Priority is claimed under 35 USC 119 for Austrian application No. A 1243/2003, filed Aug. 6, 2003.
1. Field of the Invention
The invention relates to a mechanism for braking a ski released from a sports boot and, if necessary, for holding together skis placed with their runner surfaces back to back against the other, incorporating a bearing mechanism for a brake lever assembly which can be attached to the top face of a ski, which brake lever assembly has brake levers disposed substantially symmetrically relative to the longitudinal mid-axis of the ski, each having operating arms and braking arms, which braking arms project out from the bearing mechanism and can be pivoted about at least one pivot axis by the force of stored energy from an operation-ready position above the runner surface of the ski into a braking position projecting out below the runner surface, and the operating arms extend from the bearing mechanism in a direction remote from the brake arms and are joined in displacement by means of a bearing arrangement with an impact plate which can be depressed by the sole of a sports boot, and a catch mechanism is provided on the braking arms to enable them to be releasably connected to mutually crossing brake arms of another brake mechanism of a co-operating, oppositely lying ski if necessary.
2. The Prior Art
EP 0 193 767 A1 discloses a ski brake with additional means for hooking two skis together if necessary. Accordingly, a recess or notch is provided on each of the inner faces in the region of the bottom free ends of the two brake arms. These notches are used for partially engaging the top and relatively thinner portion of the two brake arms of an oppositely lying ski, directed towards the bearing mechanism. When to connected one another, the two skis are therefore slightly offset from one another in the longitudinal direction.
U.S. Pat. No. 4,181,321 A discloses a ski brake, in which a notch is provided in the middle longitudinal portion of each of the inner faces of the two brake arms, which can be moved so as to engage with the outer edges or external boundary surfaces of the brake arms of an oppositely lying ski. Although two adjacently lying skis can be held together by this arrangement, a relative shifting of the two skis of a pair skis in the longitudinal direction can barely be prevented or can be so but not satisfactorily, as is the case with the embodiment mentioned above, which means that the brake connection can be inadvertently released, e.g. when carrying the pair of skis.
The underlying objective of the present invention is to improve a brake mechanism for skis so that two skis of a pair of skis can be reliably held together by means of the brake arms but the can be simply and easily activated and deactivated if necessary.
The invention achieves this objective by providing catch elements respectively on the mutually facing inner sides and on the oppositely lying outer sides of the brake arms, and at least one catch element disposed on the inner sides can be displaced into a positive connection with at least one co-operating catch element on the outer sides to permit a higher resistance to counteract mutually crossing joined brake arms from undesirably sliding apart from one another.
The advantage of this is that it provides a brake mechanism for skis which ensures good brake performance if a ski becomes detached during travel or if the user falls, on the one hand, and the brake mechanism also provides a convenient means of temporarily attaching or holding the skis of a pair of skis together. Consequently, two skis fitted with such brake mechanisms or so-called ski stoppers can be attached to one another without any tools at all and also without the aid of extra accessories such as straps, for example. Furthermore, skis attached to one another via the brake arms can be released from one another as and when necessary without any difficulty by applying sufficient separating force or effecting appropriate relative displacements. The mutual positive connection between two crossed over brake arms ensures a reliable connection between the skis of a pair of skis, which connection makes it much easier to carry and transport a pair of skis of this type. Another advantage is the fact that the user of sports equipment thus equipped is able to see immediately whether the brake arms have been correctly connected as desired. This can readily be checked by inspecting whether the catch elements have located with one another or not. This means that manual corrections can easily be made if necessary and the brake arms moved into their exact relative positions so that the pre-designed clamping force is obtained between the two skis. The visually perceptible catch elements also help the user of the sports equipment in terms of using the catch or coupling elements. In particular, the user will see unmistakably and virtually intuitively how the two skis of the pair of skis should be connected with a correspondingly high retaining force. It is also evident to the user how such a connection can be simply released. This is further assisted by manually applying separating forces to crossed-over brake arms. Another major advantage resides in the fact that it is irrelevant which brake lever pair is disposed on the outside or on the inside, which means that no special procedures or rules have to be followed when attaching two skis fitted with the brake mechanisms proposed by the invention. Quite simply, the skis merely have to be placed relative to one another in the longitudinal direction with their runner surfaces directed towards one another and lying adjacent, and then pushed until there is no longer any lengthways offset between skis. The respective oppositely lying brake arms of the two brake mechanisms of the pair of skis will therefore cross over one another and the crossed-over brake arms will mutually and preferably automatically be hooked by means of their catch elements.
In one embodiment of the mechanism, the intrinsic elasticity of the brake arms or at least one brake lever is selected so that a distance between the brake arms of a brake lever assembly can be varied and/or the brake lever assembly has degrees of freedom relative to the bearing mechanism, and the brake arms mutually cross with other brake arms and can be moved towards one another and/or moved apart from one another against resilient elastic forces, and/or the pivot axis of at least one brake arm is mounted so that the latter can slide axially against resilient elastic forces and/or its orientation can be varied, the advantage of which is that two complementary catch elements on the brake arms can be moved into positive engagement by a simple relative displacement between two corresponding brake mechanisms. Furthermore, when the catch elements are engaged by appropriate resilient elastic biassing forces between crossed-over brake arms, they are guaranteed to remain engaged, thereby preventing the brake arms from automatically and undesirably releasing.
Another embodiment of the mechanism which is of particular advantage is one in which the two brake arms of the brake lever assembly extend away from one another or diverge in the direction towards the free ends, starting from the bearing mechanism, because the fact of compensating the offset between two skis shifted from one another in the longitudinal direction ensures that the brake levers of one or both brake lever pairs are moved so as to lie on the inside and the other brake lever pair can slide with its brake arms along the external faces of the first brake lever pair, thereby securing a reliable, pre-defined cross-over of the four brake levers of two brake lever pairs.
Also of advantage is another embodiment of the mechanism, in which several catch elements, each of the same design, are provided in the longitudinal direction of the brake arms, because this enables the retaining force between attached skis and their brake mechanisms to be varied and adapted to the respective circumstances. Furthermore, with only a single design of brake mechanism, this brake mechanism can be used for various different types of skis, especially skis with different forward-biassing heights. In the case of skis with a relatively high forward-biassing height in particular, i.e. skis with a runner surface of a more pronounced longitudinal curvature, different catch elements can be activated than those of skis with a relatively shorter forward-biassing height, in other words skis of which the runner surfaces lie relatively close to one another in the binding mounting region.
A distance between successive elements as measured in the longitudinal direction of a brake arm is dimensioned so that complementary over-crossing brake arms can at least partially engage or locate in one another, thereby ensuring that the complementary catch elements move into a reliable engagement, ensuring a highly effective connection due to the mutual positive fit of the brake arms.
In another embodiment of the mechanism, at least one catch element lying adjacent to the catch element which lies in an engaged position with the catch element of an over-crossed brake arm sits substantially without any clearance against at least one boundary edge or external boundary surface of the crossing brake arm, thereby obtaining a multiple positive fit or a multiple mutual abutment of the brake arms, so that any twisting or other relative shifting between the brake arms can also be prevented. The fact that relative movements of the brake arms are comprehensively blocked means that the skis of a pair of skis are attached to one another particularly efficiently.
In one embodiment of the mechanism, at least one of differently designed, mutually co-operating catch elements on a flattened region of the inner and/or outer sides of the brake arms has a specifically designed shape, so that catch elements on the brake arms can be made a sufficiently large and their shape exactly designed, thereby resulting in a more effective positive fit with complementary catch elements.
Due to the fact that brake arms with an essentially rounded cross section have a slimmer thickness or a smaller diameter in the region of the flattened area than in the sections immediately adjacent to the flattened area, two complementary catch elements will snap into one another, even if they are in an only partially overlapping position with one another, and will then align virtually automatically. The catch elements between two over-crossed brake arms in effect make it easier to obtain an exactly overlapping position due to these recesses or indentations in the brake arms and due to the inclined regions or deflector edges.
As a result of the optional variant of the mechanism in which the catch elements are bounded by at least one step-shaped edge or inclined area by reference to the longitudinal direction of the brake arm, and/or the at least one step-shaped edge or step-shaped edges on either side of at least one catch element extend or run at an angle to the longitudinal axis of the brake arm, brake arms which are not positioned sufficiently exactly relative to one another are automatically aligned by these edges or deflector surfaces in such a way that the catch mechanism is able to engage reliably. In particular, even if a pair of skis is placed back to back without paying due attention, alignment of the brake arms is improved and assisted, thereby ensuring that the catch mechanism can be activated very efficiently.
In one embodiment of the mechanism, the catch elements are disposed within planes extending substantially perpendicular to the pivot axis and mutually engaging catch elements of an over-crossing attached pair of brake arms are designed so that increased mechanical resistance counteracts shifting in all directions along this plane, thereby securing a positive fit with sufficient retaining force and a good clamping and positive lock capable of preventing all shifting movements within a plane extending in the longitudinal direction of the skis and perpendicular to their runner surface.
In one embodiment of the mechanism, the catch elements are provided in the form of projection-type raised areas on the inner or outer side of a brake arm and the other catch elements co-operating with them are provided in the form of pot-shaped or pit-shaped recesses on the respective oppositely lying sides of each brake arm, which means that only partially overlapping catch elements can be automatically centred under some circumstances, thereby permitting a reliable mutual engagement or snap-fit.
In another embodiment of the mechanism, the matching catch elements are respectively provided in the form of ribs extending at an angle to the longitudinal extension of the brake arms, thereby permitting a strong locking action against shifting between two over-crossed brake arms and virtually preventing it altogether in a direction perpendicular thereto.
Because the brake arms have projections at their free ends which extend at an angle to their longitudinal extension, and/or the projections extend essentially perpendicular to the runner surface when the brake arms are in the braking position, and/or the projections extend in a pointed arrangement or conical shape starting from the region merging into the brake arms in the direction towards the free ends, the braking action of the brake mechanism on the respective ground underneath can be improved, in particular snow and ice.
The invention will be described in more detail below with reference to examples of embodiments illustrated in the appended drawings. Of these:
Firstly, it should be pointed out that the same parts described in the different embodiments are denoted by the same reference numbers and the same component names and the disclosures made throughout the description can be transposed in terms of meaning to same parts bearing the same reference numbers or same component names. Furthermore, the positions chosen for the purposes of the description, such as top, bottom, side, etc,. relate to the drawing specifically being described and can be transposed in terms of meaning to a new position when another position is being described. Individual features or combinations of features from the different embodiments illustrated and described may be construed as independent inventive solutions or solutions proposed by the invention in their own right.
The brake mechanism 3 also has a bearing mechanism 6, by means of which the brake lever assembly 5 is attached to the top face 4 of a ski 1.
This brake lever assembly 5 has two brake levers 8 disposed essentially symmetrically relative to a longitudinal mid-axis 7 of the ski 1. The two brake levers 8, which can be pivoted relative to the bearing mechanism 6 about a substantially horizontally extending axis, each have an operating arm 9 and a brake arm 10. An essentially right-angled offset, Z-shaped transition region between the brake arm 10 and the operating arm 9 of a brake lever 8, which transition region leads to a lateral offset between the longitudinal extensions of the operating arm 9 and the brake arm 10, forms a part of a pivot bearing 11 for the respective brake lever 8. This pivot bearing 11 has a pivot axis 12 extending essentially transversely to the longitudinal extension of the ski 1 and essentially parallel with its runner surface 2. The pivot axes 12 of both brake levers 8 of a brake mechanism 3 may be oriented slightly differently from one another, as may be seen in particular from
The brake arms 10 can therefore be pivoted via this pivot bearing 11 by stored energy 13 from an operation-ready position disposed above the runner surface 2 of the ski 1 into a brake position projecting out below the runner surface 2 when the sports boot is released from the corresponding binding on the ski 1. When the sports boot is correctly inserted in the binding, parts of the brake mechanism 3, in particular its brake arms 10, are positioned above the plane of the runner surface 2 to guarantee an unhindered and unbraked sliding action of the ski 1 over the corresponding snow surface.
The stored energy 13 is preferably provided in the form of a spring, for example a torsion spring, which constantly forces the brake mechanism 3 into the brake position.
The brake arms 10 are moved from the brake position into the operation-ready position and vice versa via the operating arms 9, which extend in a direction remote from the brake arms 10 and project out beyond the pivot bearing 11.
The operating arms 9 of the two brake levers 8 are in turn linked in displacement, via a bearing arrangement 14, to an impact plate 15 which can be depressed by the sole of an appropriate sports boot. At the oppositely lying end portion, this impact plate 15 is additionally linked to the bearing mechanism 6 via another motion-transmitting element 16, such as a pivot lever 17 or a linearly slidable positioning element for example.
In any event, when the impact plate 15 is disposed in a distance from and substantially raised position relative to the bearing mechanism 6, the brake mechanism 3 is in the brake position, and is in the operation-ready position when the impact plate 15 is forced into position, for example by a boot applying pressure in the direction towards the ski 1 and in the direction towards the bearing mechanism 6. In this connection, it should be expressly pointed out that the kinematics between the impact plate 5 and the brake levers 8 and bearing mechanism 6 are not shown in the design illustrated in
The essential aspect is that the brake mechanism 3 has at least one catch mechanism 18 or mechanical connection means by means of which the skis 1 placed back to back by their runner surfaces 2 can be held together via the brake arms 10 of the two brake mechanisms 3 and separated from one another again, as and when necessary, without any complicated manoeuvres or the need for separate additional accessories such as connecting straps or similar.
To this end, at least one brake arm 10, preferably both brake arms 10, of the brake lever assembly 5, are provided with the catch mechanism 18 to provide a releasable connection, as and when necessary, with the brake arms 10 of a brake mechanism 3 of the same type. A coupling of this type can be used in particular if the brake arms 10 of the first brake mechanism 3 cross over the brake arms 10 of the other brake mechanism 3.
The essential point is that a brake lever assembly 5 is provided with catch elements 23, 24 on both the mutually facing inner sides 19, and on outer sides 21, 22 of the two brake arms lying opposite these inner sides 19, 20. The layout of the catch elements 23, 24 is selected in such a way that a catch element 23 or 24 on the inner side 19, 20 can be moved so as to connect in a positive fit with a complementary or matching catch elements 24 or 23 on the outer side 21, 22, so that a higher mechanical resistance counteracts any sliding apart of over-crossing assembled brake arms 10 of two brake mechanisms 3.
The complementary catch elements 23, 24 respectively provided on the inner and outer sides 19 to 22 are oriented substantially perpendicular to the runner surface 2 and disposed in a plane 25 pointing in the longitudinal direction of the ski 1. The shape of the catch elements 23, 24 is preferably selected so that when mutually engaging catch elements 23 and 24 of two brake mechanisms 3 of the same type are placed together, a higher mechanical resistance is obtained to counteract relative shifting in all directions within this plane 25. In other words, the co-operating catch elements 23, 24 on crossed-over brake arms 10 locate in one another in a positive fit in the manner of a “bolt-orifice connection”, as may be seen more particularly from the diagram shown in
In order to make it easier for this crossed arrangement of the same type of and identically sized brake lever assemblies 5 of two brake mechanisms 3 to be obtained, the two brake arms 10 of the brake lever assembly 5 extend slightly away from one another in the direction of the free ends, starting from the bearing mechanism 6, and the brake arms 10 diverge from one another in the direction of the free ends starting from the bearing mechanism 6. The distance between two brake arms 10 in the vicinity of the bearing mechanism 6 is therefore slightly shorter than the distance between these brake arms 10 in an end portion farther away from the bearing mechanism 6.
An improved connection and better stability of the brake arm coupling can be obtained due to the fact that the intrinsic elasticity of the brake arms 10 or at least one brake lever 8 of the brake lever assembly 5 is so selected that a distance 26 and 27 between the brake arms 10 of a crossed-over brake lever pair is variable. In other words, a distance 26, respectively 27, between the brake arms 10 of at least one brake mechanism 3 measured transversely to the ski longitudinal direction may be made shorter or longer. A distance 27 between the brake arms 10 in the initial state is preferably reduced to a slightly shorter distance 26 when two brake mechanisms 3 are placed together, as may be seen from the top brake mechanism 3 illustrated in
The variable spacing of the brake arms 10 relative to one another can be achieved either as a result of the intrinsic elasticity of the brake arms 10 or due to the fact that the bearing mechanism 6 for the brake lever assembly 5 enables the distance 27 between the brake arms 10 of a brake lever assembly 5 to be made longer or shorter, preferably shorter.
Alternatively or in combination with this, however, it would also be possible to use a mounting whereby at least one pivot axis 12 for the brake lever 8 is able to slide or its disposition or orientation relative to the bearing mechanism 6 altered against a pre-defined force. This enables the crossed arrangement of two brake arms 10 necessary to place the brake arms 10 of two folded together brake mechanisms 3 to be obtained. In particular—as may best be seen by comparing the top and bottom brake mechanisms 3—the bearing mechanism 6 for the brake lever assembly 5 may be designed so that the pivot axis 12 of at least one brake lever 8 can be moved or adjusted against resiliently elastic, flexible forward biassing into its angular position relative to the top face 4 of the ski 1, starting from a relatively long distance 27 between the brake arms 10, to assume a position in which the distance 26 is slightly shorter. By preference, therefore, the bearing mechanism 6 is designed so that at least one pivot axis 12 but preferably both pivot axes 12 can be radially and/or axially adjusted relative to the bearing mechanism 6 against an elastic forward biassing to a sufficient degree. This elastic forward biassing, which can be accomplished by separate spring means or by the intrinsic elasticity of the brake levers 8, preferably forces the brake arms 10 apart, thereby resulting in the slightly longer distance 27 in the inactive position.
As may be seen most clearly from
In such a position, with the brake arms 10 of the first brake mechanism 3 lying virtually inside and the brake arms 10 of the other brake mechanism 3 lying virtually outside, the catch mechanism 18 between at least two crossed-over brake arms 10 is active, i.e. in a state as illustrated in
As may also be seen from the embodiments illustrated, several catch elements 23, 24 are provided along the longitudinal extension of each of the brake arms 10. By preference, several mutually spaced catch elements 23, 24 are provided in the longitudinal direction on both the inner sides 19, 20 of the brake arms 10 and on the outer sides 21, 22 of the brake arms 10. In other words, this plurality of mutually spaced catch elements 23, 24 enables a plurality of connection positions or connection points to be obtained between the crossed-over brake arms 10.
As may also be seen from the diagrams, a distance 28 between the catch elements 23, respectively 24, as measured in the longitudinal direction of the brake arms 10 is selected so that complementary catch elements 23 and 24 on two crossed-over brake arms 10 are able to locate or engage at least partially in one another in order to activate the positive connection or catch mechanism 18.
In one advantageous embodiment which can be seen more easily in
In the preferred embodiments illustrated in
The end portions of the brake arms 10 remote from the bearing mechanism 6 are preferably provided with a casing 33, 34 of plastic material. The brake levers 8 themselves are preferably made in the form of an integral bar or wire of metal which is bent at several points, for example spring steel. This being the case, the end portions of these metal brake levers 8 remote from the bearing mechanism 6 are preferably encased in a plastic material by an injection moulding process in order to provide the relatively thin, metal wire brake arms 10 with wide brake paddles so that the end sections will improve braking action. As a result, the respective plastic casings 33, 34 are attached to the metal brake levers 8 in such a way that they can not be detached.
The distances between the individual raised areas 31, respectively recesses 32, and their dimensions are selected so that a at least one raised area 31 can be located in at least one recess 32 sufficiently easily when two brake arms 10 are disposed in the crossed-over position. A lengthways and widthways dimension or diameter of the raised areas 31 and recesses 32 is 1 to 5 mm, preferably approximately 3 mm, and their height or depth is 1 to 4 mm, preferably approximately 2 mm.
As may best be seen from
By preference, only one type or design of the differently designed 23, 24 is disposed on the inner sides 19, 20 of a brake arm pair and the other complementary design of the catch elements 23, 24 is provided only on the outer sides 21, 22 of this brake lever pair. In the embodiment illustrated as an example here, the recesses 32 are provided on the inwardly lying flattened areas 35 of the brake arm pair and the essentially complementary raised areas 31 are provided on the outer flattened areas 36 of the brake arm pair.
In the region of the at least one flattened area 35, 36, the brake arms 10 are slightly less thick and have a smaller diameter than in the sections immediately adjacent to the flattened areas 35, 36.
This being the case, the catch elements 23, 24 may be bounded by at least one edge 37, 38 which is step-shaped with respect to the longitudinal direction of the brake arms 10. As may best be seen from
As may also be seen from
In one advantageous embodiment, these extensions 39, 40 run towards one another in a pointed arrangement, stating from the section merging into or joining with the brake arms 10, in the direction towards the free ends or have a pointed end.
Accordingly, at least two ribs 41 are formed on the inner side 19 and on the outer side 21 of this brake arms 10, spaced at a distance apart from one another. These ribs 41 preferably extend at a slight angle to the longitudinal extension of the brake arms 10 in order to ensure an effective hooking or latching action with another brake arm 10 disposed in a cross-over arrangement.
For the sake of good order, it should finally be pointed out that in order to provide a clearer understanding of the structure of the brake mechanism 3, it and its constituent parts are illustrated to a certain extent out of proportion and/or on an enlarged scale and/or on a reduced scale.
The underlying objectives and independent solutions proposed by the invention may be found in the description.
Above all, the embodiments illustrated in
Number | Date | Country | Kind |
---|---|---|---|
A 1234/2003 | Aug 2003 | AT | national |
Number | Name | Date | Kind |
---|---|---|---|
4108466 | Weigl et al. | Aug 1978 | A |
4181321 | Riedel | Jan 1980 | A |
4213629 | Krob et al. | Jul 1980 | A |
4252337 | Luithlen | Feb 1981 | A |
4266804 | Murata | May 1981 | A |
4304420 | Krob et al. | Dec 1981 | A |
4688820 | Spitaler et al. | Aug 1987 | A |
5060966 | Sedlmair | Oct 1991 | A |
5158317 | Sedlmair et al. | Oct 1992 | A |
5630608 | Luitz et al. | May 1997 | A |
Number | Date | Country |
---|---|---|
409 934 | May 2002 | AT |
24 62 390 | Dec 1976 | DE |
28 01 614 | Jul 1979 | DE |
28 01 615 | Jul 1979 | DE |
28 27 182 | Jan 1980 | DE |
0 193 767 | Sep 1986 | EP |
0 636 392 | Sep 1996 | EP |
Number | Date | Country | |
---|---|---|---|
20050029759 A1 | Feb 2005 | US |