1. Technical Field
The present disclosure relates to a brake pad for a breaking system, preferably for a motor vehicle.
2. Description of the Related Art
A brake pad cooperates with a brake disc to dissipate kinetic energy by friction and decrease the angular speed of the disc. In particular the disc can be rigidly connected to the wheel of a car or a motorcycle so that during braking the vehicle decelerates. In principle a brake pad consists at least of a rigid back plate or carrier and a layer of friction material.
Friction between the brake pad and the brake disc generates heat and noise. In particular, the latter effect is undesirable.
It is known from WO-A-0014425 to use a particle damping device in a braking system to avoid undesired noise. The above application relates to breaking pads made of a thermo-structural material, i.e. carbon-carbon composite. In particular, the friction layer is made of a carbon-carbon composite so that this layer has also an independent structural function and can be manufactured in parallel to the back plate and then assembled. In particular, the above mentioned document discloses that the cavity housing for the particles is defined by the friction layer. However, some brake pads comprise a friction layer that is deposited on the back plate and then sintered.
A brake pad provided with a non-structural friction layer provides some open issues relating to the cost efficiency of the manufacturing method because of the fact that the friction layer is substantially inconsistent, i.e. is a mix of organic & inorganic powders and a binder, before the heat and pressure treatment.
Some embodiments of the present disclosure provide a brake pad provided with a particle damping device and a cost efficient manufacturing method for a sintered friction layer.
One embodiment of the present disclosure is a brake pad according to claim 1.
The present disclosure will now be described in a non-limiting preferred embodiment with reference to the accompanying drawings, in which:
In
Brake plate 1 comprises a back plate 2 made preferably of steel or cast iron, a friction layer 3 preferably sintered on back plate 2, and a particle damping device 4. Back plate 2 has a first surface 5 defining an interface with friction layer 3 and a second surface 6 opposite to first surface 5 and contacting known support elements of the braking system, such as pistons and calipers. Friction layer 3 is preferably a composite material constituted by a powder and matrix that needs to be heat treated, e.g. hot pressed or sintered, on back plate 2. Such a powder is a mix of different compounds, i.e. a mix of friction compounds, a mix of lubricant compounds, a mix of inert compounds, and a mix of metals. Therefore, the powder is a mix of organic and inorganic compounds. The matrix is preferably a polymeric compound, more preferably a phenolic resin.
Particle damping device 4 comprises a granular material having a plurality of particles 7 housed in at least a cavity 8 preferably defined by brake plate 1 and having preferably a rectangular/squared perimeter. Particles 7 are free to move in cavity 8, which means free to translate in three orthogonal direction and free to rotate about three mutually orthogonal axes, i.e. they have 6 degrees of freedom (DOF).
Particles 7 can be of any shape, preferably spherical and their characteristic dimension, in particular diameter, ranges from a fraction of a millimeter, for example from 0.1 mm, to 10 mm depending on the dimension of the brake plate. According to the present disclosure, good empirical results were obtained with dry particle damping, i.e. particles are not combined with a fluid. However, particles combined with a gel may be of advantage if during certain manufacturing handling the cavity is open.
According to a preferred design practice, particles 7 are dimensioned to occupy no more than 90% in volume of cavity 8 so that they are free to move in the cavity itself Furthermore, the material of particles 7 can be chosen upon the intended application, for example it is possible to use steel spheres. Alternative to the later described preferred solution to have the particles 7 in the cavity during sintering, particles can be filled into the cavity after the sintering process of the friction layer is completed, then only normal operation temperatures have to be considered for selection of the particle material.
Advantageously, the position of cavity 8 can be identified according to the following steps:
performing a free-free analysis of back plate 2 without damping device 4 to obtain a frequency response function;
identifying at least the highest peak of amplitude and the relative vibration mode;
locating cavity/cavities 8 far from nodes and close to the points having the highest vibration amplitude of the selected vibration mode/modes. Preferably, the point/points of highest vibration amplitude shall fall within the perimeter of cavity/cavities 8.
The brake plate 1 comprises a plurality of fixing portions for connection with known supporting elements to be actuated against the brake disk of the braking system. Therefore, it might happen that the points having the highest vibration amplitude lie close to such fixing portions (not shown), which are unsuitable for locating a cavity 8. In this case it is possible to locate cavity 8 close to such points without any interference with the fixing portions of brake pad 1.
According to a preferred embodiment of the present disclosure, cavity 8 is a recess of surface 6 and can be closed by a shim 9 normally used on a brake plate 1 facing to the actuation elements.
According to one embodiment, particles 7 are assembled in cavity 8 as follows. Particles 7 are packed in a package housed in cavity 8. The package is made of a material that burns/melts after cavity 8 is closed, e.g. of cellulose, at a temperature that preserves the functionality of all the other components of brake plate 1, i.e. the burning temperature of cellulose is far lower than the sintering temperature of the friction layer 3 and/or of annealing temperature of steel of the support plate 2 and/or particles 7. According to a preferred embodiment of the present disclosure, burning/melting temperature of the package is below the temperature at which friction layer 3 is sintered on support plate 2.
Spectra are similar which means that the dimension of the cavity is small compared to the overall mass of the brake plate. In particular the little shift at low frequency is the result of the weight difference.
A good damping of high frequencies, i.e. the noisy frequencies, is evident.
A brake plate according to the present disclosure has the following advantages.
Noise attenuation is up to 80% with almost no impact on the manufacturing process and manufacturing costs. In particular, it is possible to manufacture cavity 8 before the heat treatment of friction layer 3 and afterwards close the same with a plate equivalent to shim 9 that is normally used to assemble brake plate to supporting elements. Therefore, the interface of the braking system is not required to be adapted to the improved brake plate.
Furthermore, cavity 8 is defined by the back plate so that it is possible to deposit any kind of friction material with no impact on the manufacturing steps relating to the friction plate. Therefore, the braking pad according to the present disclosure is suitable for any friction material, including sintering ones.
Furthermore, the damping is temperature independent because energy is dissipated in collisions and temperature has little influence on this kind of process.
When the burning/melting temperature of the package of the granular material is lower than a sintering temperature of friction layer 3, a single manufacturing phase is used without any impact on the manufacturing process.
It is finally apparent that modifications and variants can be made to brake plate 1 disclosed and illustrated herein without departing from the scope of protection of the present disclosure.
In particular, depending on the mix of compounds constituting the friction layer, the latter can be fixed to the back plate by hot pressing instead of sintering.
The various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
TO2009A000457 | Jun 2009 | IT | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2010/058380 | Jun 2010 | US |
Child | 13326142 | US |