The present disclosure relates generally to braking and suspension systems for land vehicles such as automobiles, and more specifically to integration of brake calipers with suspension components such as wheel uprights.
Cars are complex machines with many separate, dedicated systems. For example, cars have braking systems whose function is to apply braking force to wheels to stop the car. A braking system can include components such as rotors and braking pads, and can include an associated brake caliper that seats the brake pads and applies the brake pads to the rotor with such force that friction slows and stops the rotor and the wheel attached to the rotor. Cars also have suspension systems that bear the weight of the car and bear various dynamic loads experienced by the car during driving, cornering, stopping, etc. A suspension system can include, for example, wheel uprights (also referred to as wheel carriers, knuckles, or simply, uprights) that attach to the wheel and allow the wheel to rotate. Various other suspension components may be attached to the upright, such as control arms and other linkages, to allow the upright to turn the wheel and move with the up and down motion of the wheel when driving over bumps, for example.
Conventionally, the brake caliper and the upright are separate components. The brake caliper (specifically, the inner housing of the caliper) is bolted onto the upright with the rotor positioned in between the brake pads. When it is necessary to service the brakes, the brake caliper is unbolted from the upright and lifted off to allow the rotor and brake pads to be removed.
In this disclosure, it is recognized that the brake caliper and upright can be formed as an integral structure. In various embodiments, various advantages may be realized as described in more detail below for various embodiments. For example, benefits may include weight savings, rigidity, fewer parts, less assembly, built-in features, improved vehicle dynamics, etc. In various embodiments including an integrated vehicle structure, fewer parts may allow easier or faster brake maintenance or service.
However, integrating the brake caliper and upright poses challenges. For example, because the brake caliper cannot be unbolted or removed from the upright, it may be difficult or impossible to remove the rotor during brake servicing without removing the entire integrated brake caliper and upright. In this case, servicing the brakes may be very difficult and time-consuming. Various embodiments of this disclosure may mitigate or eliminate this problem. For example, an integrated caliper and upright may include a sweep area on an inner surface of the outer housing that allows the rotor to tilt such that the portion of the rotor that connects to the wheel may be disconnected and the rotor removed.
In various embodiments disclosed herein are vehicle structures. In one aspect, the vehicle structure includes a caliper portion configured to apply a braking force. For example, the caliper portion can include an inner housing, an outer housing, and a bridge portion, in which the bridge portion connects the inner housing and the outer housing. In one or more embodiments, the vehicle structure includes an upright portion configured to couple to a wheel of a vehicle. For example, the upright portion can be connected to the inner housing of the caliper portion.
Additionally, in one or more embodiments, the vehicle structure can include a stiffening portion that connects the upright portion to at least the bridge portion or the outer housing. For example, the stiffening portion can include an outer stiffening structure configured to connect the upright portion to the outer housing. In another example, the stiffening portion includes a bridge stiffening structure configured to connect the upright portion to the bridge portion. These exemplary stiffening portions can further include a cross stiffening structure that connects the upright portion to the outer stiffening structure. In one or more embodiments, the stiffening portion can include a cross stiffening structure configured to connect an outer stiffening structure to a bridge stiffening structure. In one or more embodiments, the stiffening portion can be configured to reduce noise, vibration, and harshness (NVH).
In one or more embodiments, the caliper portion, the upright portion, and the stiffening portion can be an integral structure. In one or more embodiments, the caliper portion, the upright portion, and the stiffening portion can be 3D-printed structures. Further, in one or more embodiments, the caliper portion includes a printed-in fluid channel configured to provide brake fluid to the inner and outer housings. In other embodiments, the upright portion or the stiffening portion includes a portion of the printed-in fluid channel. In one or more embodiments the caliper portion, the upright portion, or the stiffening portion can be at least partially hollow.
In one or more embodiments, the vehicle structure includes a cooling element configured to increase cooling of at least a portion of the vehicle structure. For example, the cooling element includes at least 3D-printed fins, a channel for airflow, a channel for airflow from a wheel well, an air scoop, a diffuser, or a cross-bridge cooling duct.
In one or more embodiments, the caliper portion, the upright portion, or the stiffening portion includes a printed-in channel for installing at least a wiring or a sensor. For example, the printed-in channel can be configured for at least a pad wear warning sensor, a temperature sensor, or a smart brake pad sensor.
In another aspect, the vehicle structure includes a caliper portion configured to apply a braking force. The caliper portion can include an inner housing, an outer housing, and a bridge portion, in which the bridge portion connects the inner housing and the outer housing. Moreover, the outer housing can include an inner surface configured to face a rotor, in which the inner surface includes a sweep area configured to allow the rotor to tilt during installation and removal of the rotor. The sweep area can include a curved surface. In one or more embodiments, the vehicle structure includes an upright portion configured to couple to a wheel of a vehicle, the upright portion being connected to the inner housing.
In one or more embodiments, the vehicle structure further includes a seat configured to seat a pad stopper. For example, the seat can be arranged at a forward side of the caliper portion. The pad stopper can be configured to transfer a force from a portion of a brake pad to the vehicle structure, in which the portion of the brake pad is an area of the brake pad that, because of the sweep area, would not be in contact with the vehicle structure during braking. For example, the seat can be configured to seat a plate-like pad stopper. Moreover, the seat can include a slot. In one or more embodiments, the seat can be configured to seat a pad stopper that includes stopper portions for both an inner brake pad and an outer brake pad. In one or more embodiments, the seat can be configured to seat a pad stopper that includes a stopper portion for only an outer brake pad. In one or more embodiments, the vehicle structure can include a second seat configured to seat a second pad stopper, in which the second seat can be arranged at a rear side of the caliper portion.
In one or more embodiments, the caliper portion can be a 3D-printed structure, and the caliper portion includes a printed-in fluid channel configured to provide brake fluid to the inner and outer housings. For example, the upright portion or a stiffening portion that connects the upright portion to at least the bridge portion or the outer housing can be a 3D-printed structure and can include a portion of the printed-in fluid channel.
In one or more embodiments, the vehicle structure further includes a cooling element configured to increase cooling of at least a portion of the vehicle structure. For example, the cooling element can include at least 3D-printed fins, a channel for airflow, a channel for airflow from a wheel well, an air scoop, a diffuser, or a cross-bridge cooling duct.
In one or more embodiments, at least the caliper portion, the upright portion, or a stiffening portion that connects the upright portion to at least the bridge portion or the outer housing can include a printed-in channel for installing at least a wiring or a sensor. For example, the printed-in channel can be configured for at least a pad wear warning sensor, a temperature sensor, or a smart brake pad sensor.
Other aspects will become readily apparent to those skilled in the art from the following detailed description, wherein is shown and described only several embodiments by way of illustration. As will be realized by those skilled in the art, concepts herein are capable of other and different embodiments, and several details are capable of modification in various other respects, all without departing from the present disclosure. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
Various aspects of will now be presented in the detailed description by way of example, and not by way of limitation, in the accompanying drawings, wherein:
Several solutions have been developed to maximize the structural rigidity of brake calipers, however all these known solutions maintain the typical architecture of traditional disc brake calipers, where the outer housing is connected to an inner housing, and the inner housing is connected to the wheel upright. Such brake caliper architectures typically rely on two or more connecting bridges across inner and outer housings that handle all the clamping force generated across the brake rotor and the tangential force exercised by the outer brake pad for effect of friction. The rigidity of the structure, or, more in general, its weight-to-stiffness ratio is therefore affected by the design of such connecting bridges, which is in turn constrained by the available space between brake rotor and wheel rim. At the same time, when it comes to addressing potential system dynamic instabilities and NVH phenomena, like, for instance, brake squeals, those said known solutions do not allow much degree of freedom in adjusting the design of the brake caliper to fine tune its vibration modes, especially the so-called torsional and shear modes, as the above mentioned connecting bridges do not play a significant contribution to those vibration modes.
To overcome the above mentioned limitations associated with the traditional brake caliper design, the need is felt to come up with a brake caliper assembly which has both the inner and outer housing independently interconnected by the main wheel upright structure by mean of supporting structural elements, thus allowing an improved weight-to-stiffness ratio of the product and additional capabilities to tune its vibration modes to address brake NVH issues. A braking node is a vehicle structure including a wheel upright portion (also referred to as an carrier or a knuckle) suitable to hold and connect the wheel hub-bearing unit to the cinematic points of the suspension links (e.g., strut links), and a disc brake caliper portion including inside and outside housings configured to face respective sides of a brake rotor and configured to contain a set of pistons, seals and dust boots to convert an hydraulic pressure into a clamping force on the rotor. The upright portion and the caliper portion are formed as an integral structure, e.g., by 3D printing as one piece, and include stiffening structures between the upright and a central (aka bridge) portion of the caliper and between the upright and the outer housing. A braking node may include an internal hydraulic channel to distribute pressure within the structure, one or more bleeder screws with dust cap to allow filling and bleeding the hydraulic circuit. A braking node may include a removable pad stopper to transmit the tangential forces from one or more brake pads to the rest of the structure, the forces being generated by the braking action of applying the pads to the spinning rotor. A braking node may include a connecting tie-rod to contain the deformation of the caliper housing. A braking node may be configured to seat two brake pads, using removable retaining pins and clip to hold the brake pads in place and a spring to avoid excessive rattling and creaking of the assembly. On certain applications, the braking node can also be equipped with electric park brake devises (electric Drum-In-Hat or electric Parking Brake Calipers).
In various embodiments, the stiffening structure can provide stiffness for the connection of the caliper portion 110 and the upright portion 120. In various embodiments, the stiffening structure can reduce a noise, vibration, and harshness (NVH) of the vehicle structure. In various embodiments, such as the vehicle structure 100 shown in the figures, the caliper portion 110, upright portion 120, and the stiffening structure can be an integral structure, i.e., formed as a single part. For example, in various embodiments, the vehicle structure 100 can be 3D printed. 3D printing the vehicle structure 100 can allow several advantages because of the complex shapes that can be printed. For example, the entire structure may be topology optimized to provide the required performance characteristics (such as stiffness, NVH) at a reduced weight compared to traditional caliper and upright assemblies. The reduced weight of the vehicle structure 100 equates to reduced unsprung mass, which can increase the performance of a vehicle such as vehicle dynamics. In addition, forming the vehicle structure 100 as an integrated structure can reduce the part count versus traditional caliper and upright assemblies, which can in turn reduce cost associated with assembly time (i.e., no assembly needed for the integrated vehicle structure) and sourcing of different parts, which may mitigate supply chain issues. In various embodiments, having an integral design may allow built-in cooling elements as described in more detail herein.
Although the various embodiments described herein are directed to an integral vehicle structure, it is noted that the caliper portion 110, upright portion 120, and/or the stiffening structure may be formed as separate parts that are assembled together. For example, the caliper portion, upright portion, and stiffening structure may be formed as separate parts and glued or bolted together. In the present embodiment, portions of the vehicle structure 100 may be hollow, which may provide better stiffness-to-weight than completely solid structures.
In one or more embodiments of the present disclosure, the addition of a sweep area 1120 may result in an area of the outer brake pad not being blocked by a caliper portion surface.
In
In one or more embodiments, the pad stopper seat 1160 is configured to seat a pad stopper 1165 that includes stopper portions for both the outer brake pad 1170 and the inner brake pad 1175. In various embodiments, the pad stopper seat 1160 may be configured to seat a pad stopper 1165 that includes a stopper portion for only the outer brake pad 1170 but not the inner brake pad 1175. As seen in
In one or more embodiments, a single pad stopper seat is included at the forward side of the caliper portion (i.e., the side at which the forward-rotating rotor is moving away from the caliper portion center). In one or more embodiments, a second pad stopper seat may be included at the rear side of the caliper portion (i.e., the side at which the forward-rotating rotor is moving toward the caliper portion center). A pad stopper at the rear side can be effective when braking during backing up, i.e., when the car is moving backwards.
With reference to
The detailed description set forth above in connection with the appended drawings is intended to provide a description of various example embodiments of the concepts disclosed herein and is not intended to represent the only embodiments in which the disclosure may be practiced. The terms “exemplary” and “example” used in this disclosure mean “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments presented in this disclosure. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the concepts to those skilled in the art. However, the disclosure may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, in order to avoid obscuring the various concepts presented throughout this disclosure.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these example embodiments presented throughout this disclosure will be readily apparent to those skilled in the art. Thus, the claims are not intended to be limited to the example embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the example embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
This application claims the benefit of, and right to priority to, United States Provisional Patent Application No. 63/392,823 filed on Jul. 27, 2022, and entitled “Brake Nodes,” the contents of which are incorporated by reference as if fully set forth herein.
Number | Date | Country | |
---|---|---|---|
63392823 | Jul 2022 | US |