Braided upper with multiple materials

Information

  • Patent Grant
  • 10555581
  • Patent Number
    10,555,581
  • Date Filed
    Tuesday, May 26, 2015
    9 years ago
  • Date Issued
    Tuesday, February 11, 2020
    4 years ago
Abstract
An article of footwear is formed from multiple braided components. The braided components may be braided strands formed from different tensile elements. The tensile elements may have different cross-sections. The tensile elements may be from different materials. Different braided strands may then be over-braided over a last to form a braided upper for the article of footwear.
Description
BACKGROUND

The present embodiments relate generally to articles of footwear, and in particular to articles of footwear with uppers.


Articles of footwear generally include an upper and one or more sole structures. The upper may be formed from a variety of materials that are stitched or adhesively bonded together to form a void within the footwear for comfortably and securely receiving a foot. The sole structures may include midsole structures that provide cushioning and shock absorption.


SUMMARY

In one aspect, an article of footwear having a braided upper comprises of a first braided strand and a second braided strand. The first braided strand comprises of a first group of tensile elements. The second braided strand comprises of a second group of tensile elements. The first braided strand is different than the second braided strand. The first braided strand is braided with the second braided strand to form the braided upper.


In another aspect, an article of footwear having a braided upper comprises of a first braided strand and a second braided strand. The first braided strand comprises of a first group of tensile elements. The second braided strand comprises of a second group of tensile elements. The first group of tensile elements have a first cross-sectional area. The second group of tensile elements have a second cross-sectional area. The first cross-sectional area is different than the second cross-sectional area. The first braided strand is braided with the second braided strand to form the braided upper.


In another aspect, an article of footwear having a braided upper comprises of a first braided strand and a second braided strand. The first braided strand comprises of a first group of tensile elements. The second braided strand comprises of a second group of tensile elements. The first group of tensile elements are made of a first material. The second group of tensile elements are made from a second material. The first material is different than the second material. The first braided strand is braided with the second braided strand to form the braided upper.


In another aspect, a method of making an article of footwear comprises of braiding a first group of tensile elements into a first braided strand. Braiding a second group of tensile elements into a second braided strand. Inserting a last through a central braiding area of an over-braiding device, wherein the over-braiding device is configured with the first braided strand and the second braided strand. Over-braiding over the last to form a braided upper with the first braided strand and the second braided strand. Removing the last from the braided upper.


Other systems, methods, features and advantages of the embodiments will be, or will become, apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description and this summary, be within the scope of the embodiments, and be protected by the following claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the embodiments. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.



FIG. 1 is a schematic isometric view of an embodiment of an embodiment of an article of footwear having a braided upper with an enlarged view of a braided structure;



FIG. 2 is schematic view of an embodiment of different braided strands made from different materials in a first configuration;



FIG. 3 is schematic view of an embodiment of different braided strands made from different materials in a second configuration;



FIG. 4 is schematic view of an embodiment of different braided strands made from different materials with an enlarged view of a braided structure;



FIG. 5 is schematic view of an embodiment of different braided strands with different overall cross-sectional shapes with an enlarged view of a braided structure;



FIG. 6 is schematic view of an embodiment of different braided strands with different cross-sectional diameter sizes with an enlarged view of a braided structure;



FIG. 7 is a schematic view of an embodiment of different braided strands with different cross-sectional shapes with an enlarged view of a braided structure having a biaxial braid;



FIG. 8 is a schematic view of different embodiments of multiple tensile elements that may be used to form a braided structure;



FIG. 9 is a schematic view of a process of forming a braided upper from different braided strands;



FIG. 10 is a schematic view of a braided strand being configured onto a spool component;



FIG. 11 is a schematic isometric view of a last inserted through a braiding device, with spool components configured with braided strands, to form a braided upper;



FIG. 12 is a schematic isometric view of a last inserted through a braiding device to with enlarged views of braided strands used to construct a braided upper being formed on the last; and



FIG. 13 is a schematic isometric view of a last inserted through a braiding device to with enlarged views of braided strands used to construct a braided upper being formed by on the last.





DETAILED DESCRIPTION


FIG. 1 illustrates a schematic isometric view of an embodiment of an embodiment of an article of footwear having a braided upper with an enlarged view of a braided structure. In some embodiments, article of footwear 100, also referred to simply as article 100, is in the form of an athletic shoe. In some other embodiments, the provisions discussed herein for article 100 could be incorporated into various other kinds of footwear including, but not limited to: basketball shoes, hiking boots, soccer shoes, football shoes, sneakers, running shoes, cross-training shoes, rugby shoes, baseball shoes as well as other kinds of shoes. Moreover, in some embodiments, the provisions discussed herein for article of footwear 100 could be incorporated into various other kinds of non-sports related footwear, including, but not limited to: slippers, sandals, high-heeled footwear, loafers, as well as other kinds of footwear.


In some embodiments, article 100 may be characterized by various directional adjectives and reference portions. These directions and reference portions may facilitate in describing the portions of an article of footwear. Moreover, these directions and reference portions may also be used in describing sub-components of an article of footwear (e.g., directions and/or portions of a midsole structure, an outer sole structure, an upper or any other components).


For consistency and convenience, directional adjective are employed throughout this detailed description corresponding to the illustrated embodiments. The term “longitudinal” as used throughout this detailed description and in the claims may refer to a direction extending a length article 100. In some cases, the longitudinal direction may extend from a forefoot region to a heel region of the article 100. Also, the term “lateral” as used throughout this detailed description and in the claims may refer to a direction extending along a width of the article 100. In other words, the lateral direction may extend between a lateral side and a medial side of the article 100. Furthermore, the term “vertical” as used throughout this detailed description and in the claims may refer to a direction generally perpendicular to a lateral and longitudinal direction. For example, in some cases where article 100 is planted flat on a ground surface, the vertical direction may extend from the ground surface upward. In addition, the term “proximal” may refer to a portion of an article 100 that is closer to portions of a foot, for example, when the article 100 is worn. Similarly, the term “distal” may refer to a portion of an article 100 that is further from a portion of a foot when the article 100 is worn. It will be understood that each of these directional adjectives may be used in describing individual components of article 100, such as an upper, an outsole member, a midsole member, as well as other components of an article of footwear.


For purpose of reference, article 100 may be divided into forefoot portion 104, midfoot portion 106, and heel portion 108. As shown in FIG. 1, article 100 may be associated with the right foot; however, it should be understood that the following discussion may equally apply to a mirror image of article 100 that is intended for use with a left foot. Forefoot portion 104 may be generally associated with the toes and joints connecting the metatarsals with the phalanges. Midfoot portion 106 may be generally associated with the arch of a foot. Likewise, heel portion 108 may be generally associated with the heel of a foot, including the calcaneus bone. Article 100 may also include an ankle portion 110 (which may also be referred to as a cuff portion). In addition, article 100 may include lateral side 112 and medial side 114. In particular, lateral side 112 and medial side 114 may be opposing sides of article 100. In general, lateral side 112 may be associated with the outside parts of a foot while medial side 114 may be associated with the inside part of a foot. Furthermore, lateral side 112 and medial side 114 may extend through forefoot portion 104, midfoot portion 106, and heel portion 108.


It will be understood that forefoot portion 104, midfoot portion 106, and heel portion 108 are only intended for purposes of description and are not intended to demarcate precise regions of article 100. Likewise, lateral side 112 and medial side 114 are intended to represent generally two sides rather than precisely demarcating article 100 into two halves.


In some embodiments, article 100 may be configured with an upper 102 and sole structure 116. Upper 102 may include an opening 118 to provide access to an interior cavity 120. In some embodiments, upper 102 may incorporate a plurality of material elements (e.g. textiles, polymer sheets, foam layers, leather, synthetic leather) that are stitched or bonded together to form an interior void for securely and comfortable receiving a foot. In some cases, the material elements may be selected to impart properties of durability, air-permeability, wear resistance, flexibility, and comfort, for example, to specific areas of upper 102.


In some embodiments, the upper 102 may be a braided upper. The following description makes use of the terms tensile elements, braided strands and braided structures and variants thereof. As used herein, the term “tensile element” refers to any kinds of threads, yarns, strings, filaments, fibers, wires, cables as well as possibly other kinds of tensile elements described below or known in the art. As used herein, tensile elements may describe generally elongated materials with lengths much greater than corresponding diameters. In some embodiments, tensile elements may be approximately one-dimensional elements. In some other embodiments, tensile elements may be approximately two-dimensional (e.g., with thicknesses much less than their lengths and widths). Tensile elements may be joined to form braided strands. As used herein, the term “braided strand” and its variants thereof refers to any strand formed from intertwining three or more tensile elements together. A braided strand could take the form of a braided cord, a braided rope or any other elongated braided structure. As with tensile elements, the length of a braided strand may be significantly greater than the width and/or thickness (or diameter) of the braided strand. Finally, as discussed in further detail below, braided strands may further be combined to form braided structures. As used herein, the term “braided structure” may refer to any structure formed from intertwining three or more braided strands together. Braided structures could take the form of braided cords, ropes or strands. Alternatively, braided structures may be configured as two dimensional structures (e.g., flat braids) or three-dimensional structures (e.g., braided tubes) such as with lengths and width (or diameter) significantly greater than their thicknesses.


Braiding can be used to form three-dimensional structures by braiding tensile elements over a form or a last, also referred to as over-braiding. Braided structures may be fabricated manually, or may be manufactured using automated braiding machinery, such as the machinery disclosed in U.S. Pat. Nos. 7,252,028; 8,261,648; 5,361,674; 5,398,586; and 4,275,638, all of which are incorporated by reference in their entirety herein.


The braided upper may be attached to a sole structure using adhesives, welding, molding, fusing stitching, stapling or other appropriate methods. The sole can include an insole made of a relatively soft material to provide cushioning. The outsole is generally made of a harder, more abrasion-resistant material such as rubber or EVA. The outsole may have ground-engaging structures such as cleats or spikes on its bottom surface, for providing increased traction.


Referring to the enlarged view in FIG. 1, in some embodiments, a plurality or group of different tensile elements or a plurality of different braided strands may be braided to form a larger braided structure. For purposes of clarity, in some embodiments, a biaxial braid comprises of singular tensile elements arranged in two directions. In some embodiments, the first direction is at a relative to the second direction. In some embodiments, this angle is also called the “braid angle” or the “fiber angle” or the “bias angle” and may range from about 15 degrees to about 75 degrees. In some other embodiments, a triaxial braid modifies the biaxial braid with the addition of a third tensile element. The third tensile element may be referred to as the axial or warp tensile element. In some embodiments, the axial tensile element may be used to stabilize, increase strength, or reduce elongation of the braided structure. In an exemplary embodiment, first braided strand 150, second braided strand 152, and third braided strand 154, produced from braided tensile elements, are subsequently braided together to produce triaxial braided structure 160. In this exemplary arrangement, first braided strand 150 may be viewed as the axial component of triaxial braided structure 160.


In some embodiments, the braided strands are comprised of individual tensile elements 170. In some embodiments tensile elements 170 may be uniform in terms of shape, size, or some other physical property. In some other embodiments, tensile elements 170 may be different when used to form the braided strand. In one embodiment, first tensile elements 162 have been braided to form first braided strand 150. Further, second tensile elements 164 have been braided to form second braided strand 152. Further still, third tensile elements 166 have been braided to form third braided strand 154.


Some embodiments may include provisions allowing each braided strand to impart different physical properties to various parts of braided structure 160. In some embodiments, tensile elements 170 may impart different properties relating to the shapes, sizes or cross-sections for the braided strands. For example, in one embodiment, first tensile elements 162 may be made from leather and therefore have a substantially square shape and cross-sectional shape. Thus, first braided strand 150 may have a substantially square cross-sectional shape when braided. Further, second tensile elements 164, may be fabricated from a different material, than either first tensile elements 162 or third tensile elements 166. The use of a different material may impart unique physical properties to second braided strand 152 and braided structure 160 overall. Further still, third tensile elements 166, each having a substantially circular cross-sectional shape, may in turn form a substantially circular cross-sectional shape for third braided strand 154. It is understood that an individual tensile element from first tensile elements 162, may be braided with an individual tensile element from second tensile elements 164 made from a different material, and further braided with an individual tensile element from third tensile elements 166, with a substantially circular cross-sectional shape to form braided strands. These braided strands may then be used to produce the larger braided structure 160. It is also to be understood that in some embodiments, interbraiding these thicker braided strands to form a braided structure or an upper will be thicker than a braided structure or upper that has is formed from braiding individual tensile elements.


In some embodiments, various properties of tensile elements 170, used to form each braided strand, may be chosen in order to vary the overall braided structure 160. In some embodiments, different tensile elements 170 with different properties—material, shape, size—can be combined to form a braided strand which in turn is used to produce a braided structure. The combining of different tensile elements 170 to produce a variety of braided strands and braided structures will be explained further in detail below.



FIGS. 2-3 illustrate an embodiment of three braided strands, each having different physical properties. In some embodiments, the physical properties may relate to material properties discussed above. In some embodiments, the tensile elements used to form braided strands which are used to produce a larger braided structure, can be fabricated from fibers such as nylon, carbon, polyurethane, polyester, cotton, aramid (e.g., Kevlar®), polyethylene or polypropylene. These braided strands can be braided to form three-dimensional braided structures for a wide variety of applications.


In some embodiments, the use of tensile elements made from different materials may provide a braided upper with specific features that can be tailored to a particular athletic or recreational activity. In some embodiments, braided strands made of a material with a greater tensile strength may be used in those sections of the footwear that undergo higher stress during a specific activity. Softer and more pliable braided strands may be used in sections of the footwear that are not subject to high stress, to provide a more comfortable and closely-fitting upper in those sections. Braided strands of an abrasion-resistant material may be used in particular regions of the footwear that may experience frequent contact against abrasive surfaces such as concrete or sand. Braided strands of a more durable material may be used in those regions of an upper that experience frequent contact with other surfaces, such as the surface of a football or soccer ball.


As shown in FIG. 2, in some embodiments, first braided strand 180, second braided strand 182, and third braided strand 184 may each have different physical properties based on their tensile elements. In one embodiment, first braided strand 180, comprised of first tensile elements 186, is more rigid than second braided strand 182. Second braided strand 182, comprised of second tensile elements 188, may have greater elasticity than first braided strand 180. Further, third braided strand 184, comprised of third tensile elements 190, may have greater elasticity than either first braided strand 180 and second braided strand 182. In FIG. 2, all three braided strands are viewed in a first position 192.


In FIG. 3, the elastic properties of the three braided strands are shown in a stretched or second position 194 as all three undergo tension along a first direction 196. In some embodiments, third braided strand 184 has a greater elasticity than second braided strand 182 or first braided strand 180. Therefore, third braided strand 184 stretches the farthest from its first position 192. Further, second braided strand 182 has greater elasticity than first braided strand 180. Therefore, second braided strand 182 stretches farther than first braided strand 180 but less than third braided strand 184. First braided strand 180 has less elasticity than either third braided strand 184 and second braided strand 182. Therefore, first braided strand 180 stretches less than either third braided strand 184 and second braided strand 182.


It is to be noted that in other embodiments, the physical property of the tensile elements may be related to their tensile strength. Therefore, first tensile elements 186 may have a first tensile strength. Second tensile elements 188 may have a second tensile strength different from first tensile strength. Further, third tensile elements 190 may have a third tensile strength different from either first or second tensile strength.


Referring to FIG. 4, another embodiment of different braided strands made from tensile elements 200 of different materials is illustrated. The braided strands are braided to produce a braided structure 202, a portion of which is illustrated in the enlarged view. As with the embodiments shown in FIGS. 2 and 3, these embodiments in FIG. 4 are comprised of different materials and may have different material properties including but not limited to rigidity, tensile strength, compressive strength, shear strength, elasticity, etc.


In one embodiment, braided structure 202 may comprise of first braided strand 210, second braided strand 212, and third braided strand 214. First braided strand 210 may be fabricated from first tensile elements 204 made from a first material. Second braided strand 212 may be fabricated from second tensile elements 206 made from a second material. Third braided strand 214 may be fabricated from third tensile elements 208 made from a third material. For this exemplary embodiment, braided strand 214, considered the most elastic, will provide increased stretching capabilities along an axis parallel with the braided strand. In some other embodiments, braided structure may include more braided strands made from additional tensile elements composed from a different material than first, second, or third material. In still other embodiments, braided strand 214 can be produced by interbraiding a single first tensile element 204 with a single second tensile element 206 and a single third tensile element 208. This braided strand can then be used in forming braided structure 202.


Some embodiments may provide a braided structure with other physical properties because of the different tensile elements used to form different braided strands. In some embodiments, the tensile elements may have different physical properties relating to their geometry or the shape of their cross-sectional area. In some embodiments, tensile elements may have a cross-sectional shape that is square. In some other embodiments, tensile elements may have cross-sectional shapes that are round or circular. The use of tensile elements or braided strands with different cross-sectional shapes to form a braided structure may impart unique physical properties on an upper.


In some embodiments, the use of tensile elements having different cross-sectioned shapes to form different braided strands may provide a braided upper with distinct features. In some embodiments, the different cross-section shapes may offer advantages in terms of liquid absorption, elasticity, heat shielding, insulation and reduction of material or volume. For example, in some embodiments, intertwining tensile elements with a square cross-sectioned shape with tensile elements having circular or round cross-sectioned shapes may provide voids between the tensile elements which in turn may result in a braided structure with improved liquid absorption, and rapid drying, without any degradation of tensile strength.



FIG. 5 illustrates different braided strands, made from tensile elements (not shown), each braided strand having different cross-sectional shapes due to the different cross-sectional shape of tensile elements. The braided strands may be braided to produce a larger braided structure 302, a portion of which is shown in the enlarged view.


In one embodiment, braided structure 302 may comprise of first braided strand 310, second braided strand 312, and third braided strand 314. First braided strand 310 may be constructed from first tensile elements 304 with substantially square cross-sectional shape. Thus, first braided strand 310 will have an overall first cross-sectional shape 320 that is predominantly square shaped. Second braided strand 312 may be constructed from second tensile elements 306 with circular cross-sectional shapes. Thus, second braided strand 312 may have an overall second cross-sectional shape 322 that is more circular. Third braided strand 314 may be constructed from third tensile elements 308 which also have circular cross-sectional shapes but with a different cross-sectional diameter size. Further, the quantity of third tensile elements 308 to form third braided strand 314 may be greater, due to their diameter sizes, than the quantity of tensile elements used to form first braided strand 310 or second braided strand 312. Thus, third braided strand 314 may have an overall third cross-sectional shape 324 that is hexagonal.


In some other embodiments, other braided strands may be constructed into other shapes having different cross-sections. In still some other embodiments, a plurality of braided strands can be produced by interbraiding first tensile element 304 with second tensile element 306 and third tensile element 308 to form a braided strand. These braided strands can then be braided to form braided structure 302.



FIG. 6, illustrates an embodiment of various combinations of braided strands braided to produce a larger braided structure. Using the concepts discussed above, a braided structure or braided upper may be formed by braiding a group of braided strands formed from different tensile elements 400 with different cross-sectional diameter sizes. That is, the tensile elements may have the same shape, (e.g. circular) however they may have different cross-sectional diameter sizes. Therefore, the braided structure formed by a group of braided strands with varying cross-sectional diameter sizes may not be uniform and may differ along different regions of the braided upper. It is to be understood that in still some other embodiments, braided strands may be constructed from tensile elements that may have differing cross-sectional diameter sizes and also are of a different material.


Referring to FIG. 6, in one embodiment, braided structure 402 may comprise of first braided strand 410, second braided strand 412, and third braided strand 414. First braided strand 410 may be constructed from first tensile elements 404. Second braided strand 412 may be constructed from second tensile elements 406. Third braided strand 414 may be constructed from third tensile elements 408. In some embodiments, the diameter size of the tensile elements used to produce the braided strands may vary. For example, in some embodiments, first tensile elements 404 may each have a first diameter size 415 that is larger than the diameter sizes of second tensile elements 406. Second tensile elements 406 may each have a second diameter size 416 which in turn is different than the diameter sizes of third tensile elements 408. Third tensile elements 408 may each have a third diameter size 417 that is less than first diameter size 415 and second diameter size 416. In an exemplary embodiment, first diameter size may range from 50 micrometers to 100 micrometers. Second diameter size may range from 30 micrometers to 50 micrometers. Third diameter size may range from 10 micrometers to 30 micrometers. In some other embodiments, the cross-sectional diameter sizes of tensile elements may be different.


In still some other embodiments, the number of first tensile elements 404 used to produce first braided strand 410 may differ from the number of second tensile elements 406 used to produce second braided strand 412 which may differ from the number of third tensile elements 408 used to produce third braided strand 414. Thus, the sizes, or cross-section diameters of each of the braided strands may differ with respect to each other. The varying size diameters of the braided strands may provide braided structure 402 with greater density in areas where needed, and less density in areas where desired.


In some embodiments, a braided structure can be formed using a biaxial braid, as discussed above. Forming a braided structure with braided strands arranged in a biaxial braid as opposed to a triaxial braid may impart a lighter structure because of the absence of the axial component.


Referring to FIG. 7, in one embodiment, braided structure 420 is formed by braiding first braided strand 422 with second braided strand 424 in a biaxial braid 426. As illustrated, first braided strand 422 may comprise of first tensile elements 428 which have square cross-sectional shapes. First braided strand 422 may be further oriented in a first direction 430. Second braided strand 424 may comprise of second tensile elements 432 which have circular cross-sectional shapes. Second braided strand 424 may be further oriented in a second direction 434. In some embodiments, first braided strand 422 oriented along first direction 430 may be at a bias angle relative to second braided strand 424 oriented along second direction. In one embodiment, the bias angle is 45 degrees. Further, as noted above, first tensile elements 428 and second tensile elements 430 may also have different material properties. For example, first tensile elements 428 may be more elastic than second tensile elements 430.


Some embodiments may include provisions for constructing a braided upper with tensile elements comprising multiple components. In some embodiments, a braided structure can be formed from tensile elements where the tensile elements are not singular tensile elements but multi-component elements. In some other embodiments, tensile elements may undergo a heating process to change the physical properties of the tensile elements prior to forming a braided strand.


Referring to FIG. 8, in some embodiments, multiple tensile elements 600 may be used in forming braided strands to produce a braided structure. In some embodiments, multiple tensile elements 600 may include first multiple tensile elements 602 formed into a typical braided strand 604 previously discussed above. Braided strand 604 may then be braided with other multiple tensile elements 600 to form braided structure 650.


In some other embodiments, multiple tensile elements 600 may include second multiple tensile elements 610 comprised of bi-component yarns. In some embodiments, bi-component yarns may include a tensile element with a sheath/core configuration, where sheath component 612 encloses a core component 614 forming a sheath/core structure 615. In some other embodiments, sheath/core structure 615 may be a coaxial embodiment. For example, sheath component 612 may be an outer member that coats core component 614. Core component 614 may be a separate material that is different from sheath component 612 which may be any coating known in the art.


In another embodiment, bi-component yarns may comprise of tensile elements having side-by-side configuration, where a first side component 616 is disposed adjacent to a second side component 618 to form a single unitary side-by-side structure 620. In some cases, first side component 616 may be a different material than second side component 618.


In some embodiments, second multiple tensile elements 610, whether they are sheath/core tensile structure 615, a coaxial embodiment structure, and/or side-by-side structure 620 may then be used to form braided structure 650.


In another embodiment, multiple tensile elements 600 may include third tensile elements 622 comprising of hybrid yarns. Hybrid yarns may include at least three tensile elements 623 that are twisted, or non-braided, together as shown. The third tensile elements 622, after being twisted together, may then be used to produce braided structure 650.


In some other embodiments, multiple tensile elements 600 used in forming braided structure, may include fourth tensile elements 624. Fourth tensile elements 624 may comprise of fusible or thermoplastic yarns. Fusible yarns may include a plurality of tensile elements that have been braided together and then heated within a desired temperature range known in the art. In one embodiment, fusible yarn may include first fusible element 626, second fusible element 628, and third fusible element 630. When heated, first fusible element 626, second fusible element 628, and third fusible element 630 are fused in a braided configuration to form a braided strand. The braided strand may then be used to produce braided structure 650.


In still another embodiment, multiple tensile elements 600 used in forming a braided structure, may include fifth multiple tensile elements 632. Fifth multiple tensile elements 632 may comprise of first direction tensile elements 634, some of which are arranged in a parallel formation in a first direction prior to being braided with second tensile elements 638 which are arranged in a parallel formation in a second direction. This is in contrast with previously discussed braided strands where singular tensile components are arranged in a first and second direction as explained above. In some embodiments, fifth multiple tensile elements 640 may include an axial tensile element 642.



FIG. 9 illustrates a generic process for forming a braided upper. In some embodiments the following steps may be performed by a control unit (not shown) associated with a braiding process. In some other embodiments, these steps may be performed by additional devices such as an over-braiding device. It will be understood that in other embodiments, one or more of the following steps may be optional, or additional steps may be added.


During step 710, a first braided strand is created. In some embodiments, the first braided strand may be created using some of the concepts discussed above. For example, in some embodiments, the first tensile elements having a square cross-sectional shape may be used to form first braided strand. In some other embodiments, first tensile elements may have different physical property relating to a first type of material.


In step 720, a second braided strand is created that is different from the first braided strand created in step 710. As discussed above, the second braided strand may be different from the first braided strand in terms of material properties, cross-sectional shape, cross-sectional diameter size, etc. Further, in some embodiments, the second braided strand may different by using tensile elements arranged in a non-braided arrangement as illustrated in FIG. 8.


In step 730, in some embodiments, the first braided strand is then braided with the second braided strand. In some other embodiments, a third braided strand may be combined with the first and second braided strand. In some embodiments, third braided strand may be different from the first and second braided strand using the concepts previously discussed.


In step 740, a braided upper is constructed using multiple braided strands constructed in the previous steps. Some embodiments may utilize an over-braiding technique to manufacture some or all of a braided upper. For example, in some cases, an over-braiding machine or apparatus may be used to form a braided upper. Specifically, in some cases, a footwear last may be inserted through a braiding point of a braiding apparatus, thereby allowing one or more layers of a braided material to be formed over the footwear last. These concepts will be further explained in detail below.


After the group of tensile elements have been braided into a braided strand, the braided strand may then be wound onto a spool component in preparation of forming a braided structure. Referring to FIG. 10, in one embodiment, braided strand 760 is formed from a group of tensile elements. Specifically, first tensile element 762, second tensile element 764, and third tensile element 766 are interbraided to form braided strand 760. Braided strand 760 is then wound onto spool component 770 which can then be used in an over-braiding device to form a braided structure.


Referring to FIG. 11, the step of inserting a last 802 through an over-braiding device 804 to form a braided upper 806 is illustrated. Generally, an over-braiding device may be any machine, system and/or device that is capable of applying one or more braided strands, or multi-component elements over a footwear last or other form to form the braided structure. Braiding machines may generally include spools, or bobbins, that are moved or passed along various paths on the machine. As the spools are passed around, braided strands extending from the spools towards a center of the machine may converge at a “braiding point” or braiding area. Braiding machines may be characterized according to various features including spool control and spool orientation. In some braiding machines, spools may be independently controlled so that each spool can travel on a variable path throughout the braiding process, hereafter referred to as “independent spool control”. Other braiding machines, however, may lack independent spool control, so that each spool is constrained to travel along a fixed path around the machine. Additionally, in some braiding machines, the central axes of each spool point in a common direction so that the spool axes are all parallel, hereby referred to as an “axial configuration”. In other braiding machines, the central axis of each spool is oriented towards the braiding point (e.g., radially inwards from the perimeter of the machine towards the braiding point), hereby referred to as a “radial configuration”.


For purposes of clarity, over-braiding device 804 is shown schematically in the figures. In some embodiments, over-braiding device 804 may comprise of an outer frame portion 820. In some embodiments, outer frame portion 820 may house spool components 808 to include spool component 770 from FIG. 10. Spool components 808 may include a group of braided strands 810 which extend from outer frame portion 820 towards a central braiding area 812. As discussed below, a braided upper may be formed by moving last 802 through central braiding area 812.


In some embodiments, last 802 may be manually fed through over-braiding device 804 by a human operator. In other embodiments, a continuous last feeding system can be used to last 802 through over-braiding device 804. The present embodiments could make use of any of the methods, systems, process, or components for forming a braided upper disclosed in Bruce, U.S. Patent Publication Number 2015/0007451, published on Jan. 8, 2015, and titled “Article of Footwear with Braided Upper” (now U.S. patent application Ser. No. 14/495,252 filed Sep. 24, 2014), the entirety of which is herein incorporated by reference and hereafter referred to as “the Braided Upper application.” Further, the present embodiments could make use of any methods, systems, process or components disclosed in Bruce, U.S. Patent Publication Number 2016/0166000, published on Jun. 16, 2016, and titled “Last System For Braiding Footwear” (now U.S. patent application Ser. No. 14/565,682 filed Dec. 10, 2014, issued on Dec. 12, 2017 as U.S. Pat. No. 9,838,253), the entirety of which is herein incorporated by reference and hereafter referred to as “the Last System Braiding application.”


As shown in FIG. 11, as last 802 is fed through over-braiding device 804, a braided structure 814 forms on the surface of last 802. In some embodiments, braided structure 814 forms a unitary piece as a braided upper 806. In some embodiments, braided upper 806 will conform to the geometry and the shape of last 802. In some embodiments, once braided upper 806 has been formed on last 802, the last 802 may then be removed from braided upper 806 (not shown).


In this illustration, toe region 850 of an upper has already been formed, and over-braiding device 804 is forming forefoot region 852 of the upper. The density of the braiding can be varied by, for example, feeding toe region 850 of the last through over-braiding device 804 more slowly while toe region 850 is being formed (to produce a relatively higher density braid) than while forefoot region 852 is being formed (to produce a relatively lower density braid). In some other embodiments, the last may also be fed at an angle and/or twisted to form braided. In still some other cases, the last may also be fed through the over-braiding device two or more times in order to form more complex structures, or may alternatively be fed through two or more over-braiding devices. In some embodiments, once the over-braiding process has been completed, a braided upper may be removed from the footwear last. In some cases, one or more openings (such as a throat opening) can be cut out of the resulting over braided upper to form the final upper for use in an article of footwear.


Some embodiments may include constructing a braided upper made from a group of braided strands discussed previously. As shown in FIG. 12, in one embodiment, braided upper 902 is formed as last 903 is inserted through over-braiding device 904 configured with multiple braided strands 906. Referring to the enlarged views of FIG. 12, in one embodiment, braided upper 902 is shown being constructed from first braided strand 908 and second braided strand 910. In some embodiments, braided upper 902 may have first braided strand 908 and second braided strand 910 braided in a biaxial braided structure 912. In some other embodiments, the braided strands may have a different type of braided structure. In some cases, as explained above, first braided strand 908 and second braided strand 910 may be different in terms of having different material or physical properties of their respective tensile elements. In some other embodiments, first braided strand 908 and second braided strand 910 may be different in terms of using multiple tensile elements as shown in FIG. 8.


In some other embodiments, a braided upper may be formed from a group of braided strands, where each braided strand is composed of a different material. Referring to FIG. 13, in one embodiment, braided upper 1002 is formed as last 1004 is inserted through over-braiding device 1006 configured with a group of braiding strands 1008. As shown in the enlarged view, in one embodiment, first braided strand 1010 is interbraided with second braided strand 1012 and third braided strand 1014 in a triaxial braid 1016 to form braided upper 1002. In some embodiments, first braided strand 1010 comprised of first tensile elements 1020 may be made from a first material. In some embodiments, second braided strand 1012 comprised of second tensile elements 1022 may be made from a second material that is different from the first material. In some embodiments, third braided strand 1014, comprised of third tensile elements 1024, may be made from a third material different from first and second material. In still some other embodiments, first braided strand 1010, second braided strand 1012, and third braided strand 1014 may distinct in terms of their cross-sectional shape, or other properties as previously explained above.


While the embodiments of the figures depict articles having low collars (e.g., low-top configurations), other embodiments could have other configurations. In particular, the methods and systems described herein may be utilized to make a variety of different article configurations, including articles with higher cuff or ankle portions. For example, in another embodiment, the systems and methods discussed herein can be used to form a braided upper with a cuff that extends up a wearer's leg (i.e., above the ankle). In another embodiment, the systems and methods discussed herein can be used to form a braided upper with a cuff that extends to the knee. In still another embodiment, the systems and methods discussed herein can be used to form a braided upper with a cuff that extends above the knee. Thus, such provisions may allow for the manufacturing of boots comprised of braided structures. In some cases, articles with long cuffs could be formed by using lasts with long cuff portions (or leg portions) with a braiding machine (e.g., by using a boot last). In such cases, the last could be rotated as it is moved relative to a braiding point so that a generally round and narrow cross-section of the last is always presented at the braiding point.


While various embodiments have been described, the description is intended to be exemplary, rather than limiting and it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of the embodiments. Any feature of any embodiment may be used in combination with or substituted for any other feature or element in any other embodiment unless specifically restricted. Accordingly, the embodiments are not to be restricted except in light of the attached claims and their equivalents. Also, various modifications and changes may be made within the scope of the attached claims.

Claims
  • 1. An article of footwear having a braided upper, comprising: a first group of tensile elements having a square cross-sectional shape and braided to form a first braided strand having a first cross-sectional area;a second group of tensile elements having a circular cross-sectional shape and braided to form a second braided strand having a a second cross-sectional area;wherein the first braided strand is different than the second braided strand; andwherein the first braided strand oriented along a first direction is braided with the second braided strand oriented along a second direction at a bias relative to the first direction to form at least a region of the braided upper and wherein one of the first braided strand and the second braided strand is an axial component of the braided upper.
  • 2. The article of footwear of claim 1, wherein the first cross-sectional area is different than the second cross-sectional area.
  • 3. The article of footwear of claim 1, wherein the first group of tensile elements are made from a first material, the second group of tensile elements are made of a second material, and wherein the first material is different than the second material.
  • 4. The article of footwear of claim 1, wherein the first group of tensile elements have a first cross-sectional diameter, the second group of tensile elements have a second cross-sectional diameter, and wherein the first cross-sectional diameter is different than the second cross-sectional diameter.
  • 5. The article of footwear of claim 1, wherein the first group of tensile elements have a first elasticity, the second group of tensile elements have a second elasticity, and wherein the first elasticity is different than the second elasticity.
  • 6. The article of footwear of claim 1, wherein the first group of tensile elements have a first tensile strength, the second group of tensile elements have a second tensile strength, and wherein the first tensile strength is different than the second tensile strength.
  • 7. An article of footwear having a braided upper, comprising: a first braided strand comprised of a first group of tensile elements having a square cross-sectional shape, wherein the first group of tensile elements are braided together to form the first braided strand having a first cross-sectional area;a second braided strand comprised of a second group of tensile elements having a circular cross-sectional shape, wherein the second group of tensile elements are braided together to form the second braided strand having a second cross-sectional area;wherein the first braided strand oriented along a first direction is braided with the second braided strand oriented along a second direction at a bias angle relative to the first direction to form at least a region of the braided upper; andwherein one of the first braided strand and the second braided strand is an axial component of the braided upper.
  • 8. The article of footwear of claim 7, wherein the first group of tensile elements are made from a first material, the second group of tensile elements are made of a second material, and wherein the first material is different than the second material.
  • 9. The article of footwear of claim 7, wherein the first group of tensile elements have a first cross-sectional diameter, the second group of tensile elements have a second cross-sectional diameter, and wherein the first cross-sectional diameter is different than the second cross-sectional diameter.
  • 10. The article of footwear of claim 7, wherein the first group of tensile elements have a first elasticity, the second group of tensile elements have a second elasticity, and wherein the first elasticity is different than the second elasticity.
  • 11. The article of footwear of claim 10, wherein the first group of tensile elements have a first tensile strength, the second group of tensile elements have a second tensile strength, and wherein the first tensile strength is different than the second tensile strength.
  • 12. An article of footwear having a braided upper, comprising: a first braided strand comprised of a first group of tensile elements having a square cross-sectional shape that are braided together to form the first braided strand having a first cross-sectional area;a second braided strand comprised of a second group of tensile elements having a circular cross-sectional shape that are braided together to form the second braided strand having a second cross-sectional area;wherein the first group of tensile elements are made of a first material;wherein the second group of tensile elements are made of a second material;wherein the first material is different than the second material; andwherein the first braided strand oriented along a first direction is braided with the second braided strand oriented along a second direction at a bias angle relative to the first direction to form at least a region of the braided upper and wherein one of the first braided strand and the second braided strand is an axial component of the braided upper.
  • 13. The article of footwear of claim 12, wherein the first cross-sectional area is different than the second cross-sectional area.
  • 14. The article of footwear of claim 12, wherein the first group of tensile elements have a first cross-sectional diameter, the second group of tensile elements have a second cross-sectional diameter, and wherein the first cross-sectional diameter is different than the second cross-sectional diameter.
  • 15. The article of footwear of claim 12, wherein the first group of tensile elements have a first elasticity, the second group of tensile elements have a second elasticity, and wherein the first elasticity is different than the second elasticity.
US Referenced Citations (341)
Number Name Date Kind
165941 Malhere Jul 1875 A
329739 Henkels Nov 1885 A
376372 Dodge et al. Jan 1888 A
509241 Packard Nov 1893 A
578294 Leayitt Mar 1897 A
586137 Medger Jul 1897 A
621922 Kelsall Mar 1899 A
1182325 Sedmak May 1916 A
1318888 Le Carpentier Oct 1919 A
1527344 Bente et al. Feb 1925 A
1538160 Bosebeck May 1925 A
1540903 Santoyo Jun 1925 A
1554325 Bente Sep 1925 A
1583273 Bosebeck May 1926 A
1597934 Stimpson Aug 1926 A
1600621 Buek, Jr. Sep 1926 A
1622021 Birkin et al. Mar 1927 A
1637716 Turck Aug 1927 A
1663319 Snell Mar 1928 A
1687643 Berliner Oct 1928 A
1713307 Stritter May 1929 A
1717183 Brenner Jun 1929 A
1803554 Knilans May 1931 A
1828320 Daniels Oct 1931 A
1832691 David Nov 1931 A
1864254 Meyer Jun 1932 A
1877080 Teshima Sep 1932 A
1887643 Huber Nov 1932 A
1949318 Markowsky Feb 1934 A
D91999 Heilbrunn Apr 1934 S
2001293 Wallace May 1935 A
2022350 Huber Nov 1935 A
2091215 Price Aug 1937 A
2144689 Roberts Jan 1939 A
2147197 Glidden Feb 1939 A
2161472 Hurwit Jun 1939 A
2162472 Lou Jun 1939 A
2165092 Daniels Jul 1939 A
2188640 Bloch et al. Jan 1940 A
RE21392 Hurwit Mar 1940 E
2271888 Manley Feb 1942 A
2311959 Nurk Feb 1943 A
D137767 Goldstein Apr 1944 S
2382559 Goldstein Aug 1945 A
2412808 Goldstein Dec 1946 A
2521072 Lovell Sep 1950 A
D164847 Dronoff Oct 1951 S
2586045 Hoza Feb 1952 A
2617129 Petze Nov 1952 A
2641004 Whiting et al. Jun 1953 A
2675631 Carr Apr 1954 A
2679117 Reed May 1954 A
2701887 Nolan Feb 1955 A
2936670 Erwin May 1960 A
3052904 Reid et al. Sep 1962 A
3257677 Batchelder et al. Jun 1966 A
3282757 Brussee Nov 1966 A
3397847 Thaden Aug 1968 A
3474478 Batchelder et al. Oct 1969 A
3504450 Steadman et al. Apr 1970 A
3525110 Rubico Aug 1970 A
3586058 Ahrens et al. Jun 1971 A
3619838 Winkler Nov 1971 A
3745600 Rubico et al. Jul 1973 A
3805667 Orser Apr 1974 A
3821827 Nadler Jul 1974 A
4134955 Hanrahan, Jr. et al. Jan 1979 A
4149249 Pavkovich Apr 1979 A
4222183 Haddox Sep 1980 A
4232458 Bartels Nov 1980 A
4275638 DeYoung Jun 1981 A
4341097 Cassidy et al. Jul 1982 A
4351889 Sundberg Sep 1982 A
4394803 Goldstein Jul 1983 A
4430811 Okada Feb 1984 A
4447967 Zaino May 1984 A
4519290 Inman et al. May 1985 A
4587749 Berlese May 1986 A
4591155 Adachi May 1986 A
4629650 Kataoka Dec 1986 A
4640027 Berlese Feb 1987 A
4719837 McConnell et al. Jan 1988 A
4785558 Shiomura Nov 1988 A
4847063 Smith Jun 1989 A
4848745 Bohannan et al. Jul 1989 A
4857124 Shobert et al. Aug 1989 A
4882848 Breyer et al. Nov 1989 A
4885973 Spain Dec 1989 A
4916997 Spain Apr 1990 A
4919388 Koike et al. Apr 1990 A
4974275 Backes et al. Dec 1990 A
4976812 McConnell et al. Dec 1990 A
4992313 Shobert et al. Feb 1991 A
5001961 Spain Mar 1991 A
D315823 Signori Apr 1991 S
5067525 Tsuzuki et al. Nov 1991 A
5121329 Crump et al. Jun 1992 A
5201952 Yahagi et al. Apr 1993 A
5203249 Adams et al. Apr 1993 A
5257571 Richardson Nov 1993 A
5287790 Akiyama et al. Feb 1994 A
5335517 Throneburg et al. Aug 1994 A
5345638 Nishida Sep 1994 A
5348056 Tsuzuki Sep 1994 A
5361674 Akiyama et al. Nov 1994 A
5381610 Hanson Jan 1995 A
5388497 Akiyama et al. Feb 1995 A
5396829 Akiyama et al. Mar 1995 A
5398586 Akiyama et al. Mar 1995 A
5439215 Ratchford Aug 1995 A
5476027 Uchida et al. Dec 1995 A
5647150 Romanato et al. Jul 1997 A
5732413 Williams Mar 1998 A
5885622 Daley Mar 1999 A
5896758 Rock et al. Apr 1999 A
5901632 Ryan May 1999 A
6024005 Uozumi Feb 2000 A
6029376 Cass Feb 2000 A
6205683 Clark et al. Mar 2001 B1
6308536 Roell Oct 2001 B2
6345598 Bogdanovich et al. Feb 2002 B1
6401364 Burt Jun 2002 B1
6482492 Hung Nov 2002 B1
6510961 Head et al. Jan 2003 B1
6588237 Cole et al. Jul 2003 B2
6679152 Head et al. Jan 2004 B1
6696001 Quddus Feb 2004 B1
6826853 Zanatta Dec 2004 B1
6910288 Dua Jun 2005 B2
6931762 Dua Aug 2005 B1
6945153 Knudsen Sep 2005 B2
6971252 Therin et al. Dec 2005 B2
7004967 Chouinard et al. Feb 2006 B2
7093527 Rapaport et al. Aug 2006 B2
7168951 Fischer et al. Jan 2007 B2
7204903 Yasui Apr 2007 B2
7228777 Morissette Jun 2007 B2
7252028 Bechtold et al. Aug 2007 B2
7262353 Bartholomew et al. Aug 2007 B2
7275471 Nishri et al. Oct 2007 B2
7293371 Aveni Nov 2007 B2
7300014 Allen Nov 2007 B2
7347011 Dua et al. Mar 2008 B2
D578294 Mervar et al. Oct 2008 S
7430818 Valat et al. Oct 2008 B2
7444916 Hirukawa Nov 2008 B2
7549185 Yang Jun 2009 B2
7566376 Matsuoka Jul 2009 B2
7703218 Burgess Apr 2010 B2
7793434 Sokolowski et al. Sep 2010 B2
7793576 Head et al. Sep 2010 B2
7815141 Uozumi et al. Oct 2010 B2
7836608 Greene Nov 2010 B2
7870681 Meschter Jan 2011 B2
7908956 Dow et al. Mar 2011 B2
7913426 Valat et al. Mar 2011 B2
7938853 Chouinard et al. May 2011 B2
7941942 Hooper et al. May 2011 B2
7963747 Cairo Jun 2011 B2
8006601 Inazawa et al. Aug 2011 B2
8051585 Hope et al. Nov 2011 B2
8056173 RongBo Nov 2011 B2
8061253 Wybrow Nov 2011 B2
8210086 Head et al. Jul 2012 B2
8261648 Marchand et al. Sep 2012 B1
8266827 Dojan et al. Sep 2012 B2
8312645 Dojan et al. Nov 2012 B2
8312646 Meschter et al. Nov 2012 B2
8388791 Dojan et al. Mar 2013 B2
8394222 Rettig Mar 2013 B2
8438757 Roser May 2013 B2
8511214 Gries Aug 2013 B2
8544197 Spanks et al. Oct 2013 B2
8544199 Pentland Oct 2013 B1
8578534 Langvin et al. Nov 2013 B2
8578632 Bell et al. Nov 2013 B2
8651007 Adams Feb 2014 B2
8690962 Dignam et al. Apr 2014 B2
8757038 Siegismund Jun 2014 B2
8770081 David et al. Jul 2014 B2
8789295 Burch et al. Jul 2014 B2
8789452 Janardhan et al. Jul 2014 B1
8794118 Dow et al. Aug 2014 B2
8819963 Dojan et al. Sep 2014 B2
8959959 Podhajny Feb 2015 B1
8984776 Ludemann et al. Mar 2015 B2
8997529 Podhajny Apr 2015 B1
D737561 Aveni et al. Sep 2015 S
9179739 Bell et al. Nov 2015 B2
D769590 Aveni et al. Oct 2016 S
9681708 Greene et al. Jun 2017 B2
9756901 Musho et al. Sep 2017 B2
D798565 Aveni et al. Oct 2017 S
20010007180 Bordin et al. Jul 2001 A1
20030000111 Basso Jan 2003 A1
20030213547 Ono et al. Nov 2003 A1
20040118018 Dua Jun 2004 A1
20050076536 Hatfield et al. Apr 2005 A1
20050081402 Orei et al. Apr 2005 A1
20050115284 Dua Jun 2005 A1
20050178026 Friton Aug 2005 A1
20050193592 Dua et al. Sep 2005 A1
20050208860 Baron et al. Sep 2005 A1
20050284002 Aveni Dec 2005 A1
20060048413 Sokolowski et al. Mar 2006 A1
20060059715 Aveni Mar 2006 A1
20060260365 Miyamoto Nov 2006 A1
20060265908 Palmer et al. Nov 2006 A1
20060283042 Greene et al. Dec 2006 A1
20060283048 Lebo Dec 2006 A1
20070022627 Sokolowski et al. Feb 2007 A1
20070062067 Covatch Mar 2007 A1
20070180730 Greene et al. Aug 2007 A1
20070245595 Chen et al. Oct 2007 A1
20070271821 Meschter Nov 2007 A1
20070271822 Meschter Nov 2007 A1
20080005930 Skirrow Jan 2008 A1
20080022553 McDonald et al. Jan 2008 A1
20080078103 Liles Apr 2008 A1
20080110048 Dua et al. May 2008 A1
20080250668 Marvin et al. Oct 2008 A1
20090126225 Jarvis May 2009 A1
20090193961 Jensen et al. Aug 2009 A1
20090241374 Sato et al. Oct 2009 A1
20090306762 McCullagh et al. Dec 2009 A1
20100018075 Meschter et al. Jan 2010 A1
20100043253 Dojan et al. Feb 2010 A1
20100095556 Jarvis Apr 2010 A1
20100095557 Jarvis Apr 2010 A1
20100107442 Hope et al. May 2010 A1
20100139057 Soderberg et al. Jun 2010 A1
20100154256 Dua Jun 2010 A1
20100199520 Dua et al. Aug 2010 A1
20100251491 Dojan et al. Oct 2010 A1
20100251564 Meschter Oct 2010 A1
20100319215 Roser Dec 2010 A1
20110041359 Dojan et al. Feb 2011 A1
20110067271 Foxen et al. Mar 2011 A1
20110078921 Greene et al. Apr 2011 A1
20110088285 Dojan et al. Apr 2011 A1
20110094127 Dana, III Apr 2011 A1
20110146104 Lafortune Jun 2011 A1
20110239486 Berger et al. Oct 2011 A1
20110266384 Goodman et al. Nov 2011 A1
20120023786 Dojan Feb 2012 A1
20120030965 Greene et al. Feb 2012 A1
20120055044 Dojan et al. Mar 2012 A1
20120066931 Dojan et al. Mar 2012 A1
20120096742 Shim Apr 2012 A1
20120117826 Jarvis May 2012 A1
20120144698 McDowell Jun 2012 A1
20120159813 Dua et al. Jun 2012 A1
20120186102 Lee et al. Jul 2012 A1
20120233882 Huffa et al. Sep 2012 A1
20120234052 Huffa et al. Sep 2012 A1
20120246973 Dua Oct 2012 A1
20120255201 Little Oct 2012 A1
20120279260 Dua et al. Nov 2012 A1
20120291314 Sokolowski et al. Nov 2012 A1
20120297643 Shaffer et al. Nov 2012 A1
20130019500 Greene Jan 2013 A1
20130025157 Wan et al. Jan 2013 A1
20130055590 Mokos Mar 2013 A1
20130081307 del Biondi et al. Apr 2013 A1
20130211492 Schneider Aug 2013 A1
20130219636 Dojan et al. Aug 2013 A1
20130255103 Dua et al. Oct 2013 A1
20130260104 Dua et al. Oct 2013 A1
20130260629 Dua et al. Oct 2013 A1
20130269159 Robitaille et al. Oct 2013 A1
20130269209 Lang et al. Oct 2013 A1
20130269212 Little Oct 2013 A1
20130291293 Jessiman et al. Nov 2013 A1
20130304232 Gries Nov 2013 A1
20130305465 Siegismund Nov 2013 A1
20130305911 Masson et al. Nov 2013 A1
20130312284 Berend et al. Nov 2013 A1
20140000043 Boardman et al. Jan 2014 A1
20140007458 Berger et al. Jan 2014 A1
20140068838 Beers et al. Mar 2014 A1
20140070042 Beers et al. Mar 2014 A1
20140082905 Wen Mar 2014 A1
20140088688 Lilburn et al. Mar 2014 A1
20140109441 McDowell et al. Apr 2014 A1
20140130372 Aveni et al. May 2014 A1
20140134405 Yang May 2014 A1
20140137433 Craig May 2014 A1
20140137434 Craig May 2014 A1
20140150292 Podhajny et al. Jun 2014 A1
20140173932 Bell Jun 2014 A1
20140173934 Bell Jun 2014 A1
20140173935 Sabbioni Jun 2014 A1
20140182447 Kang et al. Jul 2014 A1
20140189964 Wen et al. Jul 2014 A1
20140196316 Follet Jul 2014 A1
20140215850 Redl et al. Aug 2014 A1
20140237854 Fallon Aug 2014 A1
20140245633 Podhajny et al. Sep 2014 A1
20140259760 Dojan et al. Sep 2014 A1
20140310983 Tamm et al. Oct 2014 A1
20140310984 Tamm et al. Oct 2014 A1
20140310987 Sokolowski et al. Oct 2014 A1
20140338222 Song Nov 2014 A1
20140352173 Bell et al. Dec 2014 A1
20140373389 Bruce Dec 2014 A1
20140377488 Jamison Dec 2014 A1
20150007451 Bruce Jan 2015 A1
20150013187 Taniguchi et al. Jan 2015 A1
20150052778 Kirk et al. Feb 2015 A1
20150075031 Podhajny et al. Mar 2015 A1
20150143716 Long et al. May 2015 A1
20150143720 Avar May 2015 A1
20150201705 Doremus et al. Jul 2015 A1
20150201707 Bruce Jul 2015 A1
20150202915 Lee Jul 2015 A1
20150272274 Berns et al. Oct 2015 A1
20150282565 Kilgore Oct 2015 A1
20150305442 Ravindran Oct 2015 A1
20150313316 Boucher et al. Nov 2015 A1
20150320139 Peitzker et al. Nov 2015 A1
20150342286 Huffman et al. Dec 2015 A1
20150374064 Pierobon Dec 2015 A1
20160021979 Iuchi et al. Jan 2016 A1
20160029736 Meir Feb 2016 A1
20160058100 Dealey et al. Mar 2016 A1
20160076178 Head Mar 2016 A1
20160095377 Tamm Apr 2016 A1
20160106182 Yun Apr 2016 A1
20160166000 Bruce et al. Jun 2016 A1
20160166007 Bruce et al. Jun 2016 A1
20160166010 Bruce et al. Jun 2016 A1
20160168774 Breithaupt et al. Jun 2016 A1
20160174660 Iuchi et al. Jun 2016 A1
20160185062 Boucher et al. Jun 2016 A1
20160208421 Baines et al. Jul 2016 A1
20160213095 Kohatsu et al. Jul 2016 A1
20160345675 Bruce et al. Dec 2016 A1
20170035149 Bruce et al. Feb 2017 A1
20170325545 Becker et al. Nov 2017 A1
20170325546 Becker et al. Nov 2017 A1
20190150552 Casillas et al. May 2019 A1
Foreign Referenced Citations (60)
Number Date Country
426458 Mar 1938 BE
86209002 Oct 1987 CN
1121403 May 1996 CN
1883325 Dec 2006 CN
2930360 Aug 2007 CN
201175007 Jan 2009 CN
201356120 Dec 2009 CN
102271548 Dec 2011 CN
102987631 Mar 2013 CN
203369442 Jan 2014 CN
20403521 Dec 2014 CN
726634 Oct 1942 DE
1140107 Nov 1962 DE
4306286 Sep 1993 DE
102011011185 Aug 2012 DE
102011119245 Oct 2012 DE
0372370 Jun 1990 EP
1486601 Dec 2004 EP
2657384 Oct 2013 EP
2792261 Oct 2014 EP
2792264 Oct 2014 EP
2811056 Dec 2014 EP
3011855 Apr 2016 EP
1012719 Jul 1952 FR
430805 Jun 1935 GB
477556 Jan 1938 GB
1083849 Sep 1967 GB
S51107964 Sep 1976 JP
H07054250 Feb 1995 JP
H0733076 Apr 1995 JP
H07216703 Aug 1995 JP
08109553 Apr 1996 JP
H09322810 Dec 1997 JP
H10158965 Jun 1998 JP
2001030361 Feb 2001 JP
2004105323 Apr 2004 JP
2004339651 Dec 2004 JP
20050422266 Feb 2005 JP
2005102933 Apr 2005 JP
2005290628 Oct 2005 JP
2006009175 Jan 2006 JP
2006161167 Jun 2006 JP
2008240187 Oct 2008 JP
20020038168 May 2002 KR
100737426 Mar 2007 KR
0007475 Feb 2000 WO
0036943 Jun 2000 WO
03016036 Feb 2003 WO
2009000371 Dec 2008 WO
2010080182 Jul 2010 WO
2011082391 Jul 2011 WO
2011111564 Sep 2011 WO
2011126837 Oct 2011 WO
2011137405 Nov 2011 WO
2013071679 May 2013 WO
2013126313 Aug 2013 WO
2014134244 Sep 2014 WO
2014209594 Dec 2014 WO
2014209596 Dec 2014 WO
2016191478 Dec 2016 WO
Non-Patent Literature Citations (62)
Entry
International Search Report and Written Opinion dated Sep. 23, 2016 in International Application No. PCT/2016/034109, 18 pages.
International Search Report and Written Opinion dated Sep. 19, 2014 in PCT/US2014/041659 10 pages.
International Search Report and Written Opinion dated Sep. 23, 2014 in International Patent Application No. PCT/US2014/041669. 10 pages.
Australian Office Action dated May 28, 2016 for Australian Patent Application No. 2014303040, 3 Pages.
Australian Office Action dated May 28, 2016 for Australian Patent Application No. 2014303042, 2 Pages.
Non-Final Office Action dated Jun. 1, 2016 for U.S. Appl. No. 14/565,568, 5 pages.
Non-Final Office Action dated Jun. 22, 2016 in U.S. Appl. No. 14/495,252, 13 pages.
Non-Final Office Action dated Jul. 1, 2016 in U.S. Appl. No. 14/565,598, 10 pages.
Non-Final Office Action dated Aug. 19, 2016 for U.S. Appl. No. 14/163,438, 15 pages.
International Search Report and Written Opinion dated Aug. 19, 2016 for International Patent Application No. PCT/US2016/034107, 17 pages.
Canadian Examiner's Report dated Sep. 19, 2016 in Canadian Patent Application No. 2,910,349, 3 pages.
Final Office Action dated Dec. 9, 2016 in U.S. Appl. No. 14/565,598, 17 pages.
International Search Report and Written Opinion dated Jan. 12, 2017 in International Patent Application No. PCT/2016/045313, 15 pages.
Non-Final Office Action dated Jan. 17, 2017 in U.S. Appl. No. 14/721,507, 12 pages.
Final Office Action dated Feb. 16, 2017 in U.S. Appl. No. 14/163,438, 17 pages.
Final Office Action dated Feb. 23, 2017 in U.S. Appl. No. 14/495,252, 15 pages.
Non-Final Office Action dated Jun. 22, 2017 in U.S. Appl. No. 14/495,252, 13 pages.
European Search Report dated Mar. 14, 2017 for European Patent Application No. 16001887.5, 9 pages.
Canadian Examiner's Report dated Jun. 13, 2017 in Canadian Patent Application No. 2,910,350, 3 pages.
International Search Report and Written Opinion dated Apr. 4, 2016 for International Patent Application No. PCT/US2015055902, 17 pages.
International Search Report and Written Opinion dated Jun. 16, 2016 in International Patent Application No. PCT/US2015/055868, 11 pages.
International Preliminary Report on Patentability dated Jun. 22, 2017 in International Patent Application No. PCT/US2015/056533, 6 pages.
International Preliminary Report on Patentability dated Jun. 22, 2017 in International Patent Application No. PCT/US2015/055868, 10 pages.
International Preliminary Report on Patentability dated Jun. 22, 2017 in International Patent Application No. PCT/US2015/055902, 10 pages.
Canadian Examiner's Report dated Jun. 28, 2017 in Canadian Patent Application No. 2,910,349, 3 pages.
Non-Final Office Action dated Aug. 23, 2017 in U.S. Appl. No. 14/565,598, 15 pages.
Non-Final Office Action dated Sep. 14, 2017 in U.S. Appl. No. 14/820,822, 14 pages.
Final Office Action dated Aug. 14, 2017 in U.S. Appl. No. 14/721,507, 12 pages.
Non-Final Office Action dated Oct. 19, 2017 in U.S. Appl. No. 14/163,438, 18 pages.
Non-Final Office Action dated Oct. 27, 2017 in U.S. Appl. No. 14/566,215, 21 pages.
U.S. Appl. No. 14/565,682, filed Dec. 10, 2014.
Branscomb et al., “New Directions in Braiding”, Journal of Engineered Fibers and Fabrics, vol. 8, Issue 2—2013—http://www.jeffournal.org, pp. 11-24.
Final Office Action dated Nov. 1, 2017 in U.S. Appl. No. 14/495,252, 14 pages.
Office Action dated Nov. 24, 2017 in Australian Patent Application No. 2015361198, 3 pages.
International Preliminary Report on Patentability dated Dec. 7, 2017 in International Patent Application No. PCT/US2016/034109, 11 pages.
International Preliminary Report on Patentability dated Dec. 7, 2017 in International Patent Application No. PCT/US2016/034107, 8 pages.
Office Action dated Feb. 12, 2018 in Australian Patent Application No. 2015361198, 3 pages.
Non-Final Office Action dated Mar. 29, 2018 in U.S. Appl. No. 14/495,252, 14 pages.
Braiding Definition for the clothing industry, Apparel Search Company, 5 pages. Accessed Jan. 24, 2017, Available at: http://www.apparelsearch.com/definitions/miscellaneous/braiding.htm.
Non-Final Office Action dated May 10, 2018 in U.S. Appl. No. 14/565,598, 17 pages.
Final Office Action dated Jun. 4, 2018 in U.S. Appl. No. 14/820,822, 14 pages.
Final Office Action dated Jun. 26, 2018 in U.S. Appl. No. 14/566,215, 17 pages.
Final Office Action dated Jul. 13, 2018 in U.S. Appl. No. 14/163,438, 15 pages.
International Search Report and Written Opinion dated Sep. 10, 2018 in International Patent Application No. PCT/US2018/035404, 13 pages.
Final Office Action dated Sep. 11, 2018 in U.S. Appl. No. 14/495,252, 14 pages.
Non-Final Office Action dated Oct. 1, 2018 in U.S. Appl. No. 14/820,822, 15 pages.
Non-Final Office Action dated Sep. 18, 2018 in U.S. Appl. No. 15/613,983, 7 pages.
Final Office Action dated Dec. 14, 2018 in U.S. Appl. No. 14/565,598, 22 pages.
Notice of Allowance dated Jan. 11, 2019 in U.S. Appl. No. 15/613,983, 7 pages.
Decision to grant a European patent pursuant to Article 97(1) dated Nov. 8, 2018 in European Patent Application No. 14737100.9, 1 page.
Communication pursuant to Article 94(3) dated Nov. 22, 2018 in European Patent Application No. 16731401.2, 5 pages.
Communication pursuant to Article 94(3) dated Nov. 23, 2018 in European Patent Application No. 15787425.6, 7 pages.
Communication under Rule 71(3) dated Feb. 20, 2019 in European Patent Application No. 15785032.2, 5 pages.
Communication under Rule 71(3) dated Mar. 13, 2019 in European Patent Application No. 15787396.9, 5 pages.
Final Office Action dated Apr. 25, 2019 in U.S. Appl. No. 14/820,822, 15 pages.
Partial search report dated Apr. 26, 2019 in European Patent Application No. 18202740.9, 13 pages.
Communication pursuant to Article 94(3) dated May 13, 2019 in European Patent Application No. 16001887.5, 4 pages.
Communication under Rule 71(3) dated May 16, 2019 in European Patent Application No. 16731401.2, 5 pages.
Communication under Rule 71(3) dated Jun. 21, 2019 in European Patent Application No. 15785032.2, 2 pages.
Extended Search Report dated Aug. 16, 2019 in European Patent Application No. 18202740.9, 11 pages.
Non-Final Office Action dated Aug. 19, 2019 in U.S. Appl. No. 14/163,438, 15 pages.
Non-Final Office Action dated Aug. 21, 2009 in U.S. Appl. No. 14/566,215, 21 pages.
Related Publications (1)
Number Date Country
20160345674 A1 Dec 2016 US