Brake device for garage doors and the like, and door assembly including the same

Information

  • Patent Grant
  • 7543625
  • Patent Number
    7,543,625
  • Date Filed
    Tuesday, August 16, 2005
    19 years ago
  • Date Issued
    Tuesday, June 9, 2009
    15 years ago
Abstract
A braking device configured for use with the counterbalancing system of a garage door. The brake device includes a support bracket, a ratchet wheel, a pawl arm, and a biasing spring. The support bracket is rigidly connected to a fixed structure and has a guiding slot. The ratchet wheel is securely mounted about the overhead shaft of the counterbalancing system and has at least one notch. The pawl arm has first and second ends, the first end of the pawl arm being pivotally connected to the support bracket and the second end of the pawl arm cooperating with the guiding slot and being movable with respect to the support bracket along said guiding slot. The first and second ends of the pawl arm are further connected to flanges of a plug on either side of the overhead shaft. The biasing spring is operatively connected between the support bracket and the pawl arm so as to exert a biasing force for biasing the pawl arm towards the ratchet wheel. The pawl arm is devised so that, an element thereof is adjacent to the ratchet wheel, said element being shaped and sized to be removably insertable into at least one notch of the ratchet wheel so as to block rotation of the ratchet wheel, and thus block rotation of the overhead shaft, in the event of a failure of the counterbalancing system of the door. The brake device further includes a shear pin operatively connectable between the support bracket and the pawl arm for maintaining said pawl arm, prior to installation of the brake device onto the counterbalancing system, in an intermediate configuration between the first and second configurations. The shear pin is made of a specific material being breakable when the pawl arm is rotated with respect to the support bracket when the torsional force of the torsional spring transmitted to said pawl arm via the plus has reached a predetermined value, ensuring namely that a predetermined minimal amount of load is present is said torsional spring for counterbalancing purposes.
Description
FIELD OF THE INVENTION

The present invention relates to a brake device for garage doors and the like, also commonly known in the industry as a “drop-catch mechanism”. More particularly, the present invention relates to a brake device configured for use with a counterbalancing system of a door assembly, such as a garage door for example. The present invention also relates to a method of using such a brake device and to a kit for assembling the brake device. The brake device is intended to hold the garage door in position in case of a failure in the counterbalancing system, which is generally represented by a loss of tension in a given torsion spring of the counterbalancing system, with which the brake device is intended to be used.


BACKGROUND OF THE INVENTION

Garage doors and the like are well known in the art. Indeed, it is well known in the art that garage doors usually require to be connected to a counterbalancing system for counterbalancing the weight of the door in order to decrease the force required to open the door and also facilitate its closing from a raised to a lowered position. Counterbalancing systems can be found in many other types of cable-operated doors, such as slidable truck doors for example.


It is also known in the art that a widely used type of counterbalancing system generally comprises a pair of spaced apart cable drums connected to corresponding cables, each cable being in turn connected to a lower opposite side edge of the garage door. The cable drums are usually mounted on an overhead shaft which is supported above the door opening and is connected to one or more torsion springs which are each fixed to the shaft at one end, and operatively secured to a fixed structure such as the wall, or a wall bracket for example, at the other end, so that the cable drums are biased to rotate in a direction which winds the cables onto the drums and counteracts the weight of the door connected to the cables. The torsion springs are adjusted to properly balance the weight of the door so that minimal opening and closing efforts are required, either manually or when motor controlled.


It is also known in the art that conventional, low cost adjustment devices used for the above-mentioned type of counterbalancing system, and widely utilized in the garage door industry, are generally cylindrical “collars” commonly referred to also as “plugs” (or “cones”) which are connected to the ends of the torsion springs and are thus mounted on the aforementioned shaft for adjusting the deflection of the springs to preset the torsional (or counterbalancing) force of the spring.


In operation, torque is transferred between the torsion spring, overhead shaft, and plugs which operatively connect the shaft to the spring, in order to counterbalance the weight of the garage door. Usually, each torsion spring is fixed to the overhead shaft at one end, by means of a plug known as a “winding plug”, and operatively secured to the wall via a bracket at the other end, by means of another plug known as a “stationary plug”.


One could envisage that, although very unlikely, it might happen that one of the elements (e.g. spring) of the counterbalancing mechanism which are operatively connected to the cables may undergo a failure, leading to the garage door falling, which is undesirable. There have been other attempts to come up with brake devices used in the event of a failure of a cable or of an element holding the same.


Known in the art is U.S. Pat. No. 6,862,845 B2 naming SCHIKS as inventor and granted on Mar. 8, 2005, which describes a drop-catch mechanism. The drop-catch mechanism is used for preventing a door leaf of an overhead door from falling down upon breakage of a balancing spring thereof. The mechanism comprises an input member for coupling with a balancing spring of the overhead door. The mechanism also comprises a ratchet wheel for coupling with a winding axle carrying the door leaf of the overhead door. The mechanism also comprises a pawl and means for moving the pawl from a free position that allows rotation of the ratchet wheel to a catching position that blocks rotation of the ratchet wheel. The means for moving the pawl are configured such that, in use, breakage of a balancing spring coupled to the input member causes the pawl to move from the free position to the catching position. The mechanism is characterized in that the means for moving the pawl from the free position into the catching position comprise a positive mechanical drive extending from the input member to the pawl.


Also known in the art is U.S. patent application No. 2003/0221801 filed by the Applicant of the present application, naming BEAUDOIN et al. as inventors and published on Dec. 4, 2003, which describes a braking device. The braking device is configured for use with the counterbalancing system of a garage door. The braking device includes a support bracket, a ratchet wheel, a pawl arm, and a biasing spring. The support bracket is rigidly connected to a fixed structure and has a guiding slot. The ratchet wheel is securely mounted about the overhead shaft of the counterbalancing system and has at least one notch. The pawl arm has first and second ends, the first end of the pawl arm being pivotally connected to the support bracket and the second end of the pawl arm cooperating with the guiding slot and being movable with respect to the support bracket along said guiding slot. The first and second ends of the pawl arm are further connected to flanges of a plug on either side of the overhead shaft. The biasing spring is operatively connected between the support bracket and the pawl arm so as to exert a biasing force for biasing the pawl arm towards the ratchet wheel. The pawl arm is devised so that, an element thereof is adjacent to the ratchet wheel, said element being shaped and sized to be removably insertable into at least one notch of the ratchet wheel so as to block rotation of the ratchet wheel, and thus block rotation of the overhead shaft, in the event of a failure of the counterbalancing system of the door.


Also known to the Applicant are the following U.S. patents and patent application which describe various devices for use with doors: U.S. Pat. Nos. 229,983; 603,237; 636,645; 826,284; 1,196,714; 1,863,961; 2,463,344; 2,546,081; 2,555,560; 2,878,865; 3,236,348; 3,842,892; 3,895,539; 4,116,314; 4,125,142; 5,257,685; 5,494,093; 5,706,552; 5,971,055; 6,070,641; 6,079,524; 6,102,480; 6,401,792; 6,431,619; and 2002/0170688 A1.


However, these devices may be generally quite bulky; inherently elaborate; disadvantageous when using, installing, and/or maintaining; and/or result to be cost ineffective.


Therefore, there is a need for a simpler, more compact, easier to use, easier to maintain, and/or more cost effective brake device than what is available in the prior art for stopping downward movement of a cable-operated door, such as garage doors and the like, in the event of a failure in the counterbalancing system of the door (for example, failure of one of the counterbalancing springs and/or failure of one of the elements connected to the counterbalancing springs).


SUMMARY OF THE INVENTION

The object of the present invention is to provide a brake device which, by virtue of its design and components, satisfies some of the above-mentioned needs and is thus an improvement over other related brake device known in the prior art.


The present invention is particularly advantageous in that it is intended for immobilizing a cable-operated door, such as garage doors and the like, in the event of a failure in the counterbalancing system. The present invention is also particularly advantageous in that its design is also intended to facilitate the mounting of the brake device onto the counterbalancing system.


In accordance with the present invention, the above object is achieved with a brake device configured for cooperating with a counterbalancing system of a door, said counterbalancing system including a rotatable overhead shaft operatively connectable to the door for operating the same, a plug mountable about the overhead shaft and being rotatable thereabout, and a torsional spring for operatively connecting the plug to the overhead shaft and capable of being loaded thereinbetween so as to exert a torsional force for counterbalancing the weight of the door, said torsional force being transmittable between the overhead shaft and the plug via the torsional spring, the brake device being devised for blocking rotation of the overhead shaft in the event of a failure of the counterbalancing system of the door, the brake device comprising:


a support bracket rigidly connectable to a fixed structure, said support bracket having a guiding arrangement;


a ratchet wheel securely mountable about the overhead shaft of the counterbalancing system, the ratchet wheel having a least one notch;


a pawl arm having first and second ends, the first end of the pawl arm being pivotably connected to the support bracket and the second end of the pawl arm cooperating with the guiding arrangement and being movable with respect to the support bracket along a given path defined by the guiding arrangement, the first and seconds ends of the pawl arm being further connectable to flanges of the plug on either side of the overhead shaft, the pawl arm further having an element adjacent to the ratchet wheel, said element being shaped and sized to be removably insertable into said at least one notch of the ratchet wheel so as to block rotation of the ratchet wheel; and


biasing means operatively connected between the support bracket and the pawl arm so as to exert a biasing force for biasing the pawl arm and its element towards the ratchet wheel;


wherein the pawl arm is operable between a first configuration, corresponding to a normal operation of the counterbalancing system, where the torsional force of the torsional spring transmitted to the plug is greater than the biasing force of the biasing means acting on the pawl arm, thereby urging the pawl arm and its element away from the ratchet wheel, thus allowing the overhead shaft to rotate, and a second configuration, corresponding to a failure of the counterbalancing system, where the biasing force of the biasing means acting on the pawl arm is greater than the torsional force of the torsional spring transmitted to the plug, thereby urging the element of the pawl arm into said at least one notch of the ratchet wheel so as to block rotation of the pawl arm and thus block rotation of the overhead shaft;


the improvement wherein the brake device further comprises a shear pin operatively connectable between the support bracket and the pawl arm for maintaining said pawl arm, prior to installation of the brake device onto the counterbalancing system, in an intermediate configuration between the first and second configurations, the shear pin being made of a specific material being breakable when the pawl arm is rotated with respect to the support bracket when the torsional force of the torsional spring transmitted to said pawl arm via the plug has reached a predetermined value.


According to another aspect of the present invention, there is also provided a method of mounting a brake device onto a counterbalancing system, the counterbalancing system comprising a rotatable overhead shaft operatively connectable to a door for operating the same, a plug mountable about the overhead shaft and being rotatable thereabout, and a torsional spring for operatively connecting the plug to the overhead shaft and capable of being loaded thereinbetween so as to exert a torsional force for counterbalancing the weight of the door, said torsional force being transmittable between the overhead shaft and the plug via the torsional spring, the brake device being devised for blocking rotation of the overhead shaft in the event of a failure of the counterbalancing system, the method comprising the steps of:


a) providing a brake device such as the one described herein;


b) securing the support bracket of the brake device onto a fixed structure;


c) mounting the plug about the overhead shaft;


d) inserting the overhead shaft through the orifice of the support bracket;


e) connecting flanges of the plug onto the first and seconds of the pawl arm;


f) operatively connecting the torsional spring between the plug and the overhead shaft;


g) ensuring that the shear pin is operatively connected between the support bracket and the pawl arm;


h) loading the torsional spring so as to exert a torsional force between the plug and the overshaft shaft for counterbalancing the weight of the door; and


i) continuing loading until the shear pin breaks and the pawl is triggered into the first configuration.


According to another aspect of the present invention, there is also provided a kit for assembling a brake device configured for cooperating with a counterbalancing system of a door, said counterbalancing system including a rotatable overhead shaft operatively connectable to the door for operating the same, a plug mountable about the overhead shaft and being rotatable thereabout, and a torsional spring for operatively connecting the plug to the overhead shaft and capable of being loaded thereinbetween so as to exert a torsional force for counterbalancing the weight of the door, said torsional force being transmittable between the overhead shaft and the plug via the torsional spring, the brake device being devised for blocking rotation of the overhead shaft in the event of a failure of the counterbalancing system of the door, the kit comprising:


a support bracket rigidly connectable to a fixed structure, said support bracket having a guiding arrangement;


a ratchet wheel securely mountable about the overhead shaft of the counterbalancing system, the ratchet wheel having a least one notch;


a pawl arm having first and second ends, the first end of the pawl arm being pivotably connectable to the support bracket and the second end of the pawl arm being also connectable to the support bracket for cooperating with the guiding arrangement and moving with respect to the support bracket along a given path defined by the guiding arrangement, the first and seconds ends of the pawl arm being further connectable to flanges of the plug, the pawl arm further having an element adjacent to the ratchet wheel, said element being shaped and sized to be removably insertable into said at least one notch of the ratchet wheel so as to block rotation of the ratchet wheel; and


biasing means operatively connectable between the support bracket and the pawl arm so as to exert a biasing force for biasing the pawl arm and its element towards the ratchet wheel;


wherein, when the brake device is assembled onto the counterbalancing system, the pawl arm is operable between a first configuration, corresponding to a normal operation of the counterbalancing system, where the torsional force of the torsional spring transmitted to the plug is greater than the biasing force of the biasing means acting on the pawl arm, thereby urging the pawl arm and its element away from the ratchet wheel, thus allowing the overhead shaft to rotate, and a second configuration, corresponding to a failure of the counterbalancing system, where the biasing force of the biasing means acting on the pawl arm is greater than the torsional force of the torsional spring transmitted to the plug, thereby urging the element of the pawl arm into said at least one notch of the ratchet wheel so as to block rotation of the pawl arm and thus block rotation of the overhead shaft;


the improvement wherein the kit further comprises a shear pin operatively connectable between the support bracket and the pawl arm for maintaining said pawl arm, prior to installation of the brake device onto the counterbalancing system, in an intermediate configuration between the first and second configurations, the shear pin being made of a specific material being breakable when the pawl arm is rotated with respect to the support bracket when the torsional force of the torsional spring transmitted to said pawl arm via the plug has reached a predetermined value.


According to another aspect of the present invention, there is also provided a door assembly with corresponding counterbalancing system provided with the above-mentioned brake device.


The objects, advantages and other features of the present invention will become more apparent upon reading of the following non-restrictive description of preferred embodiments thereof, given for the purpose of exemplification only with reference to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a fragmentary exploded view of a counterbalancing system provided with a brake device according to a preferred embodiment of the invention.



FIG. 2 is a perspective view of a brake device according to another preferred embodiment of the invention, the brake device being shown in a first configuration (“rest configuration”).



FIG. 3 is a front plan view of what is shown in FIG. 2.



FIG. 4 is another front plan view of what is shown in FIG. 2, the brake device being now shown in a second configuration (“braking configuration”).



FIG. 5 is another perspective view of what is shown in FIG. 3, the brake device being shown in the intermediate configuration and with the transversal pin in an exploded relationship with respect to the ratchet wheel.



FIG. 6 is a front plan view of what is shown in FIG. 5.



FIG. 7 is an exploded perspective view of the brake device shown in FIG. 2.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION

In the following description, the same numerical references refer to similar elements. The embodiments shown in the figures are preferred.


In the context of the present description, the expression “garage door” includes all types of cable-operated doors and the like. Although the present invention was primarily designed for a garage door, it may be used with other kinds of doors, such as slidable truck doors, or with any other items using a counterbalancing system, as apparent to a person skilled in the art. For this reason, the expression “garage door” should not be taken as to limit the scope of the present invention and includes all other kinds of doors or items with which the present invention may be used and could be useful.


Moreover, in the context of the present description, the expressions “garage” and “door”, “torsion spring” and “torsional spring”, “counterbalancing shaft” and “overhead shaft”, “counterbalancing mechanism” and “counterbalancing system”, as well as any other equivalent expressions and/or compound words thereof, may be used interchangeably. The same applies for any other mutually equivalent expressions, such as “plate” and “bracket” for example, as apparent to a person skilled in the art.


In addition, although the preferred embodiment of the present invention as illustrated in the accompanying drawings comprises various components such as fastener(s), a bracket, a guiding slot, a spring member, bushing(s), spacer(s), etc., and although the preferred embodiment of the brake device 1 and corresponding parts of the present invention as shown consists of certain geometrical configurations as explained and illustrated herein, not all of these components and geometries are essential to the invention and thus should not be taken in their restrictive sense, i.e. should not be taken as to limit the scope of the present invention. It is to be understood, as also apparent to a person skilled in the art, that other suitable components and cooperations thereinbetween, as well as other suitable geometrical configurations may be used for the brake device 1 according to the present invention, as will be briefly explained herein and as can be easily inferred herefrom, without departing from the scope of the invention.


Broadly described, the brake device 1 according to the present invention, as exemplified in the accompanying drawings, is a brake device 1 for use with a counterbalancing system 3 (not fully shown) of a door, such as a garage door, for immobilizing the door in the event of a failure in the counterbalancing system 3, in a manner similar to that of a “drop-catch mechanism”, for blocking the rotation of the shaft of the counterbalancing mechanism.


As better shown in FIG. 1, the brake device 1 is configured for use with the counterbalancing system 3 of the door which, among other components, typically includes a rotatable overhead shaft 5 operatively connected to the door (not shown) for operating the same, a plug 7 mounted about the overhead shaft 5 and being rotatable thereabout, and a torsional spring 9 operatively connecting the plug 7 to the overhead shaft 5 and being loaded thereinbetween so as to exert a torsional force capable of counterbalancing the weight of the door, the torsional force being transmittable between the overhead shaft 5 and the plug 7 via the torsional spring 9. Counterbalancing systems of garage doors are very well known in the art and thus, in the context of the present description, there is no need to further explain the working principle thereof, as apparent to a person skilled in the art.


According to the present invention, the brake device 1 is used for blocking rotation of the overhead shaft 5 in the event of a failure of the counterbalancing system 3 of the door. The brake device 1 comprises a support bracket 11, a ratchet wheel 13, a pawl arm 15, and biasing means 17, as shown in FIGS. 1-7.


As can be easily understood by a person skilled in the art in reference to the accompanying drawings, the support bracket 11 is rigidly connected to a fixed structure 19, such as a wall for example, or any other suitable structure. The brake device 1 also has a guiding arrangement 21, which preferably includes a guiding slot 45 provided on the support bracket 11. It is worth mentioning though that, according to the present invention, the guiding arrangement 21 may be disposed otherwise on the brake device 1 and/or on other parts of the counterbalancing system 3 with which it cooperates, as briefly described hereinbelow and as apparent to a person skilled in the art.


As shown in FIGS. 1-7, the ratchet wheel 11 is securely mounted about the overhead shaft 5 of the counterbalancing system 3 and has at least one notch 23. Preferably, the ratchet wheel 13 is securely mounted about the overhead shaft 5 by means of suitable fasteners, such as setscrews 37 for example, as better shown in FIG. 1, or by a transversal pin 61 as can be easily understood when comparing FIGS. 2 and 5. Preferably also, the ratchet wheel 13 further comprises an inner bore provided with a tenon 47 removably insertable into a corresponding longitudinal mortise 49, or groove, provided along the overhead shaft 5, as better shown in FIG. 1. It is worth mentioning that, according to the present invention, other suitable means different from the above-discussed may be used for securely mounting the ratchet wheel 13 about the overhead shaft 5, at a suitable location therealong, as apparent to a person skilled in the art.


As shown in FIGS. 1-7, the pawl arm 15 has first and second ends 25, 27. The first end 25 of the pawl arm 15 is pivotally connected to the support bracket 11. The second end 27 of the pawl arm 15 cooperates with the guiding arrangement 21 and is movable with respect to the support bracket 11 along a given path defined by the guiding arrangement 21, as can be easily understood when comparing FIG. 3 with FIG. 4. The first and second ends 25, 27 of the pawl arm 15 are further connected to flanges 29 of the plug 7 on either side of the overhead shaft 5, as better shown in FIG. 1.


As aforementioned, the guiding arrangement 21 of the support bracket 11 preferably comprises a guiding slot 45, preferably provided on the support bracket 11, which preferably acts as the given path along which the second end 27 of the pawl arm 15 may travel. Preferably also, the brake device 1 comprises suitable fasteners 51 for connecting the first and second ends 25, 27 of the pawl arm 15 to the flanges 29 of the plug 7, one of the fasteners 51 being preferably mounted onto the second end 27 of the pawl arm 15 and cooperating with the guiding slot of the support bracket 11 for allowing the second end 27 of the pawl arm 15 to move along the guiding slot of the support bracket 11, as can be easily understood when comparing FIG. 3 with FIG. 4. The fasteners may simply consist of a member having a first end securely connected to the second end 27 of the pawl arm 15 and a second end cooperating with the guiding arrangement 21 (e.g. slot 45) of the support bracket 11. Alternatively, the fasteners may consist of a bolt combined with other suitable complementary pieces, such as a nut, a washer, a spacer, a bearing, and/or the like, as exemplified in FIG. 1 and as apparent to a person skilled in the art.


As better shown in FIGS. 1-7, the pawl arm 15 further has an element 31 adjacent to the ratchet wheel 13, said element 31 being shaped and sized to be removably insertable into at least one notch 23 of the ratchet wheel 13 so as to block rotation of the ratchet wheel 13 when there is a failure of the counterbalancing system 3.


As shown in FIGS. 2-6, the biasing means 17 are operatively connected between the support bracket 11 and the pawl arm 15 so as to exert a biasing force for biasing the pawl arm 15 and its element 31 towards the ratchet wheel 13. The biasing means preferably comprise a loaded spring member 39, capable of storing potential energy via deformation so as to provide a potential force, the spring member 39 having a first end 41 connected to the support bracket 11 and a second end 43 resting against the pawl arm 15. It is worth mentioning however that other suitable biasing means 17 which do not use potential energy for providing a biasing force may be used according to the present invention, so long as these biasing means 17 are capable of biasing the pawl arm 15 and its element 31 in a suitable way towards the ratchet wheel 13, as apparent to a person skilled in the art.


In use, the pawl arm 15 is operable between a first configuration, also known as “unlocked configuration” or “rest configuration”, corresponding to a normal operation of the counterbalancing system 3, where the torsional force of the torsional spring 9 transmitted to the plug 7 is greater than the biasing force of the biasing means 17 acting on the pawl arm 15, thereby urging the pawl arm 15 and its element 31 away from the ratchet wheel 13, as better shown in FIG. 3, thus allowing the overhead shaft 5 to rotate and operate normally, as apparent to a person skilled in the art.


The pawl arm 15 is also operable and may be triggered into a second configuration, also known as the “locked configuration” or “brake configuration”, corresponding to a failure of the counterbalancing system 3, where the biasing force of the biasing means 17 acting on the pawl arm 15 is greater than the torsional force of the torsional spring 9 transmitted to the plug 7, thereby urging the element of the pawl arm 15 into at least one notch 23 of the ratchet wheel 13 so as to block rotation of the pawl arm 15 and thus block rotation of the overhead shaft 5, as better shown in FIG. 4, and as also apparent to a person skilled in the art.


It is worth mentioning that although the preferred embodiment of the guiding arrangement 21 includes a guiding slot 45 provided on the support bracket 11, other suitable guiding arrangements 21 different from the above-discussed may be used for the brake device 1 according to the present invention, without departing from the scope of the present invention. For example, the support bracket 11 may not even need to be provided with a guiding slot 45. Indeed, the support bracket 11 could be provided with an appropriate projecting member instead, such as a pin, which would be shaped and sized to cooperate with a corresponding guiding slot 45 provided on the second end 27 of the pawl arm 15 so as to ensure a proper cooperation thereinbetween and ensure that the second end 27 of the pawl arm 15 may be displaced from one end to another along the predetermined given path so that the pawl arm 15 may be properly triggered from the first configuration into the second configuration so as to ensure that its element 31 is securely insertable into one of the notches 23 of the ratchet wheel 15, so as to block rotation of the overhead shaft 5, in the event of a failure of the counterbalancing system 3. Moreover, it is worth mentioning that according to other variations of the present invention, the pawl arm 15 could be integrated into the plug 7 so that the latter two would consist of one single piece. Indeed, this modified plug 7 would thus have first and second ends 25, 27, similarly to those described herein, and a corresponding element 31 being shaped and sized to be removably insertable into at least one notch 23 of the ratchet wheel 13 so as to block rotation of the ratchet wheel 13. Hence, as can be easily understood, other various types of guiding arrangements 21 and substantial variations of the pawl arm 15 may be used according to the present invention so long as they ensure a proper displacement of the second end 27 of the pawl arm 15 with respect to the support bracket 11 for ensuring blocking of the ratchet wheel 13 by means of element 31, and thus ensuring blocking of the overhead shaft 5, in the event of a failure of the counterbalancing mechanism 3.


Preferably also, the given path along which the second end 27 of the pawl arm 15 may travel is preferably devised so that the displacement of the pawl arm 15 into the locked configuration forces the plug 7 of the counterbalancing mechanism 3 to be displaced eccentrically with respect to the longitudinal axis of the overhead shaft 5 so as to facilitate the insertion of the element 31 of the pawl arm 15 into one of the plurality of notches 23 of the ratchet wheel 13, and thus adequately block rotation of the ratchet wheel 13, and thus of the overhead shaft 5, when there is a failure in the counterbalancing mechanism 3.


An important feature of the present invention, and considered to be substantial improvement over the prior art, is that the brake device 1 further comprises a shear pin 53 operatively connectable between the support bracket 11 and the pawl arm 15 for maintaining said pawl arm 15, preferably prior to installation of the brake device 1 onto the counterbalancing system 3, in an intermediate configuration between the first and second configurations, as better shown in FIGS. 5 and 6. The shear pin 53 is preferably made of a specific material being breakable when the pawl arm 15 is rotated with respect to the support bracket 11 when the torsional force of the torsional spring 9 transmitted to said pawl arm 15 via the plug 7 has reached a predetermined value.


The provision of such a shear pin 53, and the maintaining of the brake device 1 in such an intermediate configuration, enables for an easier installation of the brake device 1 onto the counterbalancing system 3, as may be better appreciated by a person skilled in the art, when referring to FIGS. 1, 5 and 6. Indeed, once said brake device 1 has been properly installed onto the counterbalancing system 3, the torsional spring 9 thereof may then be loaded up until it reaches a predetermined value which would cause the shear pin 53 to break and trigger the brake device 1 to be ready for use, in the first or “normal” configuration, as can be easily understood when contrasting FIGS. 6 and 3.


It may be appreciated that the use of such a shear pin 53 according to the present invention may be selected, depending on these structural features thereof, namely the material being used, the yield value thereof, and other relevant parameters, as apparent to a person skilled in the art, to ensure that at least a minimal amount of loading, which would cause the shear pin to break, be present in the torsional spring 9, for a specific application of the counterbalancing system 3. Thus, as may now better be appreciated and as can be easily understood by a person skilled in the art, the use of such a shear pin 53 according to the present invention, and the breaking thereof, may be done to ensure that a minimal amount of loading is present in the torsional spring 9 when configurating the counterbalancing system 3, to ensure a proper operation thereof.


According to a preferred embodiment of the present invention, and as better shown in FIGS. 1, 5, 6 and 7, the shear pin 53 is preferably insertable through corresponding holes 55, 57 provided respectively on the pawl arm 15 and the support bracket 11. Preferably also, the corresponding hole 57 of the support bracket 11 is preferably provided on a corresponding flange 59 of said support bracket 11, as also better shown in FIG. 7.


It is worth mentioning that according to the present invention, another suitable “breaker” device, different from the shear pin 53, may be used in the manner described above, to ensure that a minimal amount of load has been installed onto the torsional spring 9 of the counterbalancing system 3 when installing the same. Indeed, a person skilled in the art would easily understand that the shear pin 53 or any other type of similar “breaker” device could be used according to the present invention to achieve the above-mentioned described results and advantages.


As better shown in FIGS. 1-7, the ratchet wheel 13 preferably comprises a plurality of notches 23, and the element 31 of the pawl arm 15 is removably insertable into one of said notches 23 when the pawl arm 15 is triggered into the second configuration.


As better shown in FIGS. 1 and 7, the support bracket 11 preferably comprises an orifice 33 through which the overhead shaft 5 extends. As also shown, the orifice 33 is preferably provided with a bushing 35 through which the overhead shaft 5 also extends, said bushing 35 acting as a support for the overhead shaft 5 and also facilitating its rotation with respect to the support bracket 11, also known as a bearing plate.


Preferably also, the pawl arm 15 is arc-shaped, as better shown in FIGS. 1-7, and the first and second ends 25, 27 of the pawl arm 15 are preferably diametrically opposed to one another, as better shown in FIGS. 2-6. It is worth mentioning though, as apparent to a person skilled in the art, that the first and second ends 25, 27 of the pawl arm 15 do not necessarily need to be diametrically opposite to one another, for proper operation of the brake device 1, that is, for a suitable blocking of the ratchet wheel 13 by the pawl arm 15 and its element 31. Indeed, the second end 27 of the pawl arm 15 and corresponding guiding arrangement 21 may be located at another suitable location on the support bracket 11 for providing a proper lever force so as to insert the element 31 of the pawl arm 15 securely into one of the notches 23 of the ratchet wheel 13 and adequately block rotation of the overhead shaft 5 when there is a failure in the counterbalancing mechanism 3.


As aforementioned, according to another aspect of the present invention, there is also provided a counterbalancing system 3 or door assembly provided with the above-described brake device 1, as shown in FIG. 1.


Also according to another aspect of the present invention, there is also provided a kit for assembling such as brake device 1, as well as a method of using/mounting the brake device 1 onto the counterbalancing system 3.


The ratchet wheel 13 is preferably coaxially mounted onto the shaft 5 and positioned adjacent to the orifice 33 of the plate. As above-discussed, the pawl arm 15 preferably has first and second ends 25, 27, the first end 25 of the pawl arm 15 being pivotally mounted onto the plate and the second end 27 of the pawl arm 15 being slidably movable along a guiding slot of the plate. The pawl arm 15 preferably also has an element 31 positioned to be insertable into a notch 23 of the ratchet wheel 13. Preferably also, the plug 7 of the counterbalancing mechanism has first and second flanges 29 being respectively mounted onto the first and second ends 25, 27 of the pawl arm 15. Preferably also, the biasing means 17 are operatively connected between the pawl arm 15 and the bearing plate for biasing the pawl arm 15 against the ratchet wheel 13 with a potential force for example.


In use, when there is a torsional force in the torsional spring 9 of the counterbalancing mechanism 3 which is greater than the biasing force (e.g. potential force of the spring member 39) of the biasing means 17, then the element 31 of the pawl arm 15 is biased away from the ratchet wheel 13, this mode corresponding to the unlocked configuration of the device 1, as better shown in FIG. 3. When the torsional force in the torsional spring 9 of the counterbalancing mechanism is less than the biasing force of the biasing means 17 (i.e. when there is failure in the counterbalancing mechanism 3), then the element 31 of the pawl arm 15 is inserted into the notch 23 of the ratchet wheel 13 via the biasing means 17, this mode corresponding to the locked configuration of the device 1, as better shown in FIG. 4.


As aforementioned, a garage door needs to have a counterbalancing system so that it may be more easily opened and closed. The counterbalancing of the door is mainly carried out by the torsional spring 9. This spring 9 is usually fixed to two plugs, the first one being the “winding plug” and the other one being the “stationary plug” 7. The winding plug is usually fixed onto the counterbalancing shaft and the stationary plug 7 is usually fixed onto a bearing plate securely mounted to a fixed structure 19, such as a wall for example, via a bracket. The brake device 1 according to the present invention preferably takes the place of the traditional bearing plate on which the stationary plug 7 is installed.


Indeed, during the normal operation of the door, the brake device 1 according to the present invention is in an unlocked configuration and acts as a wall bracket, as better shown in FIG. 3. In this mode, the counterbalancing shaft 5 is free to rotate either clockwise or counterclockwise so as to carry out its normal counterbalancing functions. This unlocked configuration is maintained because of the torsional force present in the torsional spring 9 which is stronger than the force exerted by the biasing means 17, preferably a torsional spring member 39. The torque “A” is caused by the torsional force present in the torsional spring member 39 and the torque “B” is caused by biasing force provided by the biasing means 17 operatively connected between the bearing plate and the pawl arm 15, as better shown in FIGS. 2-6. In the event of a failure in the counterbalancing mechanism characterized by a substantial decrease in tension in the torsional spring 9, then torque “A” becomes very small, therefore the combined effect of gravity on the door and the potential force present in the biasing means 17 force the pawl arm 15 to engage with the ratchet wheel 13, as better shown in FIG. 4, and thereby stop the door from falling. Indeed, when in the locked configuration, the counterbalancing shaft 9 is prevented from rotating because of the interlocking of the element 31 of the pawl arm 15 with a corresponding notch 23 of the ratchet wheel 13 mounted securely and coaxially about the counterbalancing shaft 9. Preferably and as apparent to a person skilled in the art, the shaft 9 may only be turned by raising the door or by appropriately disengaging the pawl arm 15 from the ratchet wheel 13. Hence, it can be easily understood that the brake device 1 according to the present invention acts similarly to a ratchet system which is triggered into action when there is a failure in the counterbalancing mechanism 3 of the door.


The brake device 1 and corresponding parts (pawl arm 15, ratchet wheel 13, support bracket 11, etc.) are preferably made of substantially rigid materials, such as metallic materials (steel, etc.), hardened polymers, composite materials, polymeric materials, and/or the like, so as to ensure a proper operation thereof depending on the particular applications for which the brake device 1 is intended and the different parameters in cause (counterbalancing force in the spring 9, weight of the door, etc.), as apparent to a person skilled in the art.


Moreover, the device 1 shown in the accompanying figures is a “right” brake device 1 to be located at the top right portion of the garage door, more specifically at the right-hand side thereof when viewed from the inside of the garage. A “left” brake device 1, that is, a left-hand side version of the brake device 1 shown, would simply be a mirror image of what is in the accompanying figures.


The present invention is an improvement and presents several advantages over devices known in the prior art. Indeed, the present invention may be used in the garage door industry, with new garage doors or existing garage doors. In the case of a failure in the counterbalancing system 3, the present invention is devised to stop the fall of the garage door and maintain it immobilized where it is until the necessary inspections and repairs are made.


The present invention is a more compact, easier to use, easier to maintain, and more cost effective brake device than those available in the prior art. Furthermore, the present invention may be used with other kinds of doors, such as slidable truck doors, or with any other items provided with counterbalancing mechanisms 3 such as the aforementioned, as apparent to a person skilled in the art.


Of course, numerous modifications could be made to the above-described embodiments without departing from the scope of the invention, as defined in the appended claims.

Claims
  • 1. A method of mounting a brake device onto a counterbalancing system, the counterbalancing system comprising a rotatable overhead shaft operatively connectable to a door for operating the same, a plug mountable about the overhead shaft and being rotatable thereabout, and a torsional spring for operatively connecting the plug to the overhead shaft and capable of being loaded thereinbetween so as to exert a torsional force for counterbalancing the weight of the door, said torsional force being transmittable between the overhead shaft and the plug via the torsional spring, the brake device being devised for blocking rotation of the overhead shaft in the event of a failure of the counterbalancing system, the brake device comprising: a support bracket rigidly connectable to a fixed structure, said support bracket having a guiding arrangement;a ratchet wheel securely mountable about the overhead shaft of the counterbalancing system, the ratchet wheel having a least one notch;a pawl arm having first and second ends, the first end of the pawl arm being pivotably connected to the support bracket and the second end of the pawl arm cooperating with the guiding arrangement and being movable with respect to the support bracket along a given path defined by the guiding arrangement, the first and seconds ends of the pawl arm being further connectable to flanges of the plug on either side of the overhead shaft, the pawl arm further having an element adjacent to the ratchet wheel, said element being shaped and sized to be removably insertable into said at least one notch of the ratchet wheel so as to block rotation of the ratchet wheel; andbiasing means operatively connected between the support bracket and the pawl arm so as to exert a biasing force for biasing the pawl arm and its element towards the ratchet wheel;wherein the pawl arm is operable between a first configuration, corresponding to a normal operation of the counterbalancing system, where the torsional force of the torsional spring transmitted to the plug is greater than the biasing force of the biasing means acting on the pawl arm, thereby urging the pawl arm and its element away from the ratchet wheel, thus allowing the overhead shaft to rotate, and a second configuration, corresponding to a failure of the counterbalancing system, where the biasing force of the biasing means acting on the pawl arm is greater than the torsional force of the torsional spring transmitted to the plug, thereby urging the element of the pawl arm into said at least one notch of the ratchet wheel so as to block rotation of the pawl arm and thus block rotation of the overhead shaft;wherein the second end of the pawl arm is provided with a protrusion extending toward the ratchet wheel and shaped and sized to cooperate with an outer portion of the ratchet wheel so as to maintain said outer portion of the ratchet wheel positioned between the protrusion of the second end of the pawl arm and the support bracket, andwherein the brake device further comprises a shear pin operatively connectable between the support bracket and the pawl arm for maintaining said pawl arm, prior to installation of the brake device onto the counterbalancing system, in an intermediate configuration between the first and second configurations, the shear pin being made of a specific material being breakable when the pawl arm is rotated with respect to the support bracket when the torsional force of the torsional spring transmitted to said pawl arm via the plug has reached a predetermined value, the method comprising the steps of:a) providing the brake device;b) securing the support bracket of the brake device onto a fixed structure;c) mounting the plug about the overhead shaft;d) inserting the overhead shaft through the orifice of the support bracket;e) connecting flanges of the plug onto the first and seconds of the pawl arm;f) operatively connecting the torsional spring between the plug and the overhead shaft;g) ensuring that the shear pin is operatively connected between the support bracket and the pawl arm;h) loading the torsional spring so as to exert a torsional force between the plug and the overshaft shaft for counterbalancing the weight of the door; andi) continuing loading until the shear pin breaks and the pawl is triggered into the first configuration.
Priority Claims (1)
Number Date Country Kind
2477679 Aug 2004 CA national
Parent Case Info

The present application is a Continuation-In-Part (CIP) of U.S. patent application Ser. No. 10/391,731 filed on Mar. 19, 2003, and claims the priority of foreign patent application No. CA 2,477,679 of Aug. 16, 2004, the contents of which are both incorporated herein by reference.

US Referenced Citations (31)
Number Name Date Kind
229983 Ellwood Jul 1880 A
603237 Morrison et al. Apr 1898 A
636645 Dougherty Nov 1899 A
826284 Smith et al. Jul 1906 A
1196714 Newbold Aug 1916 A
1863961 Ball et al. Jun 1932 A
2463344 Williams Mar 1949 A
2546081 Williams Mar 1951 A
2555560 Timm Jun 1951 A
2878865 Manley Mar 1959 A
3236348 Okcuoglu Feb 1966 A
3716201 West Feb 1973 A
3842892 Stieler Oct 1974 A
3895539 Weman et al. Jul 1975 A
4116314 Ackerman Sep 1978 A
4125142 Föhl Nov 1978 A
4995567 Ballet Feb 1991 A
5257685 Tichiaz et al. Nov 1993 A
5494093 Eiterman Feb 1996 A
5706552 Hsieh Jan 1998 A
5971055 Rohaut Oct 1999 A
6070641 Budetti Jun 2000 A
6079524 Hung Jun 2000 A
6102480 Asano Aug 2000 A
6401792 Mullet et al. Jun 2002 B1
6431619 Fisher et al. Aug 2002 B1
6655088 Hormann Dec 2003 B1
6862845 Schiks Mar 2005 B2
7082983 Coulibaly et al. Aug 2006 B2
20020170688 Daus et al. Nov 2002 A1
20030221801 Beaudoin et al. Dec 2003 A1
Foreign Referenced Citations (5)
Number Date Country
93 10 792.7 Jun 1994 DE
201 12 521 Nov 2001 DE
1 213 428 Jun 2002 EP
WO 03004815 Jan 2003 WO
WO 03078773 Sep 2003 WO
Related Publications (1)
Number Date Country
20060185800 A1 Aug 2006 US
Provisional Applications (1)
Number Date Country
60365153 Mar 2002 US
Continuation in Parts (1)
Number Date Country
Parent 10391731 Mar 2003 US
Child 11204519 US