The present invention relates to a device, program and method for quantitatively evaluating deterioration in brain function due to a disease such as dementia represented by Alzheimer's disease, by analyzing signals from a deep brain region using a plurality of sensors attached to three different locations on a surface of a head of a subject.
In Japan, along with aging of the society, over 4 million patients with dementia are imposing increasingly heavy financial and psychological burdens on the entire society. Although there is no medical treatment capable of completely curing dementia so far, early detection of dementia has a potential to slow down progression of dementia by a pharmacological method and appropriate medical care, thereby contributing to significant reduction in health-care cost.
While estimation of an activity in a deep brain region has been conventionally carried out using a PET method, an fMRI method, an MEG method or the like, these methods still involve usability problems and a problem of a need for a large-scale apparatus. In this situation, electroencephalography (EEG) for observing a brain potential (electrical potential) monitored on the scalp (scalp potential) has been widely used in clinical sites because it does not require any large-scale apparatus. In the International 10-20 system used in a standard clinical examination, from a standpoint of, in clinical sites, monitoring a potential distribution on the scalp by a large number of electrodes, potentials have been monitored using 19 electrodes, and recorded in a pen recorder or a hard disk drive in a computer.
As a specific method, there has been developed a system configured to, assuming that a brain potential monitored on the scalp is generated by an equivalent dipole power source assumedly located inside the brain, equivalently express the brain potential by a “dipole tracing method” for inversely estimating a position, direction and current value of the equivalent dipole power source from a brain potential distribution on the scalp (the following Non-patent Document 1). In this system, because both a thalamus acting as part of a source of an α wave and a hypothalamus which is a major part of expression of emotion are located in a brainstem region adjacent to a center of the brain, the technique of assuming an equivalent dipole power source in a deep brain region has been considered to be effective in evaluating activities thereof. As used herein, the term “deep brain region” means a site indicative of a brainstem region and a cerebral limbic system around the brainstem region.
There has also been developed a system (a DIMENSION system) configured to express, by an index, called “dipolarity (Dα)”, a degree of accuracy with which the inversely-estimated dipole power source can express a scalp potential. This index is intended to quantitatively analyze a dipole potential activity to estimate an activity of a deep brain region, and largely varies depending on a stage of dementia, so that it has been used as a means to detect dementia (the following Non-Patent Documents 2 and 3).
Further, as a different approach from the above, there has been developed a brain activity measurement device intended to three-dimensionally identify an abnormal site in terms of neuronal activity (the following Patent Document 1).
Patent Document 1: JP 5118230 B
Non-patent Document 1: Bin He, Toshimitsu Musha, Yoshiwo Okamoto, Saburo Homma, Yoshio Nakajima and Toshio Sato, “Electric Dipole Tracing in the Brain by Means of the Boundary Element Method and Its Accuracy,” IEEE Trans. Biomed. Engnr, Vol. BME-34, No. 6, 406-414, 1987
Non-patent Document 2: J. Hara, T. Musha and W. R. Shankle, Approximating dipoles from human EEG activity: the effect of dipole source configuration on dipolarity using single dipole models, IEEE Trans. Biomed. Eng., 46, 2, 125-129, 1999
Non-patent Document 3: J. Hara, W. R. Shankle and T. Musha, Cortical Atrophy in Alzheimer's Disease Unmasks Electrically Silent Sulci and Lowers EEG Dipolarity, IEEE Trans. Biomed. Eng., Vol. 46, No. 8, 905-910, 1999
However, all of the above approaches require a large number of electrodes (generally, 19 electrodes or more) on the scalp, which imposes a heavy burden on a subject. In addition, for quantitatively analyzing the dipole potential activity to estimate the activity of the deep brain region, it is necessary to sort out an α component from a potential appearing in each of the large number of electrodes on the scalp to calculate a degree of approximation of an equivalent dipole potential acquired from the sorted α wave component with respect to the monitored α wave potential, and a standard deviation value indicative of a temporal variation of the approximation degree, thereby leading to a problem of a need for a considerable amount of calculation. Moreover, such a calculation requires electroencephalographic data corresponding to measurement for about 5 minutes, i.e., a relatively long measurement time is required. This also imposes a heavy burden on the subject. There is another problem that reliability of calculation is significantly deteriorated for a subject whose α wave component is weak.
It is therefore an object of the present invention to establish a computing method which is reduced in amount of calculation during evaluation of an activity of a deep brain region, to thereby realize a simplified method using signals acquired from a small number of sensors (electrodes) arranged on a scalp of the subject and capable of reducing the burden on a subject, while quantitatively evaluating deterioration in brain function associated with a disease such as dementia, with a high degree of accuracy.
The above technical problems can be solved by the present invention having the following features. Specifically, according to a first aspect of the present invention, there is provided a brain activity measurement device which comprising: a signal acquisition part configured to acquire a signal from a brain of a subject using three sensors attached to different locations on the surface of the head of the subject, wherein at least one of the sensors is attached to the back of the head of the subject; a data extraction part configured to extract, from each of the three signals acquired from the sensors, a deep-brain potential signal having a specific frequency band arising from an activity of a deep brain region, and acquire data from the extracted deep-brain potential signal with a sampling period; a correlation value calculation part configured to calculate a correlation value indicative of a correlative relationship among the deep-brain potential signals acquired from each respective sensors, based on a phase relationship among three pieces of time-series data each extracted from each of the respective sensors by the data extraction part; and an index value calculation part configured to analyze the deep-brain potential signals from the deep brain region, based on the calculated correlation value, to calculate an index value for determining a brain function.
In one embodiment of the first aspect of the present invention, the correlation value calculation part is configured to calculate the correlation value based on a value derived from adding products acquired by multiplying respective ones of a plurality of pieces of data VA(t) extracted within a given time by data VB(t−τ1) and VC(t−τ2) extracted at two time points which are different, respectively, by arbitrary times τ1 and τ2 each of which is equal to or less than a given value and equal to an integral multiple of the sampling period, where VA(t), VB(t) and VC(t) denote, respectively, the three pieces of time-series data extracted from the respective ones of the three sensors, and where the correlation value calculation part is configured to calculate the correlation value with respect to each of one or more possible combinations of the time τ1 and the time τ2.
In another embodiment of the first aspect of the present invention, the correlation value calculation part of the above brain activity measurement device is configured, only when respective ones of the plurality of pieces of data VA(t) extracted within the given time have the same sign as those of the data VB(t−τ1) and VC(t−τ2) extracted at two time points which differ, respectively, by the arbitrary times τ1 and τ2, to subject them to the multiplication, and calculate the correlation value based on a value derived from adding the resulting products, wherein the correlation value is calculated with respect to only combinations of the time τ1 and the time τ2 in the case where the data VA(T), VB(T−τ1) and VC(T−τ2) at a time point T within the given time have the same sign.
In yet another embodiment of the first aspect of the present invention, the brain activity measurement device of the above brain activity measurement device comprises a display part configured to display a three-dimensional map indicative of the correlation values corresponding to the combinations of the time τ1 and the time τ2, in a three-dimensional coordinate having three axes representing, respectively, the time τ1, the time τ2, and the correlation value.
In still another embodiment of the first aspect of the present invention, the index value calculation part is configured to calculate the index value based on a standard deviation of a group of intervals between adjacent ones of a plurality of areas in each of which the correlation value is calculated, in a direction of one of two coordinate axes representing, respectively, the time τ1 and the time τ2, and a standard deviation of a group of intervals between adjacent ones of the plurality of areas in a direction of the other coordinate axes.
In yet still another embodiment of the first aspect of the present invention, the index value calculation part of the above brain activity measurement device is configured to add all of the correlation values calculated with respect to the data VA(t) extracted within a plurality of the given times each having the same time width, every given time, and calculate the index value based on a standard deviation of a group of the correlation values added in each of the plurality of given times.
In another further embodiment of the first aspect of the present invention, the index value calculation part of the above brain activity measurement device is configured to: add a first index sub-value calculated based on a standard deviation of a group of intervals between adjacent ones of a plurality of areas in each of which the correlation value is calculated, in a direction of one of two coordinate axes representing, respectively, the time τ1 and the time τ2, and a standard deviation of a group of intervals between adjacent ones of the plurality of areas in a direction of the other coordinate axes, and a second index sub-value calculated based on a group of the correlation values which are added in each of a plurality of the given times each having the same time width, after being calculated with respect to the data VA(t) extracted within the plurality of given times, every given time; and calculate the index value by subjecting the first and second index sub-values to weighted addition using a given coefficient.
In yet a further embodiment of the first aspect of the present invention, all of the sensors are attached to the back of the head.
In still a further embodiment of the first aspect of the present invention, the brain activity measurement device comprises two or more of the signal acquisition part.
According to a second aspect of the present invention, there is provided a program for analyzing a signal from a deep brain region using three sensors attached to different locations on the surface of the head of a subject, wherein at least one of the sensors is attached to the back of the head of the subject. The program is configured to cause a computer to execute a procedure comprising the steps of: extracting data from each of the three signals acquired by the sensors with a sampling period; calculating a correlation value indicative of a correlative relationship among the signals acquired from each respective sensors, based on a phase relationship among three pieces of time-series data each extracted from the respective sensors; and analyzing the signals from the deep brain region, based on the calculated correlation value, to calculate an index value for determining a brain function.
According to a third aspect of the present invention, there is provided a method for analyzing a signal from a deep brain region using three sensors attached to different locations on the surface of the head of a subject, wherein at least one of the sensors is attached to the back of the head of the subject. The method comprises the steps of: extracting, from each of the three signals acquired from the sensors, a deep-brain potential signal having a specific frequency band arising from an activity of a deep brain region, and acquiring data from the extracted deep-brain potential signal with a sampling period; calculating a correlation value indicative of a correlative relationship among the deep-brain potential signals acquired from each respective sensors, based on a phase relationship among three pieces of time-series data each extracted from the respective sensors; and analyzing the deep-brain potential signals from the deep brain region, based on the calculated correlation value, to calculate an index value for determining a brain function.
In the present invention, a correlation value and an index value are introduced so as to establish a computing method which is reduced in amount of calculation, so that it becomes possible to quantitatively analyze whether an activity of the dipole potential assumedly located in the deep brain region is simple or complex, based on signals acquired from a small number of (three) sensors (electrodes) and evaluate deterioration in brain function associated with a disease such as dementia with a high degree of accuracy. In addition, by establishing the computing method which is reduced in amount of calculation, electroencephalographic data required for analyzing the brain activity is reduced to about one minute, so that it becomes possible to reduce a measurement time. As above, the brain activity can be evaluated within a short measurement time, using a small number of electrodes, so that it becomes possible to reduce burden to a subject. Further, by limiting the number of sensors to three, the mechanical fixing of the sensors to the scalp can be maintained significantly easily and stably in the same manner as setting of a tripod, so that it becomes possible to not only significantly shorten a time required for attachment during a measurement operation but also maintain a stable contact resistance to provide improved reliability of acquired data. This improves data reliability and the computing method employing an index value make it possible to improve reliability of calculation for a subject whose α wave component is weak.
[Outline]
With reference to the drawings, a brain activity measurement device according to the present invention will now be described. The following description will be made with respect to a device configuration and a measurement principle, and then with respect to Examples.
[Device Configuration]
As another example, the head attachment unit 101 may be a cap-mounted electrode assembly.
As yet another example, each of the three measurement electrodes 104 and the reference electrode 105 may be configured to have a wireless communication function, and wirelessly transmit differences between respective ones of three deep-brain potential signals obtained from the (three) measurement electrodes 104 and a brain potential signal obtained from and the reference electrode 105, to the analytical PC 103 which is also configured to have a wireless communication function, as three deep-brain potential signals. Preferably, the reference electrode 105 is disposed at the center of the three measurement electrodes 104. Alternatively, total four signals: three deep-brain potential signals from the measurement electrodes 104; and a brain potential signal from the reference electrode 105, may be transmitted to the analytical PC 103, wherein the analytical PC 103 may operate to calculate differences between respective ones of the three deep-brain potential signals from the measurement electrodes 104 and the brain potential signal from the reference electrode 105, to obtain an input of the three deep-brain potential signals.
As still another example, in place of the electrode 104, it is possible to use a sensor for detecting a change in electricity, magnetism, blood flow or the like. Further, the head attachment unit 101 may comprise two or more sets of the three electrodes. In this case, the activity of the deep brain region may be evaluated more multilaterally.
The analytical PC 103 comprises: a processing unit comprising a CPU and for performing a variety of computations or calculations; a presentation unit (display, printer or the like) for presenting a result of the calculation; a storage unit for storing therein a variety of data and programs; and a communication unit for performing wire/wireless communication. It should be noted that the brain activity measurement device 100 may not comprise the 3-channel amplifier-bandpass filter 102. In this case, the analytical PC 103 may have the function of the bandpass filter 102. Preferably, this function of the bandpass filter, and the parts set forth in the appended claims, such as a data extraction part, a correlation value calculation part, an index value calculation part and a presentation part are realized by executing a given program by the CPU in the processing unit of the analytical PC.
[Measurement Principle]
As described above, the present invention is based on an assumption that the equivalent dipole power source is located in the deep brain region, and the potential distribution measurement for analyzing the dipole potential activity is performed using only three electrodes arranged at different locations on the scalp. Based on the fact that, in the case where a power source is located in the deep brain region, there is a strong phase relationship among respective potential waveforms monitored by the three electrodes, this phase relationship is evaluated. In this way, it is possible to approximately estimate a temporal behavior of the equivalent dipole power source assumedly located in the deep brain region. Taking a seismic wave as an analogy, a seismic wave when a seismic center is located in a surface layer, the seismic wave largely varies in terms of amplitude and phase depending on monitoring points, whereas when the seismic center is located in a deep layer, P waves having approximately the same amplitude and phase are monitored by a plurality of seismometers disposed to be closely spaced apart from each other. The above fact is equivalent to this phenomenon.
Considering that potential waveforms appearing on a surface based on the activity of the deep brain region have substantially the same phase in a plurality of surface areas closely spaced apart from each other, the present invention defines a system of adding only data regarding three potentials having the same sign. That is, data subject to computation is limited to data having the same sign, so that data having a correlation can be extracted. However, it should be noted that the present invention is not limited thereto, but an entirety of data regarding three potentials may be subjected to computation.
In the present invention, as depicted in a flowchart of processing in
Subsequently, a triple correlation value is calculated (S203). On an assumption that low-frequency band potential signals, i.e., deep-brain potential signals, from the three electrodes, are defined, respectively, as EVA(t), EVB(t) and EVC(t), the triple correlation value uses a product of the deep-brain potential signal from one of the three electrodes and the deep-brain potential signals from the remaining two electrodes having time lags τ1 and τ2, respectively. The following Formula 1 is one example of a triple correlation value St, where: T denotes a time subject to computation of the triple correlation value: Δt denotes a data sampling cycle or period for each of the deep-brain potential signals; and N denotes a constant for normalization and, e.g., the number of times of computation for the product of the three deep-brain potential signals.
An index is calculated by performing a given computation by the analytical PC using the calculated triple correlation value, and identification and determination for a patient with dementia or the like is performed using the calculated index (S204).
A relationship between the triple correlation obtained by the above computation and plotted on a delay parameter space and a behavior of the equivalent dipole power source in the deep brain region will be described using a sphere model formed of a uniform medium. In the following description, for the sake of illustration, portions of the sphere model will be assimilated to the earth, and referred to as North Pole (NP), South Pole (SP), equator or the like.
The activity of the deep brain region is monitored on the surface of the brain in a situation equivalent to that in which there is a minute current source in the deep brain region. Thus, it is assumed that the minute current source is located in a center of the sphere and oriented in a direction from the South Pole toward the North Pole. As depicted in
Time evolutions of respective potentials of the electrodes A, B and C are measured as depicted in a graph of
As above, the present invention makes it possible to monitor the turning of the equivalent dipole power source in the deep brain region in the form of plots on the two-dimensional delay parameter space, and thus monitor a regular undulation distribution as described later in connection with
The above description has been made with respect to an example where a single equivalent dipole power source smoothly turns in a spherical deep brain region. On the other hand, in the case where there are a plurality of dipoles or the turning movement is not smooth, plots in individual cases each satisfying the condition requiring coincidence in sign are complicatedly distributed, so that plots in
In Example 1, calculation of a triple correlation value for quantitatively evaluating deterioration in brain function due to dementia will be described.
As depicted in
Next, a method of calculating a triple correlation value S based on the three signals will be described. The extracted signals are processed by a triple correlation value calculation section 603 in a manner as depicted in a flowchart of
Upon input of the three signals as mentioned above, data is extracted with a sampling period (S701), and divided, respectively, by standard deviations (σA, σB, σC) calculated with respect to respective potentials of the electrodes, so as to be normalized (S702). This normalization processing is preferably performed, but not limited to, every one second.
EVA(t)=VA(t)/σA (Formula 2)
EVB(t)=VB(t)/σB (Formula 3)
EVC(t)=VC(t)/σC (Formula 4)
The frequency extraction processing by the bandpass filter is performed before or after the normalization processing. Preferably, a noise processing is performed before the normalization processing. For example, the noise processing comprises the steps of 1) removing a segment having +100 μV or more, 2) removing a flat potential (when the potential has a constant value of 25 msec or more), and 3) removing a potential within ±1 μV when it is maintained for 1 second or more.
In this method, assume that, among the above three signals, the signal of the electrode EB and the signal of the electrode EC have, respectively, a time lag of τ1 and a time lag of τ2, with respect to the signal of the electrode E. Then, only when the potentials of all of the three signals have a positive sign (EVA(t)>0, EVB(t)>0, EVC(t)>0), or a negative sign (EVA(t)<0, EVB(t)<0, EVC(t)<0) (S703), the three signals are subjected to processing (S703). As presented in Formula 5, the triple correlation value is derived by adding a product of the three potential signals having time lags (S704). This processing is performed while a sampling point is sequentially shifted by Δt sec until t reaches t=i+1 sec (S706, S707). Further, as is evident from the fact that, in
In this way, Si is calculated every one second until all data is covered, i.e., t reaches T sec (S1, S2, . . . , ST). Preferably, T (sec) is 10 (sec). However, the calculation method is not limited to calculating Si every one second. Each of the times τ1 and τ2 can take a value which is equal to or less than 1 second and equal to an integral multiple of the sampling period. However, an upper limit of this value is not limited to one second. Further, the sampling period is not limited to 0.005 sec. It should be noted that the triple correlation value can be calculated by Formula 5 without performing the determination about the signs of the three signals.
By plotting this result on a feature space formed based on two delay parameters (τ1, τ2) by a triple correlation presentation section 604 as depicted in
As depicted in
In Example 2, the triple correlation values calculated in Example 1 are used to calculate an index for quantitatively evaluating deterioration in brain function due to dementia.
As described in Example 1, within the two delay time parameter space, data of the normal subject has a forest-like distribution in which tree-like protrusions are regularly arranged side-by-side. On the other hand, in data of the patient with Alzheimer's disease, a forest-like distribution has a large irregularity. In order to quantitatively represent this difference, the coordinate axes are rotated such that lines of trees become parallel to the τ1 axis and the τ2 axis, as depicted in
As depicted in
The ROC curve represents a relationship between a detection rate and an incorrect diagnosis rate in the case where a detection of Alzheimer's disease is performed. The ROC curve is created from the sensitivity and specificity curves, and used with the sensitivity and specificity curves during a study on how to set a cutoff value between normal and abnormal. In this embodiment, the sensitivity and the specificity indicate, respectively, the patient with Alzheimer's disease and the normal subject, and the false-positive rate is represented by “1-specificity”. As one example, creation of the sensitivity and specificity curves and the ROC curve will be briefly described below.
Assume that there are N patients with Alzheimer's disease and M normal subjects. First of all, (i) index values of the patients with Alzheimer's disease and the normal subjects are calculated (N+M index values are calculated). (ii) The index values of the patients with Alzheimer's disease are sorted in descending order, and the index values of the normal subjects are sorted in ascending order. (iii) A ratio (=i/(N−1) (i=0, 1, . . . , N−1)) on the vertical axis of the sensitivity and specificity curves is determined such that minimum and maximum values of the index value of the patient with Alzheimer's disease become 0 and 1, respectively, and (iv) a ratio (=i/(M−1) (i=0, 1, . . . , M−1)) on the vertical axis of the sensitivity and specificity curves is determined such that minimum and maximum values of the index value of the normal subject becomes 0 and 1, respectively. The index values and values of the ratio for each of the patient with Alzheimer's disease and the normal subjects are plotted and connected to thereby complete the sensitivity and specificity curves, and the intersecting point of the curves is defined as the cutoff value. Each of the number of index values and the number of ratios correspond to a number of patients or subjects. Thus, any space between two plots is connected by means of spline interpolation to form a curve. The ROC curve is created using a vertical axis representing the sensitivity (=a rate of patients with Alzheimer's disease), and a horizontal axis representing the false-positive rate (=1−specificity (a rate of normal subjects)).
As depicted in
In Example 3, the triple correlation values calculated in Example 1 are used to calculate an index for quantitatively evaluating deterioration in brain function due to dementia.
Triple correlation values of patients with Alzheimer's disease largely vary with respect to τ1 and τ2, as compared to normal subjects. Further, in terms of the triple correlation values per one second calculated by Formula 5 in Example 1, variation in the patients with the Alzheimer's disease is also larger than that in the normal subjects. Thus, a standard deviation in Formula 5 is defined as std_Si, and ten standard deviations (i=1, 2, . . . , 10) are calculate. Then, a standard deviation std_S of the ten standard deviations and an average value ave_S of the ten standard deviations are calculated, and a ratio of the standard deviation and the average value is defined as an index Ss.
In example 4, the index values calculated in Examples 2 and 3 are combined to calculate an index for performing better discrimination.
In addition, by performing a normalization process as described below, it is possible to perform presentation for determining whether a diagnosis result belongs to an AD area or an NL area. Respective average values (Ss_ave, SD_ave) and standard deviations (Ss_std, SD_std) of Ss values and SD values calculated from standard data (20 ADs, 52 NLs) based on the above index d are calculated, and a standardization processing is performed such that such that averages of the Ss values and the SD values become 2 and 2, respectively. The specific calculation formulas are as follows.
For example, the aforementioned index d can be expressed as the following formula using Ss_value and SD_value in the above formula.
d=Ss_value*0.275+SD_value (Formula 15)
By performing such normalization processing and plotting the calculated Ss_value and SD_value on
As another example,
In the processing or operation described above, it is possible to freely change the processing or operation, as long as any inconsistency in processing or operation, e.g., a situation where, in a certain step, data which should not be yet able to be used is used, occurs. Further, although the above examples have been described by way of examples for explaining the present invention, the present invention is not limited to such examples. The present invention can be implemented in various forms without departing from the scope and spirit of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2014-149205 | Jul 2014 | JP | national |
2014-197420 | Sep 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/070893 | 7/22/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/013596 | 1/28/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20140107464 | Aksenova | Apr 2014 | A1 |
20140121724 | Chichilnisky | May 2014 | A1 |
20140235988 | Ghosh | Aug 2014 | A1 |
20150080753 | Miyazaki | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
5118230 | Jan 2013 | JP |
Entry |
---|
Bin He et al.; Electric Dipole Tracing in the Brain by Means of the Boundary Element Method and Its Accuracy; IEEE Transactions on Biomedical Engineering; vol. BME-34; No. 6; Jun. 1987; pp. 406-414. |
Junko Hara et al.; “Approximating Dipoles from Human EEG Activity: The Effect of Dipole Source Configuration on Dipolarity Using Single Dipole Models”; IEEE Transactions on Biomedical Engineering; vol. 46; No. 2; Feb. 1999; pp. 125-129. |
Junko Hara et al.; “Cortical Atrophy in Alzheimer's Disease Unmasks Electrically Silent Sulci and Lowers EEG Dipolarity”; IEEE Transactions on Biomedical Engineering; vol. 46; No. 8; Aug. 1999; pp. 905-910. |
Number | Date | Country | |
---|---|---|---|
20170245804 A1 | Aug 2017 | US |