The present invention relates to an improved brake for removable arrangement on projectiles.
A conventional barrel weapon, or firing device, means here a weapon of the type of an artillery piece, a naval piece, or a tank piece or other piece containing a barrel in which a projectile is fired and propelled through the barrel by a propellant charge with is ignited by means of an igniter, such as a spark plug, an ignition cartridge, etc. The propellant charge, also called the propellant, refers here to a powder of solid form, which gives off gases during its burning, driving the projectile forward to the mouth of the barrel under high pressure in the barrel. The propellant can also be a type other than a solid powder.
If short firing range is desired, the propellant can be adapted to a certain extent to generate a suitable firing range for the specific projectile. However, there are limits, so that the propellant cannot be reduced to such a degree that fundamental technical requirements cannot be achieved. For example, a certain propellant is required in order to propel the projectile out from the barrel, and there may also be demands on the minimum charge size of the firing device, etc.
In the firing scenario when short trajectory is required, the projectile may be provided with a braking arrangement in order to effectively brake the projectile on its trajectory. Examples of braking arrangements may be various devices which deploy mechanically or otherwise from the projectile, but there may also be a brake firmly arranged on the projectile prior to its firing.
Mechanically deployable brakes are described, for example, in patent document WO 98/01719 A. The brake here consists of four different braking plates, which are unfolded or pushed out radially from the projectile and which form a planar braking surface, encircling the projectile in part. The solution is mechanically complex and requires space in the detonator.
An example of a braking device which is arranged on the projectile before its firing is shown in
It is desirable to solve the above-identified problem.
Thus, according to an aspect of the present invention an improved brake for detachable arrangement on projectiles is created, where the brake is configured with a braking surface which is situated in the direction of travel of the projectile, where the braking surface is larger than a surface given by πR2-πr2, where R is the outer radius of the brake and r is the inner radius of the brake.
According to further aspects of the improved brake of the invention:
the brake is configured as a truncated cone with an inner radius, an outer radius and a side:
the brake is configured as a truncated cone with bottom having a height at the bottom between 10 mm and 60 mm;
the brake is configured as a truncated oblate ellipsoid of revolution defined by inner radius, an outer radius, and a side;
the brake is configured as a truncated oblate ellipsoid of revolution with bottom having a height at the bottom between 10 mm and 60 mm;
the side has a length between 10 mm and 75 mm;
the brake is configured as a washer arranged with an edge having an inner radius, an outer radius and an edge length;
the brake is arranged with a middle segment such that the brake is arranged with one part of the brake situated in front of the middle segment, having a length, and one part of the brake situated behind the middle segment, having a length;
the braking surface of the brake is arranged with at least one through hole on the braking surface, where the braking surface is the surface between the inner radius and the outer radius.
Moreover, according to an aspect of the present invention an improved method for braking projectiles is created, involving the arrangement of a brake between a detonator and a shell body, where the brake is configured with a braking surface which is situated in the direction of travel of the projectile, where the surface is larger than a surface given by πR2-πr2, where R is the outer radius of the brake and r is the inner radius of the brake.
The invention shall be described more closely below, making reference to the enclosed figures, where:
In order to increase the air resistance when projectiles such as artillery shells are fired with a firing device, such as an artillery piece, a brake washer can be arranged on the projectile.
Preferably, the brake washer is situated between the detonator and the shell. The shell is also called the shell body or projectile body. The detonator can also be called the zone tube or timing tube, and is called the fuse in English. The detonator is arranged removably on the shell in a customary embodiment of artillery shells. A brake washer may then be arranged between the detonator and the shell. The detonator is preferably stored and transported separately from the shell and it is arranged and primed on the shell when the projectile is to be fired from the firing device.
Brake washers are used when a short firing range is desired, for example when firing with high elevation. One alternative for achieving short firing range is to use a smaller amount of propellant, or a propellant which produces less gas release, but a minimum amount of propellant is needed in order to fire the projectile from the firing device in a secure manner.
X=πR
2
−π
2 (1)
Thus, the total surface of the brake washer is composed of the braking surface X and the surface situated between the outer radius of the projectile, r, and the radius of the hole 2.
πR12-αr2 (2).
A brake with a configuration as a truncated cone provides a better braking ability as compared to a brake with conventional configuration as a brake washer, because the surface X1 is larger than the theoretical surface X. The truncated cone can be fabricated by conventional lathe turning, but also by pressure turning, pressing, or drawing. Moreover, the truncated cone can be manufactured by powder technology or additive manufacturing. Besides steel, the truncated cone can be made of other metals, such as aluminum, various forms of composites or plastics, ceramics, or various forms of powder, such as metal powder. The total surface of the brake is thus constituted of the braking surface X1 and the surface which is situated between the outer radius of the projectile, r1, and the radius of the hole 12.
πR1′2-πr′2 (3).
A brake with a configuration as a truncated cone with bottom provides a better braking ability as compared to a brake with conventional configuration as a brake washer, because the surface X1′ is larger than the theoretical surface X. The truncated cone with bottom can be fabricated by conventional lathe turning, but also by pressure turning, pressing, or drawing. Moreover, the truncated cone with bottom can be manufactured by powder technology or additive manufacturing. Besides steel, the truncated cone with bottom can be made of other metals, such as aluminum, various forms of composites or plastics, ceramics, or various forms of powder, such as metal powder. The total surface of the brake is composed of the braking surface X1′ and the surface situated between the outer radius of the projectile, r1′ and the radius of the hole 12′.
πR22-πr22 (4).
A brake with a configuration as a truncated oblate ellipsoid of revolution provides a better braking ability as compared to a brake with conventional configuration as a brake washer, because the surface X2 is larger than the theoretical surface X. The truncated oblate ellipsoid of revolution can be fabricated by conventional lathe turning, but also by pressure turning, pressing, or drawing. Moreover, the truncated oblate ellipsoid of revolution can be manufactured by powder technology or additive manufacturing. Besides steel, the truncated oblate ellipsoid of revolution can be made of other metals, such as aluminum, various forms of composites or plastics, ceramics, or various forms of powder, such as metal powder. The total surface of the brake is composed of the braking surface X2 and the surface situated between the outer radius of the projectile r2 and the radius of the hole 22.
πR2′2-πr2′2 (5).
A brake with a configuration as a truncated oblate ellipsoid of revolution with bottom provides a better braking ability as compared to a brake with conventional configuration as a brake washer, because the surface X2′ is larger than the theoretical surface X. The truncated oblate ellipsoid of revolution with bottom can be fabricated by conventional lathe turning, but also by pressure turning, pressing, or drawing. Moreover, the truncated oblate ellipsoid of revolution with bottom can be manufactured by powder technology or additive manufacturing. Besides steel, the truncated oblate ellipsoid of revolution with bottom can be made of other metals, such as aluminum, various forms of composites or plastics, ceramics, or various forms of powder, such as metal powder. The total surface of the brake is composed of the braking surface X2′ and the surface situated between the outer radius of the projectile r2′ and the radius of the hole 22′.
πR32-πr32 (6).
A brake with a configuration as a brake washer with an edge provides a better braking ability as compared to a brake with conventional configuration as a brake washer, because the surface X3 is larger than the theoretical surface X The total surface of the brake is thus composed of the braking surface X3 and the surface situated between the outer radius of the projectile r3 and the radius of the hole 32. The brake washer with an edge can be fabricated by conventional lathe turning, but also by pressure turning, pressing, or drawing. Moreover, a brake washer with an edge can be manufactured by powder technology or additive manufacturing. Besides steel, a brake washer with an edge can be made of other metals, such as aluminum, various forms of composites or plastics, ceramics, or various forms of powder, such as metal powder.
πR42-πr42 (6).
A brake with a configuration as a brake washer with middle segment 40 provides a better braking ability as compared to a brake with conventional configuration as a brake washer, because the surface X4 is larger than the theoretical surface X The total surface of the brake is thus composed of the braking surface X4 and the surface situated between the outer radius of the projectile r4 and the radius of the hole 42. The portion of the brake configured with a middle segment 40 situated behind the middle segment 46 is designed with a hole 44 through which the shell body 102 can pass. The brake washer with middle segment can be fabricated by conventional lathe turning, but also by pressure turning, pressing, or drawing. Moreover, a brake washer with middle segment can be manufactured by powder technology or additive manufacturing. Besides steel, a brake washer with middle segment can be made of other metals, such as aluminum, various forms of composites or plastics, ceramics, or various forms of powder, such as metal powder.
The function and application of the brake is that the brake is arranged on the projectile before firing the projectile in connection with the projectile being primed, usually by arranging the brake on the detonator and screwing the detonator, with brake, onto the shell. When the projectile leaves the gun barrel, the brake will produce great air resistance (drag), which lessens the firing range of the projectile. The air resistance with the new brakes shown in the invention is increased as compared to relatively known brake washers in that the surface of the brake is increased, and by the brake configurations shown in the invention.
One example of a brake is a conically shaped structure with an inner radius, r1, r1′, r2, r2′, r3, r4, r5, of 50 mm at the inner hole, an outer radius, R1, R1′, R2, R2′, R3, R4, R5, of 100 mm, a length 1, s, s′, s2, s2′ of 40 mm, a thickness of 5 mm, and made of steel.
The invention is not limited to the configurations shown especially, but instead can be varied in different ways within the patent claims.
It is evident, for example, that the number, size, material and shape of the elements and parts making up the brake can be adapted according to the weapons system or systems and other design properties in the particular instance.
It is evident that the above-described brakes for projectiles may comprise many different dimensions and projectile types, depending on the area of application and the barrel width. However, at least the most commonly occurring projectiles today, between around 20 mm and 200 mm, are considered above.
Number | Date | Country | Kind |
---|---|---|---|
1900214-6 | Dec 2019 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE2020/051152 | 12/1/2020 | WO |