The present embodiments relate generally to articles of footwear, and in particular to articles of footwear with uppers.
Articles of footwear generally include an upper and one or more sole structures. The upper may be formed from a variety of materials that are stitched or adhesively bonded together to form a void within the footwear for comfortably and securely receiving a foot. The sole structures may include midsole structures that provide cushioning and shock absorption.
In one aspect, a method of making an upper for an article of footwear includes associating a midsole structure with a lower surface of a last. The method also includes inserting the last and the midsole structure through a braiding device while the midsole structure is associated with the lower surface of the last so as to form a braided structure around the last and the midsole structure, thereby forming the upper from the braided structure. The midsole structure is disposed within an interior cavity of the upper.
In another aspect, a method of making an article of footwear includes associating a midsole structure with a lower surface of a last. The method also includes inserting the last and the midsole structure through a braiding device while the midsole structure is associated with the lower surface of the last so as to form a braided structure around the last and the midsole structure, thereby forming an upper from the braided structure. The midsole structure is disposed within an interior cavity of the upper. The method also includes removing the last from the upper. The method also includes attaching an outer sole structure to a lower portion of the upper, where the outer sole structure includes a ground engaging surface, thereby forming the article of footwear.
In another aspect, an article of footwear includes an upper having a braided structure. The upper includes an interior cavity and an opening providing entry to the interior cavity. The upper includes a closed lower portion. A midsole structure is disposed within the interior cavity such that the midsole structure is disposed closer to an inner surface of the lower portion than an outer surface of the lower portion. An outer sole structure is attached to the outer surface of the lower portion.
Other systems, methods, features and advantages of the embodiments will be, or will become, apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description and this summary, be within the scope of the embodiments, and be protected by the following claims.
The embodiments can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the embodiments. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
For purposes of clarity, the following detailed description discusses the features of article of footwear 100, also referred to simply as article 100. However, it will be understood that other embodiments may incorporate a corresponding article of footwear (e.g., a right article of footwear when article 100 is a left article of footwear) that may share some, and possibly all, of the features of article 100 described herein and shown in the figures.
The embodiments may be characterized by various directional adjectives and reference portions. These directions and reference portions may facilitate in describing the portions of an article of footwear. Moreover, these directions and reference portions may also be used in describing sub-components of an article of footwear (e.g., directions and/or portions of a midsole structure, an outer sole structure, an upper or any other components).
For consistency and convenience, directional adjectives are employed throughout this detailed description corresponding to the illustrated embodiments. The term “longitudinal” as used throughout this detailed description and in the claims refers to a direction extending a length of a component (e.g., an upper or sole component). In some cases, the longitudinal direction may extend from a forefoot portion to a heel portion of the component. Also, the term “lateral” as used throughout this detailed description and in the claims refers to a direction extending along a width of a component. In other words, the lateral direction may extend between a medial side and a lateral side of a component. Furthermore, the term “vertical” as used throughout this detailed description and in the claims refers to a direction generally perpendicular to a lateral and longitudinal direction. For example, in cases where an article is planted flat on a ground surface, the vertical direction may extend from the ground surface upward. Additionally, the term “inner” refers to a portion of an article disposed closer to an interior of an article, or closer to a foot when the article is worn. Likewise, the term “outer” refers to a portion of an article disposed further from the interior of the article or from the foot. Thus, for example, the inner surface of a component is disposed closer to an interior of the article than the outer surface of the component. This detailed description makes use of these directional adjectives in describing an article and various components of the article, including an upper, a midsole structure and/or an outer sole structure.
Article 100 may be characterized by a number of different regions or portions. For example, article 100 could include a forefoot portion, a midfoot portion, a heel portion and an ankle portion. Moreover, components of article 100 could likewise comprise corresponding portions. Referring to
Upper 102 may be a braided upper. More specifically, upper 102 may comprise a braided structure having the form of an upper for an article of footwear. As used herein, the term “braided structure” (or braided component) refers to any structure that may be formed by intertwining three or more tensile elements to form the structure. Such tensile elements could include, but are not limited to: threads, yarns, strings, filaments, fibers, wires, cables as well as possibly other kinds of tensile elements. As used herein, tensile elements may describe generally elongated materials with lengths much greater than corresponding diameters. In other words, tensile elements may be approximately one-dimensional elements, in contrast to sheets or layers of textile materials that may generally be approximately two-dimensional (e.g., with thicknesses much less than their lengths and widths). As an example, upper 102 as seen in
Braiding can be used to form three-dimensional structures, by braiding strands of yarn over a form or a last. Strands of a braided structure, such as plurality of tensile elements 105 of the exemplary embodiment, can be fabricated from fibers such as nylon, carbon, polyurethane, polyester, cotton, aramid (e.g., Kevlar®), polyethylene or polypropylene. These strands can be braided to form three-dimensional structures for a wide variety of applications.
Braided structures may be fabricated manually, or may be manufactured using automated braiding machinery, such as the machinery disclosed in U.S. Pat. Nos. 7,252,028; 8,261,648; 5,361,674; 5,398,586; and 4,275,638, all of which are incorporated by reference in their entirety herein. One exemplary manufacturing method, including the use of a radial braiding machine, is discussed below and shown in
Some embodiments may include braided uppers that extend beneath the foot, thereby providing 360 degree coverage at some regions of the foot. However, other embodiments need not include uppers that extend beneath the foot. In other embodiments, for example, a braided upper could have a lower periphery joined with a sole structure and/or sock liner. In the exemplary embodiment, upper 102 includes a closed lower portion 115 (see
Embodiments could incorporate any of the braided structures, methods of making braided structure as well as any of the related provisions that are disclosed in U.S. patent application Ser. No. 14/495,252 filed Sep. 24, 2014, published as U.S. Publication Number 2015/0007451, and titled “Article of Footwear with Braided Upper,” the entirety of which is herein incorporated by reference and hereafter referred to as “the Braided Upper application”.
Referring to
Upper 102 may also be characterized by an outer surface 111, which is an exterior or exposed surface. In addition, upper 102 may include an inner surface 113 that is opposite outer surface 111.
Midsole structure 120 may generally incorporate various provisions associated with midsoles. In different embodiments, a midsole structure may be configured to provide cushioning, shock absorption, energy return, support, as well as possibly other provisions.
Midsole structure 120 may comprise an exterior surface 122. Exterior surface 122 may be further comprised of a first surface 124 and a second surface 126 disposed opposite of first surface 124. Here, first surface 124 may be a lower surface of midsole structure 120, while second surface 126 may be an upper surface of midsole structure 120. Moreover, first surface 124 may include a first surface periphery 128 (e.g., a lower surface periphery), which extends around the boundary of first surface 124. In some cases, first surface periphery 128 may be associated with the sides (or sidewalls) of midsole structure 120. Second surface 126 may extend from first surface periphery 128 (i.e., second surface 126 is proximate to, or even continuous with, first surface periphery 128) and across the top side of midsole structure 120.
In different embodiments, the geometry of midsole structure 120 could vary. In some embodiments, midsole structure 120 may have a two-dimensional geometry (e.g., a geometry in the plane spanned by the longitudinal and lateral directions) corresponding to a foot sole. In other embodiments, however, the geometry of midsole structure 120 could vary and could include various contours or features not associated with a foot sole.
In different embodiments, the dimensions of midsole structure 120 could vary. In some embodiments, midsole structure 120 has a length approximately equal to a length of upper 102, as midsole structure 120 may extend through the entirety of interior cavity 109 in the longitudinal direction. In other embodiments, however midsole structure 120 could have a length less than the length of upper 102. For example, in another embodiment, a midsole structure may only extend through the midfoot and heel portions of an article of footwear. In some embodiments, midsole structure 120 has a width approximately equal to a width of upper 102, as midsole structure 120 may extend through the entire of interior cavity 109 in the lateral direction. However, in other embodiments, a midsole structure could only extend partially across the width of upper 102.
In some embodiments, the thickness of midsole structure 120 may vary. In some embodiments, a midsole structure could be thicker than either an upper or an outer sole structure. In other embodiments, a midsole structure could be thinner than an upper and/or an outer sole structure. In some cases, a midsole structure could be equal in thickness to an upper and/or a sole structure. In the exemplary embodiment, midsole structure 120 has a thickness 141 that corresponds to the distance between first surface 124 and second surface 126 of midsole structure 120. In addition, upper 102 has a thickness 142 and outer sole structure 130 has a thickness 143. Moreover, thickness 141 is greater than thickness 142. Also, thickness 141 is greater than thickness 143. This relatively greater thickness for midsole structure 120 may ensure that midsole structure 120 provides a larger degree of the shock absorption, cushioning and/or support than may be provided by the material structures of upper 102 and outer sole structure 130.
A midsole structure may be formed from a variety of different materials. Exemplary materials that could be used in various embodiments include, but are not limited to: expanded rubber, foam rubber, various kinds of foams, polyurethane as well as possibly other materials. For example, in one embodiment, a midsole structure may be formed from a polymer foam material that attenuates ground reaction forces (i.e., provides cushioning) during walking, running, and other ambulatory activities. In various embodiments, midsole structures may also include fluid-filled chambers, plates, moderators, or other elements that further attenuate forces, enhance stability, or influence the motions of the foot, for example.
Outer sole structure 130 may include provisions for cushioning and/or may include provisions to enhance ground contact. In some embodiments, outer sole structure 130 could primarily comprise an outsole. In such embodiments, the outsole forms a ground-contacting element of the footwear and is usually fashioned from a durable and wear-resistant rubber material that includes texturing to impart traction. In other embodiments, outer sole structure 130 could also include cushioning provisions, including provisions associated with a midsole layer.
In the embodiments of
As seen in
Outer sole structure 130 may be disposed against outer surface 111 of upper 102. More specifically, first surface 131 outer sole structure 130 may be disposed against outer surface 111 on lower portion 115 of upper 102. Thus, whereas midsole structure 120 may be disposed within interior cavity 109 of upper 102, outer sole structure 130 may be disposed outwardly on upper 102. Therefore, lower portion 115 of upper 102 may separate, or be disposed between, midsole structure 120 and outer sole structure 130.
For purposes of clarity, article 100 is shown without an inner liner or insole. In such an embodiment, a foot (or sock worn on the foot) may directly contact a surface of a midsole structure. For example, in some embodiments, second surface 126 of midsole structure 120 may be configured to receive and contact a foot directly. Such an exemplary configuration is shown in
Each component may be characterized by various material characteristics, including cushioning and compressibility. In various embodiments, the relative material characteristics of each component (e.g., upper 102, midsole structure 120 and outer sole structure 130) could be varied. In one exemplary embodiment, midsole structure 120 may provide greater cushioning than either upper 102 or outer sole structure 130. In addition, in one embodiment, midsole structure 120 may be more compressible than upper 102 and midsole structure 120 may be more compressible than outer sole structure 130.
The exemplary embodiment shown in
In different embodiments, the degree of relative compressibility between midsole structure 120 and other components of article 100 can vary. In at least some embodiments, midsole structure 120 can undergo changes in thickness due to compressive forces (e.g., weight of foot or other ground contact forces) that are greater than the thickness of upper 102. In other words, the change in thickness (e.g., between uncompressed thickness 320 and compressed thickness 322) could be greater than a thickness of upper 102 (e.g., thickness 142 as shown in
In different embodiments, the attachment configurations of various components of article 100 could vary. For example, in some embodiments, midsole structure 120 could be bonded or otherwise attached to an inner surface of upper 102. Such bonding or attachment could be accomplished using any known methods for bonding components of articles of footwear, including, but not limited to: adhesives, films, tapes, staples, stitching, or other methods. In some other embodiments, it is contemplated that midsole structure 120 may not be bonded or attached to upper 102, and instead could be free-floating.
Outer sole structure 130 may be attached to upper 102 and/or midsole structure 120. In some embodiments, outer sole structure 130 could be attached directly to upper 102 using various attachment methods including, but not limited to: adhesives, tapes, staples, stitching, or other methods. In one embodiment, outer sole structure 130 and/or upper 102 could include one or more heat bonding materials (e.g., thermoplastics or other resins) that may act as a bonding layer between outer sole structure 130 and upper 102 when heated.
It is also contemplated that in at least some embodiments, outer sole structure 130 may be attached directly to midsole structure 120 through openings in the braided structure of upper 102 (e.g., through the spaces between strands). Thus, in at least some cases, an adhesive could be applied to first surface 131 of outer sole structure 130 to bond outer sole structure 130 to upper 102 and portions of midsole structure 120 simultaneously. In still other embodiments, outer sole structure 130 and/or midsole structure 120 could be made of heat bondable materials, so that after arranging outer sole structure 130 and midsole structure 120 relative to upper 102, heat may be applied to melt and bond outer sole structure 130 and midsole structure 120 to one another. In such cases, outer sole structure 130 and midsole structure 120 could be formed from bond compatible materials. Such an arrangement where outer sole structure 130 is attached directly to midsole structure 120 may help to anchor outer sole structure 130 to article 100.
In order to form a braided upper with an internal midsole structure, a midsole structure may first be temporarily attached to a last. The last with the temporarily attached midsole structure (also referred to collectively as a lasting assembly) may then be fed through a braiding device (such as a radial braiding machine) to form a braided structure in the form of a braided upper around the last and midsole structure. Upon removal of the last, a braided upper with an internal midsole structure may be assembled with an outer sole structure to form an article of footwear, similar to article 100 discussed above and shown in
In
For purpose of clarity, only two film elements are shown, however in other embodiments any number, size, and arrangement of adhesive film elements could be used. In other embodiments, of course, any other method of temporarily fixing, attaching, bonding, adhering or otherwise temporarily joining a midsole structure with a last could be used. Exemplary methods include, but are not limited to, the use of adhesives, films, tapes, putties, as well as possibly other methods. It is contemplated that in some embodiments a last could be configured with a fastening element (such as a screw or other projection) and a midsole structure could be configured with provisions to receive the fastening element (such as a threaded hole to receive a screw). Thus, in some embodiments, a last and a midsole structure could be temporarily secured using some kind of mechanical fasteners, including, but not limited to: screws, bolts, hook and loop fasteners, clips, straps, as well as possibly other mechanical provisions. The method of temporarily joining a midsole structure and a last can be selected according to various factors including: last material and/or dimensions, midsole structure material and/or dimensions, as well as possibly other factors.
For purposes of understanding the arrangement of midsole structure 520 and last 400, last 400 may be characterized as comprising various different portions. For example, last 400 may include not only a lower surface 410 (i.e., the sole surface of last 400), but also an upper surface 412. As used herein, the term “upper surface” of a last refers to the area of the last surface that does not include lower surface 410, which is the surface of the last corresponding to the sole of a foot. Thus, upper surface 412 may generally include the medial side surface, the lateral side surface as well as the upper, forward and rearward surfaces of last 400. Upper surface 412 may generally extend to, or join, a lower surface periphery 414 of lower surface 410.
As seen in
In order to enhance the operation of a braiding device, such as a radial braiding machine, it may be important to use last assemblies having smooth geometries. For purposes of clarity in characterizing the smoothness of these geometries, the term peripheral contour is used herein to denote the contour or boundary of a given cross-sectional area of a component. Additionally, contours, or lines that bound a given cross-sectional area, can be characterized as having curvature that may vary over different sections of the contour. In the present discussion, the curvature of a given section of a contour may be described by a radius of curvature and the curvature of different sections can be compared according to the differences in their radii of curvature.
As shown in
As shown in
As clearly seen in
It will be understood that the curvature of last 400 may vary over different portions from the curvature depicted for forefoot portion 430. It may be appreciated that in other portions where last 400 may have high curvature the addition of midsole structure 120 may also help present a smoother contoured periphery to the braiding machine.
In some embodiments, lasting assembly 500 may be manually fed through braiding device 522 by a human operator. In other embodiments, a continuous last feeding system can be used to feed lasting assembly 500 through braiding device 522. The present embodiments could make use of any of the methods and systems for forming a braided upper disclosed in the Braided Upper application.
As shown in
In some embodiments, methods of braiding may also include provisions for holding and/or feeding articles through braiding device 522. For example, some embodiments may include support platforms (not shown) that can facilitate feeding articles through braiding device 522. Generally, any systems known in the art for feeding objects through a braiding machine could be used. In some embodiments, a conveyor system could be used to automatically move a footwear last through braiding device 522. In some other embodiments, each footwear last could be manually inserted through braiding device 522.
As seen in
Although not shown here, some embodiments can also include provisions for assembling trim, overlay, or other components or portions of material for assembly with a braided structure. As used herein, the term “overlay” refers to any material layer that could be disposed over a layer of braided material, including braided material for an upper. Overlays could be comprised of any kinds of materials and may be configured with a variety of different characteristics (e.g., stretch, elasticity, density, weight, durability, breathability, etc.). Also, overlays could have any dimensions and could be configured to cover some portions and/or all portions of a braided structure. Overlays could be disposed on an interior surface of a braided structure and/or an exterior surface of a braided structure. Embodiments could use any of the overlays, and/or methods for attaching overlays to braided structure, disclosed in U.S. patent application Ser. No. 14/163,438, filed Jan. 24, 2014, published as U.S. Patent Publication Number 2014/0373389, and titled “Braided Upper with Overlays for Article of Footwear,” the entirety of which is herein incorporated by reference.
Embodiments could use any methods for manufacturing braided articles including uppers with internal midsoles. In particular, embodiments could use any of the methods of braiding uppers, forming and attaching overlay structures (using 30 printing and high frequency welding) as well any other methods, systems or provisions disclosed in U.S. patent application Ser. No. 14/565,582, filed Dec. 10, 2014, published as U.S. Patent Publication Number 2016/0166011, and titled on entitled “Portable Manufacturing System for Articles of Footwear,” the entirety of which is herein incorporated by reference.
As seen by comparing the enlarged cross-sectional views in
Such a configuration for upper 604 may be in contrast to alternative embodiments in which a midsole structure is inserted after the upper has been formed in an over-braiding process (or other braiding process). For example, in an alternative embodiment shown in
In contrast to the embodiment of
By forming an upper so that the upper geometry accommodates a midsole structure without stretching, as occurs in the exemplary embodiments shown in
While various embodiments have been described, the description is intended to be exemplary, rather than limiting and it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of the embodiments. Any feature of any embodiment may be used in combination with or substituted for any other feature or element in any other embodiment unless specifically restricted. Accordingly, the embodiments are not to be restricted except in light of the attached claims and their equivalents. Also, various modifications and changes may be made within the scope of the attached claims.
Number | Name | Date | Kind |
---|---|---|---|
165941 | Malhebe | Jul 1875 | A |
329739 | Heostkels | Nov 1885 | A |
376372 | Dodge et al. | Jan 1888 | A |
509241 | Paokaed | Nov 1893 | A |
578294 | Leayitt | Mar 1897 | A |
586137 | Medger | Jul 1897 | A |
621922 | Kelsall | Mar 1899 | A |
1182325 | Sedmak | May 1916 | A |
1318888 | Le Carpentier | Oct 1919 | A |
1527344 | Bente et al. | Feb 1925 | A |
1538160 | Bosebeck | May 1925 | A |
1540903 | Santoyo | Jun 1925 | A |
1554325 | Bente | Sep 1925 | A |
1583273 | Bosebeck | May 1926 | A |
1597934 | Stimpson | Aug 1926 | A |
1600621 | Buek, Jr. | Sep 1926 | A |
1622021 | Birkin et al. | Mar 1927 | A |
1637716 | Turck | Aug 1927 | A |
1663319 | Snell | Mar 1928 | A |
1687643 | Berliner | Oct 1928 | A |
1713307 | Stritter | May 1929 | A |
1717183 | Brenner | Jun 1929 | A |
1803554 | Knilans | May 1931 | A |
1828320 | Daniels | Oct 1931 | A |
1832691 | David | Nov 1931 | A |
1864254 | Meyer | Jun 1932 | A |
1877080 | Teshima | Sep 1932 | A |
1887643 | Huber | Nov 1932 | A |
1949318 | Markowsky | Feb 1934 | A |
2001293 | Wilson | May 1935 | A |
2022350 | Huber | Nov 1935 | A |
2091215 | Price | Aug 1937 | A |
2144689 | Roberts | Jan 1939 | A |
2147197 | Glidden | Feb 1939 | A |
2161472 | Hurwit | Jun 1939 | A |
2162472 | Scharf | Jun 1939 | A |
2165092 | Daniels | Jul 1939 | A |
2188640 | Bloch et al. | Jan 1940 | A |
RE21392 | Hurwit | Mar 1940 | E |
2271888 | Manley | Feb 1942 | A |
2311959 | Nurk | Feb 1943 | A |
D137767 | Goldstein | Apr 1944 | S |
2382559 | Goldstein | Aug 1945 | A |
2412808 | Goldstein | Dec 1946 | A |
2521072 | Lovell | Sep 1950 | A |
D164847 | Dronoff | Oct 1951 | S |
2586045 | Hoza | Feb 1952 | A |
2617129 | Petze | Nov 1952 | A |
2641004 | Whiting et al. | Jun 1953 | A |
2675631 | Doughty | Apr 1954 | A |
2679117 | Reed | May 1954 | A |
2701887 | Nolan | Feb 1955 | A |
2936670 | Erwin | May 1960 | A |
3052904 | Reid | Sep 1962 | A |
3257677 | Batchelder | Jun 1966 | A |
3282757 | Brussee | Nov 1966 | A |
3397847 | Thaden | Aug 1968 | A |
3474478 | Batchelder et al. | Oct 1969 | A |
3504450 | Steadman et al. | Apr 1970 | A |
3525110 | Rubico | Aug 1970 | A |
3586058 | Ahrens et al. | Jun 1971 | A |
3619838 | Winkler | Nov 1971 | A |
3745600 | Rubico et al. | Jul 1973 | A |
3805667 | Orser | Apr 1974 | A |
3821827 | Nadler | Jul 1974 | A |
4134955 | Hanrahan, Jr. et al. | Jan 1979 | A |
4149249 | Pavkovich | Apr 1979 | A |
4194249 | Thorneburg | Mar 1980 | A |
4222183 | Haddox | Sep 1980 | A |
4232458 | Bartels | Nov 1980 | A |
4275638 | DeYoung | Jun 1981 | A |
4341097 | Cassidy et al. | Jul 1982 | A |
4351889 | Sundberg | Sep 1982 | A |
4394803 | Goldstein | Jul 1983 | A |
4430811 | Okada | Feb 1984 | A |
4447967 | Zaino | May 1984 | A |
4519290 | Inman et al. | May 1985 | A |
4587749 | Berlese | May 1986 | A |
4591155 | Adachi | May 1986 | A |
4629650 | Kataoka | Dec 1986 | A |
4640027 | Berlese | Feb 1987 | A |
4662088 | Autry et al. | May 1987 | A |
4719837 | McConnell et al. | Jan 1988 | A |
4785558 | Shiomura | Nov 1988 | A |
4847063 | Smith | Jun 1989 | A |
4848745 | Bohannan et al. | Jul 1989 | A |
4857124 | Shobert et al. | Aug 1989 | A |
4882858 | Signori | Nov 1989 | A |
4885973 | Spain | Dec 1989 | A |
4916997 | Spain | Apr 1990 | A |
4919388 | Koike et al. | Apr 1990 | A |
4974275 | Backes et al. | Dec 1990 | A |
4976812 | McConnell et al. | Dec 1990 | A |
4992313 | Shobert et al. | Feb 1991 | A |
5001961 | Spain | Mar 1991 | A |
D315823 | Signori | Apr 1991 | S |
5067525 | Tsuzuki et al. | Nov 1991 | A |
5121329 | Crump et al. | Jun 1992 | A |
5201952 | Yahagi et al. | Apr 1993 | A |
5203249 | Adams et al. | Apr 1993 | A |
5257571 | Richardson | Nov 1993 | A |
5287790 | Akiyama et al. | Feb 1994 | A |
5335517 | Throneburg et al. | Aug 1994 | A |
5345638 | Nishida | Sep 1994 | A |
5348056 | Tsuzuki | Sep 1994 | A |
5361674 | Akiyama et al. | Nov 1994 | A |
5381610 | Hanson | Jan 1995 | A |
5388497 | Akiyama et al. | Feb 1995 | A |
5396829 | Akiyama et al. | Mar 1995 | A |
5398586 | Akiyama | Mar 1995 | A |
5439215 | Ratchford | Aug 1995 | A |
5476027 | Uchida et al. | Dec 1995 | A |
5647150 | Romanato et al. | Jul 1997 | A |
5732413 | Williams | Mar 1998 | A |
5885622 | Daley | Mar 1999 | A |
5896758 | Rock et al. | Apr 1999 | A |
5901632 | Ryan | May 1999 | A |
6024005 | Uozumi | Feb 2000 | A |
6029376 | Cass | Feb 2000 | A |
6205683 | Clark | Mar 2001 | B1 |
6298582 | Friton et al. | Oct 2001 | B1 |
6308536 | Roell | Oct 2001 | B2 |
6345598 | Bogdanovich et al. | Feb 2002 | B1 |
6401364 | Burt | Jun 2002 | B1 |
6451046 | Leo et al. | Sep 2002 | B1 |
6482492 | Hung | Nov 2002 | B1 |
6510961 | Head et al. | Jan 2003 | B1 |
6588237 | Cole et al. | Jul 2003 | B2 |
6679152 | Head et al. | Jan 2004 | B1 |
6696001 | Quddus | Feb 2004 | B1 |
6826853 | Zanatta | Dec 2004 | B1 |
6910288 | Dua | Jun 2005 | B2 |
6931762 | Dua | Aug 2005 | B1 |
6945153 | Knudsen et al. | Sep 2005 | B2 |
6971252 | Therin et al. | Dec 2005 | B2 |
7004967 | Chouinard et al. | Feb 2006 | B2 |
7093527 | Rapaport et al. | Aug 2006 | B2 |
7168951 | Fischer et al. | Jan 2007 | B2 |
7204903 | Yasui | Apr 2007 | B2 |
7228777 | Morissette et al. | Jun 2007 | B2 |
7252028 | Bechtold et al. | Aug 2007 | B2 |
7262353 | Bartholomew et al. | Aug 2007 | B2 |
7275471 | Nishri et al. | Oct 2007 | B2 |
7293371 | Aveni | Nov 2007 | B2 |
7300014 | Allen | Nov 2007 | B2 |
7347011 | Dua et al. | Mar 2008 | B2 |
D578294 | Mervar et al. | Oct 2008 | S |
7430818 | Valat et al. | Oct 2008 | B2 |
7444916 | Hirukawa | Nov 2008 | B2 |
7549185 | Yang | Jun 2009 | B2 |
7566376 | Matsuoka | Jul 2009 | B2 |
7703218 | Burgess | Apr 2010 | B2 |
7793434 | Sokolowski et al. | Sep 2010 | B2 |
7793576 | Head et al. | Sep 2010 | B2 |
7815141 | Uozumi et al. | Oct 2010 | B2 |
7836608 | Greene | Nov 2010 | B2 |
7870681 | Meschter | Jan 2011 | B2 |
7908956 | Dow et al. | Mar 2011 | B2 |
7913426 | Valat et al. | Mar 2011 | B2 |
7938853 | Chouinard et al. | May 2011 | B2 |
7941942 | Hooper et al. | May 2011 | B2 |
7963747 | Cairo | Jun 2011 | B2 |
8006601 | Inazawa et al. | Aug 2011 | B2 |
8051585 | Hope et al. | Nov 2011 | B2 |
8056173 | RongBo | Nov 2011 | B2 |
8061253 | Wybrow | Nov 2011 | B2 |
8210086 | Head et al. | Jul 2012 | B2 |
8261648 | Marchand et al. | Sep 2012 | B1 |
8266827 | Dojan et al. | Sep 2012 | B2 |
8312645 | Dojan et al. | Nov 2012 | B2 |
8312646 | Meschter et al. | Nov 2012 | B2 |
8388791 | Dojan et al. | Mar 2013 | B2 |
8394222 | Rettig | Mar 2013 | B2 |
8438757 | Roser | May 2013 | B2 |
8511214 | Gries | Aug 2013 | B2 |
8544197 | Spanks et al. | Oct 2013 | B2 |
8544199 | Pentland | Oct 2013 | B1 |
8578534 | Langvin et al. | Nov 2013 | B2 |
8578632 | Bell et al. | Nov 2013 | B2 |
8651007 | Adams | Feb 2014 | B2 |
8690962 | Dignam et al. | Apr 2014 | B2 |
8757038 | Siegismund | Jun 2014 | B2 |
8770081 | David et al. | Jul 2014 | B2 |
8789295 | Burch et al. | Jul 2014 | B2 |
8789452 | Janardhan et al. | Jul 2014 | B1 |
8794118 | Dow et al. | Aug 2014 | B2 |
8819963 | Dojan et al. | Sep 2014 | B2 |
8959959 | Podhajny | Feb 2015 | B1 |
8984776 | Ludemann et al. | Mar 2015 | B2 |
8997529 | Podhajny | Apr 2015 | B1 |
D737561 | Aveni et al. | Sep 2015 | S |
9179739 | Bell et al. | Nov 2015 | B2 |
D769590 | Aveni et al. | Oct 2016 | S |
9681708 | Greene et al. | Jun 2017 | B2 |
9756901 | Musho et al. | Sep 2017 | B2 |
D798565 | Aveni et al. | Oct 2017 | S |
10159297 | Jamison | Dec 2018 | B2 |
20010007180 | Bordin et al. | Jul 2001 | A1 |
20030000111 | Basso | Jan 2003 | A1 |
20030213547 | Ono et al. | Nov 2003 | A1 |
20040118018 | Dua | Jun 2004 | A1 |
20040244412 | Trinh et al. | Dec 2004 | A1 |
20050076536 | Hatfield et al. | Apr 2005 | A1 |
20050081402 | Orei et al. | Apr 2005 | A1 |
20050115284 | Dua | Jun 2005 | A1 |
20050178026 | Friton | Aug 2005 | A1 |
20050193592 | Dua et al. | Sep 2005 | A1 |
20050208860 | Baron et al. | Sep 2005 | A1 |
20050284002 | Aveni | Dec 2005 | A1 |
20060048413 | Sokolowski et al. | Mar 2006 | A1 |
20060059715 | Aveni | Mar 2006 | A1 |
20060260365 | Miyamoto | Nov 2006 | A1 |
20060265908 | Palmer et al. | Nov 2006 | A1 |
20060283042 | Greene et al. | Dec 2006 | A1 |
20060283048 | Lebo | Dec 2006 | A1 |
20070022627 | Sokolowski et al. | Feb 2007 | A1 |
20070062067 | Covatch | Mar 2007 | A1 |
20070101615 | Munns | May 2007 | A1 |
20070101616 | Munns | May 2007 | A1 |
20070180730 | Greene et al. | Aug 2007 | A1 |
20070245595 | Chen et al. | Oct 2007 | A1 |
20070271821 | Meschter | Nov 2007 | A1 |
20070271822 | Meschter | Nov 2007 | A1 |
20080005930 | Skirrow | Jan 2008 | A1 |
20080022553 | McDonald et al. | Jan 2008 | A1 |
20080078103 | Liles | Apr 2008 | A1 |
20080110048 | Dua | May 2008 | A1 |
20080250668 | Marvin et al. | Oct 2008 | A1 |
20090126225 | Jarvis | May 2009 | A1 |
20090126823 | Yengkhom | May 2009 | A1 |
20090193961 | Jensen et al. | Aug 2009 | A1 |
20090241374 | Sato et al. | Oct 2009 | A1 |
20090306762 | McCullagh et al. | Dec 2009 | A1 |
20100018075 | Meschter et al. | Jan 2010 | A1 |
20100043253 | Dojan et al. | Feb 2010 | A1 |
20100095556 | Jarvis | Apr 2010 | A1 |
20100095557 | Jarvis | Apr 2010 | A1 |
20100107442 | Hope et al. | May 2010 | A1 |
20100139057 | Soderberg et al. | Jun 2010 | A1 |
20100154256 | Dua | Jun 2010 | A1 |
20100175276 | Dojan et al. | Jul 2010 | A1 |
20100199520 | Dua et al. | Aug 2010 | A1 |
20100251491 | Dojan et al. | Oct 2010 | A1 |
20100251564 | Meschter | Oct 2010 | A1 |
20100319215 | Roser | Dec 2010 | A1 |
20110041359 | Dojan et al. | Feb 2011 | A1 |
20110067271 | Foxen et al. | Mar 2011 | A1 |
20110078921 | Greene et al. | Apr 2011 | A1 |
20110088285 | Dojan et al. | Apr 2011 | A1 |
20110094127 | Dana, III | Apr 2011 | A1 |
20110146104 | Lafortune | Jun 2011 | A1 |
20110239486 | Berger et al. | Oct 2011 | A1 |
20110266384 | Goodman et al. | Nov 2011 | A1 |
20120023786 | Dojan | Feb 2012 | A1 |
20120030965 | Greene et al. | Feb 2012 | A1 |
20120055044 | Dojan et al. | Mar 2012 | A1 |
20120066931 | Dojan et al. | Mar 2012 | A1 |
20120096742 | Shim | Apr 2012 | A1 |
20120117826 | Jarvis | May 2012 | A1 |
20120144698 | McDowell | Jun 2012 | A1 |
20120159813 | Dua et al. | Jun 2012 | A1 |
20120186102 | Lee et al. | Jul 2012 | A1 |
20120198730 | Burch et al. | Aug 2012 | A1 |
20120233882 | Huffa et al. | Sep 2012 | A1 |
20120234052 | Huffa et al. | Sep 2012 | A1 |
20120240429 | Sokolowski et al. | Sep 2012 | A1 |
20120246973 | Dua | Oct 2012 | A1 |
20120255201 | Little | Oct 2012 | A1 |
20120279260 | Dua et al. | Nov 2012 | A1 |
20120291314 | Sokolowski et al. | Nov 2012 | A1 |
20120297643 | Shaffer et al. | Nov 2012 | A1 |
20130019500 | Greene | Jan 2013 | A1 |
20130025157 | Wan et al. | Jan 2013 | A1 |
20130055590 | Mokos | Mar 2013 | A1 |
20130081307 | del Biondi et al. | Apr 2013 | A1 |
20130125420 | Raghuprasad | May 2013 | A1 |
20130174446 | Antonelli et al. | Jul 2013 | A1 |
20130211492 | Schneider | Aug 2013 | A1 |
20130219636 | Dojan et al. | Aug 2013 | A1 |
20130239438 | Dua et al. | Sep 2013 | A1 |
20130255103 | Dua et al. | Oct 2013 | A1 |
20130260104 | Dua et al. | Oct 2013 | A1 |
20130260629 | Dua et al. | Oct 2013 | A1 |
20130269159 | Robitaille et al. | Oct 2013 | A1 |
20130269209 | Lang et al. | Oct 2013 | A1 |
20130269212 | Little | Oct 2013 | A1 |
20130291293 | Jessiman et al. | Nov 2013 | A1 |
20130304232 | Gries | Nov 2013 | A1 |
20130305465 | Siegismund | Nov 2013 | A1 |
20130305911 | Masson et al. | Nov 2013 | A1 |
20130312284 | Berend et al. | Nov 2013 | A1 |
20140000043 | Boardman et al. | Jan 2014 | A1 |
20140007458 | Berger et al. | Jan 2014 | A1 |
20140068838 | Beers et al. | Mar 2014 | A1 |
20140070042 | Beers et al. | Mar 2014 | A1 |
20140082905 | Wen | Mar 2014 | A1 |
20140088688 | Lilbum et al. | Mar 2014 | A1 |
20140109441 | McDowell et al. | Apr 2014 | A1 |
20140130372 | Aveni et al. | May 2014 | A1 |
20140134405 | Yang | May 2014 | A1 |
20140137433 | Craig | May 2014 | A1 |
20140137434 | Craig | May 2014 | A1 |
20140150292 | Podhajny et al. | Jun 2014 | A1 |
20140173932 | Bell | Jun 2014 | A1 |
20140173934 | Bell | Jun 2014 | A1 |
20140173935 | Sabbioni | Jun 2014 | A1 |
20140182447 | Kang et al. | Jul 2014 | A1 |
20140189964 | Wen et al. | Jul 2014 | A1 |
20140196316 | Follet | Jul 2014 | A1 |
20140215850 | Redl et al. | Aug 2014 | A1 |
20140237854 | Fallon | Aug 2014 | A1 |
20140245633 | Podhajny | Sep 2014 | A1 |
20140259760 | Dojan et al. | Sep 2014 | A1 |
20140310983 | Tamm et al. | Oct 2014 | A1 |
20140310984 | Tamm et al. | Oct 2014 | A1 |
20140310987 | Sokolowski et al. | Oct 2014 | A1 |
20140338222 | Song | Nov 2014 | A1 |
20140352173 | Bell et al. | Dec 2014 | A1 |
20140373389 | Bruce | Dec 2014 | A1 |
20140377488 | Jamison | Dec 2014 | A1 |
20150007451 | Bruce | Jan 2015 | A1 |
20150013187 | Taniguchi et al. | Jan 2015 | A1 |
20150052778 | Kirk et al. | Feb 2015 | A1 |
20150075031 | Podhajny et al. | Mar 2015 | A1 |
20150143716 | Long et al. | May 2015 | A1 |
20150143720 | Avar | May 2015 | A1 |
20150201705 | Doremus et al. | Jul 2015 | A1 |
20150201707 | Bruce | Jul 2015 | A1 |
20150202915 | Lee | Jul 2015 | A1 |
20150272274 | Berns et al. | Oct 2015 | A1 |
20150282564 | Meschter et al. | Oct 2015 | A1 |
20150282565 | Kilgore | Oct 2015 | A1 |
20150305442 | Ravindran | Oct 2015 | A1 |
20150313316 | Boucher et al. | Nov 2015 | A1 |
20150320139 | Peitzker et al. | Nov 2015 | A1 |
20150342286 | Huffman et al. | Dec 2015 | A1 |
20150374064 | Pierobon | Dec 2015 | A1 |
20160021979 | Iuchi et al. | Jan 2016 | A1 |
20160029736 | Meir | Feb 2016 | A1 |
20160058100 | Dealey et al. | Mar 2016 | A1 |
20160076178 | Head | Mar 2016 | A1 |
20160095377 | Tamm | Apr 2016 | A1 |
20160106182 | Yun | Apr 2016 | A1 |
20160166000 | Bruce | Jun 2016 | A1 |
20160166007 | Bruce et al. | Jun 2016 | A1 |
20160166010 | Bruce | Jun 2016 | A1 |
20160168774 | Breithaupt et al. | Jun 2016 | A1 |
20160174660 | Iuchi et al. | Jun 2016 | A1 |
20160185062 | Boucher et al. | Jun 2016 | A1 |
20160208421 | Baines et al. | Jul 2016 | A1 |
20160213095 | Kohatsu et al. | Jul 2016 | A1 |
20160345675 | Bruce et al. | Dec 2016 | A1 |
20170035149 | Bruce et al. | Feb 2017 | A1 |
20170265596 | Bruce et al. | Sep 2017 | A1 |
20170325545 | Becker et al. | Nov 2017 | A1 |
20170325546 | Becker et al. | Nov 2017 | A1 |
20180213878 | Bruce | Aug 2018 | A1 |
20180242689 | Bruce et al. | Aug 2018 | A1 |
20180343962 | Bruce et al. | Dec 2018 | A1 |
20180343963 | Bruce et al. | Dec 2018 | A1 |
20180368506 | Bruce et al. | Dec 2018 | A1 |
20190098955 | Bruce | Apr 2019 | A1 |
20190150552 | Casillas et al. | May 2019 | A1 |
20190254386 | Bruce et al. | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
426458 | Mar 1938 | BE |
86209002 | Oct 1987 | CN |
1121403 | May 1996 | CN |
2930360 | Aug 2000 | CN |
1883325 | Dec 2006 | CN |
201175007 | Jan 2009 | CN |
201356120 | Dec 2009 | CN |
101627843 | Jan 2010 | CN |
101801229 | Aug 2010 | CN |
102271548 | Dec 2011 | CN |
202635759 | Jan 2013 | CN |
102987631 | Mar 2013 | CN |
202950101 | May 2013 | CN |
203369442 | Jan 2014 | CN |
203676256 | Jul 2014 | CN |
20403521 | Dec 2014 | CN |
726634 | Oct 1942 | DE |
1140107 | Nov 1962 | DE |
4306286 | Sep 1993 | DE |
102011011185 | Aug 2012 | DE |
102011119245 | Oct 2012 | DE |
0372370 | Jun 1990 | EP |
1486601 | Dec 2004 | EP |
2657384 | Oct 2013 | EP |
2792261 | Oct 2014 | EP |
2792264 | Oct 2014 | EP |
2811056 | Dec 2014 | EP |
3011855 | Apr 2016 | EP |
1012719 | Jul 1952 | FR |
430805 | Jun 1935 | GB |
477556 | Jan 1938 | GB |
1083849 | Sep 1967 | GB |
1299353 | Dec 1972 | GB |
S51107964 | Aug 1976 | JP |
H07054250 | Feb 1995 | JP |
H0733076 | Apr 1995 | JP |
H07216703 | Aug 1995 | JP |
08109553 | Apr 1996 | JP |
H09322810 | Dec 1997 | JP |
H10158965 | Jun 1998 | JP |
2001-030361 | Feb 2001 | JP |
2004105323 | Apr 2004 | JP |
2004339651 | Dec 2004 | JP |
2005042266 | Feb 2005 | JP |
2005102933 | Apr 2005 | JP |
2006009175 | Jan 2006 | JP |
2006161167 | Jun 2006 | JP |
2008240187 | Oct 2008 | JP |
2005290628 | Oct 2015 | JP |
20020038168 | May 2002 | KR |
100737426 | Jul 2007 | KR |
0007475 | Feb 2000 | WO |
0036943 | Jun 2000 | WO |
O03016036 | Feb 2003 | WO |
2009000371 | Dec 2008 | WO |
2010080182 | Jul 2010 | WO |
2011082391 | Jul 2011 | WO |
2011111564 | Sep 2011 | WO |
2011126837 | Oct 2011 | WO |
2011137405 | Nov 2011 | WO |
2013071679 | May 2013 | WO |
2013126313 | Aug 2013 | WO |
2014134244 | Sep 2014 | WO |
2014209594 | Dec 2014 | WO |
2014209596 | Dec 2014 | WO |
2016093961 | Jun 2016 | WO |
2016191478 | Dec 2016 | WO |
Entry |
---|
Pending U.S. Appl. No. 14/565,582, filed Dec. 10, 2014. |
Branscomb et al., “New Directions in Braiding”, Journal of Engineered Fibers and Fabrics, vol. 8, Issue Feb. 2013 Braiding, Journal of Engineered Fibers and Fabrics, vol. 8, Issue Feb. 2013—http://www.jeffournal.org, pp. 11-24. |
International Search Report and Written Opinion dated Sep. 19, 2014 in PCT/US2014/041659. 10 pages. |
International Search Report and Written Opinion dated Sep. 23, 2016 in International Patent Application No. PCT/2016/034109, 18 pages. |
International Search Report and Written Opinion dated Sep. 23, 2014 in International Patent Application No. PCT/US2014/041669. 10 pages. |
International Search Report and Written Opinion dated Jan. 12, 2017 in International Patent Application No. PCT/2016/045313, 15 pages. |
International Search Report and Written Opinion dated Aug. 19, 2016 for International Patent Application No. PCT/US2016/034107, 17 pages. |
Final Office Action dated Feb. 23, 2017 in U.S. Appl. No. 14/495,252, 15 pages. |
http://www.apparelsearch.com/definitions/miscellaneous/braiding.htm. |
Non-Final Office Action dated Jun. 22, 2016 in U.S. Appl. No. 14/495,252, 13 pages. |
Canadian Examiner's Report dated Sep. 19, 2016 in Canadian Patent Application No. 2,910,349, 3 pages. |
European Search Report dated Mar. 14, 2017 for European Patent Application No. 16001887.5, 9 pages. |
Canadian Examiner's Report dated Jun. 13, 2017 in Canadian Patent Application No. 2,910,350, 3 pages. |
Non-Final Office Action dated Jun. 22, 2017 in U.S. Appl. No. 14/495,252, 13 pages. |
Australian Office Action dated May 28, 2016 for Australian Patent Application No. 2014303040, 6 Pages. |
Australian Office Action dated May 28, 2016 for Australian Patent Application No. 2014303042, 5 Pages. |
Non-Final Office Action dated Jan. 17, 2017 in U.S. Appl. No. 14/721,507, 12 pages. |
Final Office Action dated Feb. 16, 2017 in U.S. Appl. No. 14/163,438, 17 pages. |
Non-Final Office Action dated Aug. 19, 2016 for U.S. Appl. No. 14/163,438, 15 pages. |
Non-Final Office Action dated Jun. 1, 2016 for U.S. Appl. No. 14/565,568, 5 pages. |
International Search Report and Written Opinion dated Apr. 4, 2016 for International Patent Application No. PCT/US2015055902, 17 pages. |
International Search Report and Written Opinion dated Jun. 16, 2016 in International Patent Application No. PCT/US2015/055868, 11 pages. |
International Preliminary Report on Patentability dated Jun. 22, 2017 in International Patent Application No. PCT/US2015/056533, 6 pages. |
International Preliminary Report on Patentability dated Jun. 22, 2017 in International Patent Application No. PCT/US2015/055868, 10 pages. |
International Preliminary Report on Patentability dated Jun. 22, 2017 in International Patent Application No. PCT/US2015/055902, 10 pages. |
Canadian Examiner's Report dated Jun. 28, 2017 in Canadian Patent Application No. 2,910,349, 3 pages. |
Non-Final Office Action dated Sep. 14, 2017 in U.S. Appl. No. 14/820,822, 14 pages. |
Office Action dated Nov. 24, 2017 in Australian Patent Application No. 2015361198, 3 pages. |
International Preliminary Report on Patentability dated Dec. 7, 2017 in International Patent Application No. PCT/US2016/034109, 11 pages. |
International Preliminary Report on Patentability dated Dec. 7, 2017 in International Patent Application No. PCT/US2016/034107, 8 pages. |
Non-Final Office Action dated Oct. 19, 2017 in U.S. Appl. No. 14/163,438, 18 pages. |
Non-Final Office Action dated Oct. 27, 2017 in U.S. Appl. No. 14/566,215, 21 pages. |
Final Office Action dated Nov. 1, 2017 in U.S. Appl. No. 14/495,252, 14 pages. |
Office Action dated Feb. 12, 2018 in Australian Patent Application No. 2015361198, 3 pages. |
Non-Final Office Action dated Mar. 7, 2018 in U.S. Appl. No. 14/721,450, 7 pages. |
Non-Final Office Action dated Mar. 29, 2018 in U.S. Appl. No. 14/495,252, 14 pages. |
Final Office Action dated Jun. 4, 2018 in U.S. Appl. No. 14/820,822, 14 pages. |
Final Office Action dated Jul. 13, 2018 in U.S. Appl. No. 14/163,438, 14 pages. |
Final Office Action dated Jun. 26, 2018 in U.S. Appl. No. 14/566,215, 16 pages. |
Final Office Action dated Aug. 27, 2018 in U.S. Appl. No. 14/721,450, 8 pages. |
International Search Report and Written Opinion dated Sep. 10, 2018 in International Patent Application No. PCT/US2018/035404, 13 pages. |
Communication pursuant to Article 94(3) dated Nov. 22, 2018 in European Patent Application No. 16731401.2, 5 pages. |
Communication pursuant to Article 94(3) dated Nov. 23, 2018 in European Patent Application No. 15787425.6, 7 pages. |
Decision to grant a European patent pursuant to Article 97(1) dated Nov. 8, 2018 in European Patent Application No. 14737100.9, 1 page. |
Non-Final Office Action dated Dec. 28, 2018 in U.S. Appl. No. 14/721,450, 6 pages. |
Notice of Allowance dated Jan. 11, 2019 in U.S. Appl. No. 15/613,983, 7 pages. |
Final Office Action dated Apr. 25, 2019 in U.S. Appl. No. 14/820,822, 15 pages. |
Partial search report dated Apr. 26, 2019 in European Patent Application No. 18202740.9, 13 pages. |
Final Office Action dated May 1, 2019 in U.S. Appl. No. 14/721,450, 6 pages. |
Communication pursuant to Article 94(3) dated May 13, 2019 in European Patent Application No. 16001887.5, 4 pages. |
Communication under Rule 71(3) dated May 16, 2019 in European Patent Application No. 16731401.2, 5 pages. |
Communication under Rule 71(3) dated Jun. 21, 2019 in European Patent Application No. 15785032.2, 2 pages. |
Non-Final Office Action dated Jul. 9, 2019 in U.S. Appl. No. 14/721,450, 6 pages. |
Communication under Rule 71(3) dated Feb. 20, 2019 in European Patent Application No. 15785032.2, 5 pages. |
Communication under Rule 71(3) dated Mar. 13, 2019 in European Patent Application No. 15787396.9, 5 pages. |
Final Office Action dated Sep. 11, 2018 in U.S. Appl. No. 14/495,252, 14 pages. |
Non-Final Office Action dated Sep. 18, 2018 in U.S. Appl. No. 15/613,983, 7 pages. |
Non-Final Office Action dated Oct. 1, 2018 in U.S. Appl. No. 14/820,822, 15 pages. |
Final Office Action received for U.S. Appl. No. 14/163,438, dated Jan. 13, 2020, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/035404, dated Dec. 12, 2019, 8 pages. |
Office Action received for European Patent Application No. 15787425.6, dated Jan. 23, 2020, 6 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 16001887.5, dated Dec. 2, 2019, 5 pages. |
Final Office Action received for U.S. Appl. No. 14/566,215, dated Jan. 30, 2020, 26 pages. |
Extended Search Report dated Nov. 29, 2019 in European Patent Application No. 19192467.9, 5 pages. |
Partial search report dated Dec. 9, 2019 in European Patent Application No. 19191026.4, 15 pages. |
International Preliminary Report on Patentability dated Dec. 12, 2019 in International Patent Application No. PCT/US2018/035417, 8 pages. |
International Preliminary Report on Patentability dated Dec. 12, 2019 in International Patent Application No. PCT/US2018/035408, 10 pages. |
Non-Final Office Action dated Oct. 29, 2019 in U.S. Appl. No. 14/820,822, 15 pages. |
International Search Report and Written Opinion dated Apr. 15, 2019 in International Patent Application No. PCT/US2018/061502, 18 pages. |
Extended Search Report dated Aug. 16, 2019 in European Patent Application No. 18202740.9, 11 pages. |
Non-Final Office Action dated Aug. 19, 2019 in U.S. Appl. No. 14/163,438, 15 pages. |
Non-Final Office Action dated Aug. 21, 2009 in U.S. Appl. No. 14/566,215, 21 pages. |
Notice of Allowance dated Sep. 16, 2019 in U.S. Appl. No. 14/721,450, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/036495, dated Nov. 8, 2019, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/993,195, dated Feb. 6, 2020, 16 pages. |
Extended European Search Report received for European Patent Application No. 19191026.4, dated Mar. 12, 2020, 12 pages. |
Office Action received for European Patent Application No. 16727106.3, dated Apr. 8, 2020, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/993,180, dated Apr. 6, 2020, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20160166007 A1 | Jun 2016 | US |