represents 82.6% of the total lateral force of 664677 pounds calculated for the 2% drift (549069/664677=0.826). This means that the frame brace members resist 82.6% of the lateral load. The rest of the load is exerted on the beams and the columns (664677−549069=115608 lbs). This represents that merely 17.4% of the total lateral load is resisted by the beams and the columns (115608/664677=0.174).
Typically, in braced frames of the type shown in
The results of the experiment and graph show that the flex plate design is a flexible semi-rigid connection. It allows the gusset plate and the frame brace members to deform plastically while allowing the beams and the columns to elastically deform under a given load. Such result may allow the columns and beams to maintain their structural integrity and allow for easy replacement of the plastically deformed brace frame members and gusset plates.
This application claims the benefit of provisional patent application No. 61/006,188, filed on Dec. 28, 2007, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4409765 | Pall | Oct 1983 | A |
4441289 | Ikuo et al. | Apr 1984 | A |
5680738 | Allen et al. | Oct 1997 | A |
6022165 | Lin | Feb 2000 | A |
6237303 | Allen et al. | May 2001 | B1 |
6516583 | Houghton | Feb 2003 | B1 |
6591573 | Houghton | Jul 2003 | B2 |
6993880 | Cameron et al. | Feb 2006 | B2 |
7047695 | Allen et al. | May 2006 | B2 |
7076926 | Kasai et al. | Jul 2006 | B2 |
7225588 | Nakamura et al. | Jun 2007 | B2 |
7784226 | Ichikawa et al. | Aug 2010 | B2 |
20030009977 | Houghton | Jan 2003 | A1 |
Entry |
---|
Tsai, K.C., Yuan-Tao Weng, Min-Lang Lin, Chui-Hsin Chen, Juin-Wei Lai, and Po-Chien Hsiao (2003), “Pseudo Dynamic Tests of a Full-Scale CFT/BRB Composite Frame: Displacement Based Seismic Design and Response Evaluations, ”Proceedings of the Joint NCREE/JRC Workshop on International Collaboration on Earthquake Mitigation Research, Tapei, Taiwan. |
Gross, J. L., 1990, Experimental Study of Gusseted Connections, Engineering Journal, vol. 27, No. 3, American Institute of Steel Construction, Chicago, IL. , pp. 89-97. |
Lopez, W.A., Gwie,D.S., Saunders, C.M., and Lauck, T.W., 2002, “Lessons Learned from Large-Scale Tests of Unbonded Braced Frame Subassemblies”, Proceedings of the Structural Engineers Association of California 2002 Convention, pp. 171-183. |
Lopez, W.A., Gwie, D.S. Saunders, C.M., and Lauck, T.W., 2004, “Structural Design and Experimental Verification of a Buckling-Restrained Braced Frame System”, Engineering Journal, vol. 41, No. 4, ,American Institute of Steel Construction, Chicago, IL. , pp. 177-186. |
Roeder, C.W., and Lehman, D.E., 2004, “Braced Frame Gusset Connections for Seismic Design”, Proceedings of the Structural Engineers Association of California 2004 Convention, pp. 501-505. |
Walters, M.T., Maxwell, B.H., and Berkowitz, R.A., 2004, “Design for Improved Performance of Buckling-Restrained Braced Frames”, Proceedings of the Structural Engineers Association of California 2004 Convention, pp. 507-513. |
Richard, Ralph M., Ph.D., .E., “Braced-Frame Steel Structures 402 When and Why Frame Action Matters”, Structural Engineer, Apr. 2009, pp. 20-21 and pp. 24-25. |
Richard, R.M. (1986), “Analysis of Large Bracing Connection Designs for Heavy Construction”, National Steel Construction Conference Proceedings, American Institute of Steel Construction, Chicago, IL., pp. 31.1-31.24. |
Number | Date | Country | |
---|---|---|---|
20090165419 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
61006188 | Dec 2007 | US |