1. Field of Invention
The present invention relates generally to radiant heating systems and more specifically to a unique furnace for heating liquid that circulates though a conventional radiator type system by transferring the heat generated from friction brake pads pressed against rotating wheels to thermally conductive liquid running through them.
2. Prior Art
The basic concept of circulating hot liquid through radiators is well known in the art. Gas and coal fired furnaces have been in use for many years as have electrical resistance heaters for heating the liquid. The concepts of running liquid through wheel brake caliper systems to cool the brakes and improve their efficiencies are also well known. The combination of these two divergent concepts, cooling the brake systems and heating liquid in a controlled fashion, however make this a unique approach to providing the heat needed to bring the circulating liquid to the appropriate temperature to heat a given size space with a given size radiator.
An object of the Brake Furnace is to provide an efficient heat source and heat transfer mechanism that is capable of raising the temperature of liquid in a closed loop system that circulates through a standard hot water radiator type room heating system.
Still further objects and advantages will become apparent from a consideration of the ensuing description and accompanying drawings. In the description, reference is made to the accompanying drawings which form a part thereof, and in which are shown by way of illustration a specific embodiment in which the invention may be practiced. This embodiment will be described in sufficient detail to enable those skilled in the art to practice this invention, and be understood that other embodiments may be utilized and that structural changes may be made without departing from the scope of the invention. In the accompanying drawings, like reference characters designate the same or similar parts throughout the several views.
The invention is described with reference to the following drawings:
In order that the invention is fully understood it will now be described by way of the following examples in which Brake Furnace 12 is shown in
Left end support arrangement for Brake Furnace 12 is assembled on base plate 52 that is preferably constructed of ½ inch thick steel plate, approximately 14 inches long by 12 inches wide. Bearing supports 50 are preferably constructed of rectangular steel tubing approximately 4 inches tall by 2 inches wide and 7 inches long with ¼ inch thick side walls. First bearing support 50 is aligned with the left edge of the top surface of base plate 52 with the 7 inch dimension located centrally along the left end of base plate 52. Second bearing support 50 is positioned parallel to the first, approximately ⅝ inches inboard of first bearing support 50. Bearing assemblies 26 are mounted to the top surfaces of bearing supports 50, carefully aligning bearing assembly 26 centers. Medium L-bracket 74 is mounted on the left or outboard side in the front to back center of bearing support 50 at a height sufficient to allow latter component alignment with bearing assembly 26 centers. Medium L-bracket 74 is preferably a 3/16 inch thick by 1½ inch by 1½ inch angle approximately 4 inches long. Left manifold support plate 54 is mounted on the top surface of medium L-bracket 74 and is a rectangular steel plate, approximately 6½ inches long by 1¾ inches wide by ¼ inch thick. Small L-bracket 38 is attached to the top surface of left manifold support plate 54, approximately ½ inch from the outboard end of left manifold support plate 54. Left end plate 14 is attached to the vertical wall of small L-bracket 38 and is formed from a rectangular steel plate approximately ¼ inch thick by 1¾ inches wide and approximately 4 7/16 inches high with a centrally located U-shaped slot approximately ⅞ inch wide and 1 inch deep.
Right end support arrangement for Brake Furnace 12 is also assembled on base plate 52. Large L-bracket 42 is attached to the top surface of base plate 52, approximately 2½ inches from the right end of base plate 52. Large L-bracket 42 is preferably constructed from a 2 inch by 2 inch angle approximately 12 inches long and 3/16 inch thick. Caliper support plate 36 is mounted to the vertical face of large L-bracket 42. Caliper support plate 36 is preferably constructed of a ¼ inch thick steel plate, 12 inches wide by 8 inches high with a clearance notch approximately 2 inches wide by 3 inches deep, in top center to allow drive shaft 24 clearance. Centrally located with the horizontal surface parallel to the top of Large L-bracket 42 is small L-bracket 38. On the horizontal surface of small L-bracket 38 is mounted right manifold support plate 40. Right manifold support plate 40 is preferably constructed of a ¼ inch thick rectangular plate, 3¾ inches long by 1½ inches wide. Small L-bracket 38 is located on the top surface of right manifold support plate 40, 3¼ inches from the outboard wall. Mounted to the vertical surface of small L-bracket 38 is right end plate 34 which is preferably constructed from a rectangular steel plate ¼ inch thick and 1½ inches wide by 4¼ inch high with a centrally located U-shaped slot, having the same dimensions as the U-shaped slot in left end plate 14.
Drive shaft 24 is the base for all the rotating liquid moving assemblies. Drive shaft 24 is a 1½ inch diameter steel rod, approximately 14 inches long. Approximately ½ inch from the left end of drive shat 24 begins drive means keyway 110. When drive means key 78 is engaged between drive means keyway 110 in drive means 46 and drive shaft 24 and drive means 46 is caused to rotate, drive shaft 24 rotates synchronously. Approximately 2½ inches from the left end of drive shaft 24 starts drive wheel keyway 114. When drive wheel key 86 is engaged between drive wheel keyway 114 and drive wheel key slot 104 and drive means 46 is caused to rotate, all of the wheel assemblies rotate synchronously.
Drive shaft 24 has a liquid carrying lumen drilled and tapped that extends from the left end of drive shaft 24 to approximately 8 inches in depth as to align with cross drilled and tapped holes for fittings for inlet tube to small wheel 76. Drive shaft 24 also has a liquid carrying lumen drilled and tapped in the right end approximately 1½ inches in depth as to align with cross drilled and tapped holes for fittings for outlet tube from large wheel 90.
Attached to the left and right ends of drive shaft 24 are chuck fittings 22. Fastened outboard of each of chuck fittings 22 are rotating chucks 20 with manifold fittings 18 attached to their outboard ends. Finally, attached to the outboard end of manifold fittings 18 are 1 inch diameter manifolds 16 with 1/16 inch flats on opposing sides.
Cylinder assembly 48 is pivotally mounted beneath an approximately 3 inch by 3 inch notch centered on the front side of base plate 52 as shown in
Brake caliper mounting bracket 64 is then attached to the upper back of caliper support plate 36. Attached with caliper mounting bolts 72 to caliper mounting bracket 64 is brake caliper 32 which in C-clamp fashion, positions small brake pads 62 on opposing sides of large wheel inner plate 56 and large wheel outer plate 60 toward their outside perimeters.
A standard liquid pump (not shown or part of this invention) of sufficient size to move a large enough volume of liquid through a radiation based space heating system (not shown or part of this invention) to provide the required temperature stability within a given space is selected. It is connected to Brake Furnace 12 as described above at the fixed end of manifold 16, attached at the left end of drive shaft 24. An exit line is attached to manifold 16 at the right end of drive shaft 24, connecting to the circulation line and radiator system (not shown or part of this invention). A standard electric motor (not shown or part of this invention) is connected through drive means 46 that is keyed to drive shaft 24, causing rotation of drive shaft 24 in synchronous rotation with the electric motor. This drive means 46 can be a chain and sprocket, a belt and pulley system or a standard reducing gear train arrangement. A sprocket 46 is shown for illustration purposes. This electric motor can also be used to drive the above described liquid pump. The amount of heat generated by the first stage of Brake Furnace 12 is controlled by the force applied to large brake pad 28 by cylinder assembly 48 pulling chain 30, creating frictional contact between large brake pad 28 and rotating outside wall of small wheel 70. Industry standard hydraulic pumps and controls (not shown) are readily available to adjust the force generated by cylinder assembly 48. Small wheel 70 is rigidly connected to drive shaft 24 by its connection to drive wheel 84 which is also keyed to drive shaft 24. The amount of heat generated by the second stage of Brake Furnace 12 is controlled by the clamping force applied to small brake pads 62 by brake caliper 32. The force against small brake pads 62 is adjustable with standard brake hydraulics (not shown). That force creates frictional contact between small brake pads 62 and rotating large wheel inner plate 56 and large wheel outer plate 60 toward their perimeters where the large wheel is also rigidly connected to drive wheel 84 and therefore rotates with it.
Brake Furnace 12 is described in the above specification by detailing a preferred embodiment with exemplary components. These examples are not intended to limit the size or scope of this invention as material selection, size of components, or choice of drive means are well within the purview of persons skilled in these arts. It is not intended to be limited to this set of materials and dimensions. Rather, the scope of this invention is defined by the following claims.