This invention generally relates to brake calipers, and is specifically concerned with a brake caliper having a brake pad timing and retraction controller that both adjustably delays and negatively biases brake pad extension force when the brake pedal is depressed and forces positive and uniform retraction of the brake pad when the brake pedal is released.
Brake calipers for automotive disc brakes are well known in the prior art. In typical disc brake assemblies, a rotor is mounted on a wheel hub for rotation. One or more pairs of brake pads, generally designed as friction material carried on a backing plate, are supported on either side of the rotor by a caliper or an anchor bracket. Calipers are designed to apply the braking force by moving a piston relative to the rotor to move the brake pad into and out of contact with the rotor. The pistons are supported in a bore in the caliper and abut the backing plate of the brake pad to move the brake pad toward the rotor upon application of a braking force. The pistons are connected to elastomeric seal sleeves which normally withdraw the pistons, and hence the brake pad, into a non-engaging position with respect to the rotor. In operation, when the brake pedal is depressed by the vehicle operator, actuation force is generated hydraulically or mechanically. In a hydraulic system pressure is generated in the master cylinder or by a pump of the brake system, which conducts pressurized hydraulic fluid to the pistons in the caliper. The pressure of the hydraulic fluid against the ends of the pistons overcomes the withdrawing force that the elastomeric seal sleeves apply to the pistons, causing them to extend and to engage the brake pad against the rotor, thereby applying a braking force to the wheels of the vehicle. When the vehicle operator releases the brake pedal, the restorative force applied to the piston by the elastomeric sleeves causes them to withdraw. The brake pads, which are typically not connected to the pistons, then float back from and out of engagement with the rotor. In lieu of pistons, such actuation and withdrawal of the brake may also be accomplished non-hydraulically through a series of levers, cams, and or wedges.
During a braking operation, it is important that the braking forces applied by all four wheels of the vehicle be coordinated in order to maximize not only the braking of the vehicle, but the control of the vehicle during braking. The applicants have observed that maximum control of some vehicles during braking can best be maintained if the front brakes operate slightly before the rear brakes operate. Unfortunately, even though most vehicle braking systems are designed to apply a greater amount of front tire braking force than rear tire braking force, the applicants have observed the structure of most master cylinders and brake calipers tends to actuate the rear brakes slightly ahead of the front brakes. Such operation compromises control of the vehicle during the transition period between the application of primarily back-wheel brake forces and primarily front-wheel brake forces. Moreover, it is also important that the brake pads quickly and positively disengage the rotor throughout the entire surface of the pad when the operator releases the brake pedal. Otherwise, parasitic braking can occur which lowers fuel efficiency and accelerates wear on the brake pads.
Accordingly, the applicants have observed that there is a need for a brake caliper having a brake pad timing and retraction controller that can easily and reliably adjust the timing and clamping force of the brake pad extension when the brake pedal is depressed, and that can positively and uniformly retract the brake pad from the rotor when the brake pad is released. To this end, the brake caliper of the invention comprises a caliper housing, a brake pad having a braking surface that selectively engages a brake rotor, at least one reacting member such a hydraulic piston mounted in the housing that extends and retracts the brake pad into and out of frictional engagement with said rotor; and a brake pad timing and retraction controller including at least one resilient member with limited compression travel.
The brake pad timing and retraction controller biases against extension by applying an adjustable hold-off force against an extension force applied to said brake pad by said reacting member that momentarily delays extension and slightly reduces the resulting clamping force between the brake pad and the rotor. The controller also forces positive and uniform retraction of the brake pad from the rotor, thereby minimizing parasitic braking. Additionally, the controller positively retracts the brake pad from the rotor a consistent distance throughout the wear life of the brake pad and rotor, rendering the mechanism self-adjusting. The controller also damps out-of-plane vibration between the brake pad and rotor. Advantageously, the use of separate controllers on opposing brake pads in an opposing brake caliper results in the application of independent pull back forces on the pads, thereby insuring that both pads will be positively and uniformly retracted out of engagement with the rotor.
The brake pad timing and retraction controller includes a bolt having a shaft that includes an end prepared for attachment to the brake pad which may be a threaded end. The threaded end is connected to the brake pad, and the shaft is movably mounted with respect to the housing. The controller also includes a caliper retraction collar, which acts as a compression travel limiter, frictionally engaged but slidably movable on the bolt shaft and spaced apart from the threaded end, and the caliper housing includes first and second telescoping bores slightly larger than the bolt shaft and the collar, respectively, for slidably receiving the threaded end and the piston retraction collar. The resilient member is captured between the caliper retraction collar and the annular interface between the first and second counter bores. The frictional engagement between the collar and bolt shaft is sufficient to prevent the collar from sliding on said shaft in response to the spring force of the resilient member when the resilient member is completely compressed. However, the frictional engagement between the collar and bolt shaft is insufficient to prevent the collar from sliding on the shaft in response to the extension force applied to the brake pad by the reacting member. Consequently, the wearing down of the pad will cause the reacting member to incrementally slide the collar along the bolt shaft the same distance as the reduction in thickness of the pad due to wear. Such a structure advantageously allows the brake caliper to be self-adjusting in response to brake pad wear, thereby maintaining a constant-distance brake stroke throughout the life of the brake pad.
The stroke length of the resilient member is adjustable and may be between about 2.0 mm and 0.025 mm, and is preferably between about 0.30 mm and 0.050 mm. The resilient member is preferably formed from a Belleville spring, although a disc spring, certain types of leaf springs or a sheet of elastomeric material may also be used. The resilient member may include a plurality of Belleville springs. While the stroke length may be adjusted by selecting a stack of Belleville springs with the proper spring properties, it is preferable to adjust the stroke length by varying the profile of the spring-engaging side of the collar. As either end of the collar may be used to engage the spring, and as the cylindrical shape of the collar renders it reversible, the collar has two potentially spring-engaging surfaces. One of these surfaces may be provided with a flat profile to maximize the stroke length of the resilient member, while the other of these surfaces may have (in the case where the resilient element is a Belleville spring) a chamfered, dish-shaped profile that is partially complementary in shape to the resilient element in order to shorten the stroke length of the resilient member. Such a structure advantageously allows the stroke length of the resilient member used in the brake pad timing and retraction controller to be easily varied by reversing the orientation of the collar on the bolt shaft. Alternatively, stroke length may also be controlled by machining a shape into the annular interface that captures the spring which is complementary at least in part to the shape of the spring, or by providing a spacer between the annular interface and the spring.
The brake caliper of the invention may be used in combination with a brake of an automotive vehicle. The spring force of the resilient member is preferably selected to create a momentary delay and a hold-off force against the extension force of the reacting member that results in a slight relative reduction in brake clamping force between the operation of, for example, the rear brakes and the front brakes. Accordingly, the invention may be used to provide front brake bias during the entire braking operation, thereby maximizing control of the vehicle during the braking operation. Such a desired momentary delay and slight reduction in clamping force of the rear brakes verses the front brakes may be accomplished by applying the caliper of the invention to the rear brakes only, but is more preferably accomplished by applying the caliper of the invention to the brakes of both the front and rear wheels, with the spring properties (i.e. travel distance or spring force) of the resilient member being different between the rear brake calipers and the front brake calipers in response to the actuation forces applied by the reacting members. Alternatively, left wheel-right wheel brake timing biases may also be implemented by the invention, which may be useful in certain race car driving applications.
Unexpectedly, the applicants have observed that the restorative force of the resilient member used in the brake pad timing and retraction controller not only advantageously adjusts brake timing, but also substantially increases the effective miles obtained per gallon of fuel and reduces brake wear due to a substantial decrease in parasitic braking. Further unexpectedly, the applicants have observed that the resiliency provided by the resilient member used in the brake pad timing and retraction controller also damps out-of-plane vibration between the brake pad and rotor, thereby reducing brake squeal.
With reference now to
Each of the brake pad timing and retraction controller 20a, 20b and 20c, 20d includes a bolt 22, a caliper retraction collar 30, and a spring member 38 having limited compression travel. Each of these components will now be discussed in detail.
The bolt 22 (best seen in
The housing 7 includes both a caliper retraction bore 34 which is slightly larger in diameter than the collar 30, and a bolt clearance hole 36 which is slightly larger in diameter than the bolt shaft 24 such that the collar 30 and bolt shaft 24 are slidably accommodated within the bores 34 and 36, respectively. The spring member 38 is captured between the collar 30 and an annular ledge 39 that forms the interface between the bores 34 and 36. In the preferred embodiment, the spring member 38 is a dished washer commonly referred to as a Belleville spring having an inner diameter slightly larger than the outer diameter of the bolt shaft 24, and an outer diameter slightly less than the inner diameter of the caliper retraction bore 34. Although compression travel distances of between about 2.0 mm and 0.025 mm and even greater ranges are within the scope of the invention, the advantages of the invention are better realized with compression travel distances of between about 1.50 mm and 0.050, and are best realized with compression travel distances of between about 0.30 mm and 0.10 mm. While all of the aforementioned ranges of compression travel distances effectively delay the extension and accelerate the retraction of the pair of pistons 9a, 9b or 9c, 9d that the particular brake pad timing and retraction controller is associated with, the shorter travel distance ranges are more compatible with rapid brake responsiveness (i.e. a short brake pedal stroke to engage the brake pads 12a, 12b against the rotor 5).
In operation, the spring member 38 is normally in the uncompressed state illustrated in
If the brake pad timing and retraction controllers 20a, 20b and 20c, 20d are provided on the rear wheels of a vehicle but not the front wheels, a vehicle that would otherwise have a back wheel braking engagement bias can be advantageously transformed into a vehicle having a front wheel engagement braking bias wherein the front wheels brake slightly sooner than the rear wheels. Such a front wheel braking engagement bias enhances vehicle control during a braking operation. Alternatively, such a front wheel braking engagement bias can be achieved by providing brake pad timing and retraction controller 20a, 20b and 20c, 20d on all four wheels, the difference being that the spring elements 38 used in the rear wheel calipers would be weaker than the spring elements used in the front wheel calipers. Finally, left-right braking wheel biases can be achieved by providing brake pad timing and retraction controller 20a, 20b and 20c, 20d exclusively on either the right or left wheels, or by providing brake pad timing and retraction controller 20a, 20b and 20c, 20d on all four wheels, the difference being that the strength of the spring elements 38 used in the right wheel calipers would be different than the strength of the spring elements 38 used in the left wheel calipers.
In addition to momentarily delaying the extension of the piston pairs 9a, 9b and 9c, 9d, the brake pad timing and retraction controller 20a, 20b and 20c, 20d also advantageously reduce brake pad vibration which can result in reduced braking efficiency as well as undesirable noises. Such vibration is caused by a resonant oscillation of the surface of the brake pads 12a, 12b against the opposing flat, annular surfaces 18a, 18b, of the rotor 5. The spring element 38 in each of the brake pad timing and retraction controller 20a, 20b and 20c, 20d effectively dampens such undesirable vibration by absorbing the energy associated with the resonant oscillations of the brake pads 12a, 12b. The location of the maximum amplitudes of such undesirable vibration may be located via modal analysis. Because the maximum amplitude of such vibration is likely to be centrally located in the brake pads 12a, 12b concentric along the section line 1B-1B illustrated in
Finally, the applicants have observed that the restorative force applied by the spring members 38 in the brake pad timing and retraction controller 20a, 20b and 20c, 20d are surprisingly effective in reducing parasitic brake losses by more rapidly, positively and uniformly disengaging the brake pads 12a, 12b from the rotor 5 when the brake pedal is released, thereby saving energy and increasing the effective miles obtained per gallon of fuel. As demonstrated by the table below, parasitic brake losses in a diesel-powered vehicle can result in a loss of 215.24 gallons of diesel fuel per year. Assuming a fuel cost of $3.00 per gallon, this translates into a loss of $645 per year which can be substantially if not completely obviated by the incorporation of the previously-described brake pad timing and retraction controller 20a, 20b and 20c, 20d into the brake calipers of the vehicle.
5280 ft/ml
12 in/ft
60 s/min
60 min/hr
hp=ft*lb*rpm/5252
mpg=(fuel density*speed)/(bsfc*bhp)
circumference=6.28*rolling radius
V=average speed
D=drag torque
Rt=rolling radius of tire
BSFC=brake specific fuel consumption
ρf=fuel density
Avg Speed affects total drag, but with assumed constant BSFC it does not affect fuel usage
Constant BSFC vs rpm takes final drive out of calculations
Fuel Waste is inversely proportional to tire diameter
The compression stroke of the spring 38 momentarily delays extension of the brake pads. This is indicated in the graph of
The precise amounts of both the momentary delay and force reduction imposed on the piston stroke and forced “snap-back” of the brake pads 12a, 12b from the rotor 5 are dependent upon, and may be adjusted by, the specific stroke length and spring force properties of the spring member 38.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
This application claims the priority of U.S. Provisional Application No. 61/255,024 filed Oct. 26, 2009.
Number | Name | Date | Kind |
---|---|---|---|
2551251 | Du Bois | May 1951 | A |
2830680 | Hawley | Apr 1958 | A |
2997138 | Cagle | Aug 1961 | A |
3243017 | Kleinstuck | Mar 1966 | A |
3403755 | Barrett et al. | Oct 1968 | A |
3532190 | Palmer | Oct 1970 | A |
3554334 | Shimano et al. | Jan 1971 | A |
3613849 | Pape | Oct 1971 | A |
3618714 | Croswell | Nov 1971 | A |
3730306 | Rath | May 1973 | A |
4042072 | Baba | Aug 1977 | A |
4050548 | Margetts | Sep 1977 | A |
4057127 | Woodring | Nov 1977 | A |
4345674 | Vacval | Aug 1982 | A |
4378863 | Baum | Apr 1983 | A |
4382491 | Chun | May 1983 | A |
4662483 | Boeck | May 1987 | A |
4712654 | Temple et al. | Dec 1987 | A |
4993532 | Weiss et al. | Feb 1991 | A |
5186284 | Lamela et al. | Feb 1993 | A |
5427211 | Sulzer | Jun 1995 | A |
5549181 | Evans | Aug 1996 | A |
6305506 | Shirai et al. | Oct 2001 | B1 |
6378665 | McCormick et al. | Apr 2002 | B1 |
6394236 | Matsuishita | May 2002 | B1 |
6397983 | Roszman et al. | Jun 2002 | B1 |
6766886 | Bendtsen et al. | Jul 2004 | B2 |
8037979 | Strandberg et al. | Oct 2011 | B2 |
20090071765 | Strandberg et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
2716423 | Apr 2011 | CA |
1239538 | Dec 1999 | CN |
1314284 | Sep 2001 | CN |
20101519917 | Nov 2011 | CN |
4304616 | Aug 1994 | DE |
2314895 | Apr 2011 | EP |
840392 | Jul 1960 | GB |
1495701 | Dec 1977 | GB |
1600998 | Oct 1981 | GB |
S4729078 | Dec 1972 | JP |
S4733584 | Dec 1972 | JP |
S5757932 | Apr 1973 | JP |
S51-21786 | May 1974 | JP |
S5089767 | Jul 1975 | JP |
S5656941 | May 1981 | JP |
S56148128 | Nov 1981 | JP |
S5744230 | Mar 1982 | JP |
S4825490 | Apr 1982 | JP |
S64-35226 | Mar 1989 | JP |
H01178241 | Dec 1989 | JP |
H0669460 | Sep 1994 | JP |
2000088014 | Mar 2000 | JP |
2011122717 | Jun 2011 | JP |
1020050120468 | Dec 2005 | KR |
Entry |
---|
European Search Report from European Application No. 10164195. |
Number | Date | Country | |
---|---|---|---|
20110094834 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
61255024 | Oct 2009 | US |