Brake rotor with intermediate portion

Information

  • Patent Grant
  • 9127734
  • Patent Number
    9,127,734
  • Date Filed
    Wednesday, April 8, 2009
    15 years ago
  • Date Issued
    Tuesday, September 8, 2015
    9 years ago
Abstract
One exemplary embodiment of a brake rotor includes a cheek member, an intermediate portion, and a hub member. The intermediate portion may be located between the cheek and hub members, and may extend from either the cheek member or the hub member. The intermediate portion may have an exposed section with multiple openings located in the exposed section. The intermediate portion may also have multiple blades extending from inner surfaces of all or some of the openings. The blades cause airflow to pass through the openings to cool the intermediate portion.
Description
TECHNICAL FIELD

The technical field generally relates to brake rotors and brake rotors having different members.


BACKGROUND

Vehicle brake systems often include brake rotors that are subject to frictional forces in order to slow or stop the associated vehicle. Brake rotors are commonly made of a unitary piece and out of a single material, and may be heavy.


SUMMARY OF EXEMPLARY EMBODIMENTS OF THE INVENTION

One exemplary embodiment includes a product which may include a brake rotor. The brake rotor may include a cheek member, an intermediate portion, and a hub member. The hub member may be joined to the cheek member and may be a distinct component from the cheek member. The intermediate portion may be located between the cheek member and the hub member. The intermediate portion may have an exposed section with multiple openings located therein. The intermediate portion may also have multiple blades extending from inner surfaces of some or all of the openings to cause airflow to pass through the openings and thus cool the intermediate portion.


Another exemplary embodiment includes a product which may include a brake rotor. The brake rotor may include a cheek member, an intermediate member, and a hub member. The intermediate member may be a distinct component from the cheek member. The intermediate member may have at least one first flange that may be joined to a portion of the cheek member. The intermediate member may have at least one second flange. The intermediate member may also have an exposed section that may be located between the first flange and the second flange. The exposed section may have a plurality of openings located therein. In one embodiment, airflow may pass through the openings to cool the intermediate member. The hub member may be a distinct component from the intermediate member. The hub member may have a portion joined to the second flange.


Another exemplary embodiment includes a method which may include providing an intermediate member of a brake rotor. The intermediate member may comprise a first material. The intermediate member may have at least one first flange and may have at least one second flange that may be located opposite the first flange. The intermediate member may also have an exposed section that may be located between the first and second flange. The exposed section may have more than one opening that may be located therein. In one embodiment, airflow may pass through the openings to cool the intermediate member. The method may also include joining a portion of a cheek member of the brake rotor to the first flange. The cheek member may comprise a second material that may be different than the first material. And the method may further comprise joining a portion of a hub member of the brake rotor to the second flange.


Other exemplary embodiments of the invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while disclosing exemplary embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the invention will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 is a sectional view of an embodiment of a cheek member and an embodiment of an intermediate member.



FIG. 2 is a sectional view of the cheek member and intermediate member of FIG. 1, and of an embodiment of a hub member.



FIG. 3 is a sectional view of an embodiment of a cheek member and an embodiment of an intermediate member.



FIG. 4 is a sectional view of the cheek member and intermediate member of FIG. 3, and of an embodiment of a hub member.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

The following description of the embodiment(s) is merely exemplary (illustrative) in nature and is in no way intended to limit the invention, its application, or uses.


The figures illustrate various embodiments of a brake rotor 10 that is used in an automotive braking system. The brake rotor 10 may be made of at least two separate and distinct primary components, namely a rim or cheek member 12 and a hub member 16. The brake rotor 10 may also include an intermediate portion 14, which may or may not be a separate and distinct component. If distinct, the intermediate portion 14 is called an intermediate member, and if not distinct, the intermediate portion may be a unitary extension of either the cheek member 12 or the hub member 16. The brake rotor 10 may weigh less than other brake rotors that are made of one-piece. As used herein, the terms axially, radially, and circumferentially refer to directions with respect to the generally circular and cylindrical shape of the brake rotor 10. Accordingly, the term “axially” refers to a direction generally parallel to an imaginary center axis of the cylindrical shape, the term “radially” refers to a direction generally along any one of the imaginary radii of the cylindrical shape, and the term “circumferentially” refers to a direction generally along any one of the imaginary circumferences of the cylindrical shape.


Referring to FIG. 1, the cheek member 12 may have a first cheek face 18 and an opposite second cheek face 20 that together constitute braking and friction surfaces of the brake rotor 10 that come into contact with a brake pad during a braking event. The cheek member 12 may be of the vented-type having a number of vanes 22 (FIGS. 1 and 2), may be of the solid-type with no vanes (FIGS. 3 and 4), or may be another type. In some embodiments, the cheek member 12 may be a two-piece assembly that is mechanically interconnected or otherwise joined together to the intermediate member 14 or to the hub member 16.


In select embodiments, the cheek member 12 is made out of a first material which may be a cast iron such as grey iron, may be a steel, or may be another suitable material. The cheek member 12 may be made by any one of, or a combination of, a number of metal forming processes including casting processes such as a pressure casting process, a forging process, a machining process, or another suitable process. In one example, a portion of the cheek member 12, such as an upper portion 21 and a lower portion 23, may be cast-over the intermediate member or portion 14. In another example, the cheek member 12 may be formed independently of the intermediate member 14 and may have a slot 24 in which the intermediate member is subsequently received and joined in. The first and second cheek faces 18, 20 may be heat-treated by a ferritic nitrocarburizing (FNC) process to improve the surface characteristics of the cheek faces, including wear and corrosion resistance. When formed independently of the intermediate member 14, the first and second cheek faces 18, 20 may be more easily heat-treated by the FNC process as compared to heat-treating the cheek faces when the cheek member 12 is joined with the intermediate member 14 and with the hub member 16, though this may be possible.


The intermediate member 14 may be a separate piece distinct from the cheek member 12 and from the hub member 16. In other words, the intermediate, cheek, and hub members 14, 12, 16 may not be one-piece. The intermediate member 14 may link the cheek and hub members 12, 16 and may withstand forces exerted on the cheek member during use, and may transmit some of those forces to the hub member. Still referring to FIG. 1, the intermediate member or portion 14 may have one or more first flange(s) 26, one or more second flange(s) 28, and an exposed section 30. The first flange(s) 26 may be circumferentially continuous around the exposed section 30, and may extend radially outwardly from the exposed section. The first flange(s) 26 may be cast-over and embedded in the cheek member 12 in a casting process to mechanically join the intermediate and cheek members, or may be otherwise received in the slot 24. In one embodiment, the first flange(s) 26 may be irregularly spaced with respect to one another, and one or more of the first flange(s) may have a different geometry than another one of the first flange(s).


The second flange(s) 28 may extend radially inwardly from the exposed section 30, and may be equally circumferentially spaced therearound to form spaces 32 separating neighboring second flanges. The second flange(s) 28 may be cast-over and embedded in the hub member 16 in a casting process to mechanically join the intermediate and hub members, or may be otherwise received in the hub member to join the members. In other embodiments, the first and second flange(s) 26, 28 may have different forms and configurations. For example, the first flange(s) 26 may have a plurality of separate and spaced apart flanges and the second flange(s) 28 may be a single circumferentially continuous flange, and each flange may have one or more hole(s) therein to permit material to flow therethrough and solidify therein during a casting process in order to provide an additional mechanical joint.


In one embodiment, the second flange(s) 28 may, though need not, be designed to accommodate thermal expansion and contraction which may occur during use with fluctuations in temperature, while still maintaining an effective mechanical joint between the hub and intermediate members 16, 14. In other words, the design may compensate and provide space for variations in material types and sizes at the joint between the hub and intermediate members 16, 14, including variations in height, length, thickness, volume, and other dimensions. As shown in cross-section in FIG. 1, each of the second flange(s) 28 may have upper and lower surfaces 34, 36 that may be planar. Each of the second flange(s) 28 may taper in axial height toward an axis of rotation R about which the brake rotor 10 rotates during use. That is, each of the second flange(s) 28 may grow thinner toward its respective free end. The upper surface 34 and the lower surface 36 may be angled toward each other so that they intersect at an imaginary reference point R0. The imaginary reference point R0 may be defined by the perpendicular intersection of the axis of rotation R and an imaginary radial line which goes through an axial centerpoint of the second flange(s) 28. Put differently, an imaginary upper radial line R1 lying along the upper surface 34 and an imaginary lower radial line R2 lying along the lower surface 36 may converge at the reference point R0.


Each of the second flange(s) 28 may also taper in circumferential thickness toward the axis of rotation R. Opposite side surfaces of each of the second flange(s) 28 may be angled toward each other so that they intersect at the reference point R0. Put differently, the upper radial line R1, which may lie along a first circumferential edge of the second flange(s) 28, may converge with an imaginary edge radial line R3, which may lie along a second circumferential edge of the second flange(s), at the reference point R0.


The exposed section 30 may be a portion of the intermediate member or portion 14 that is not cast-over or otherwise not covered by the cheek member 12 or the hub member 16. When the brake rotor 10 is installed in an associated wheel assembly, the exposed section 30 may be viewed by an observer standing outside the associated vehicle, depending on an associated wheel cover. Referring to FIGS. 1 and 2, the exposed section 30 may extend between the first flange(s) 26 and the second flange(s) 28, and may extend between an inner diameter ID of the cheek member 12 and an outer diameter OD of the hub member 16. The exposed section 30 may have more than one opening(s) 38 located therein. In one embodiment the opening(s) 38 may be circumferentially spaced equally around the exposed section 30, or may be spaced in another pattern. The opening(s) 38 may have various sizes and shapes including circles, ovals, squares, and rectangles, to name but a few. In one embodiment, airflow may pass through the opening(s) 38 to help cool the intermediate member or portion 14.


Referring to FIGS. 3 and 4, in one embodiment the opening(s) 38 may be rectangular in shape, and may have an inner surface 40. A plurality of generally inwardly directed blades may extend from the inner surface 40. For example, a first blade 42 may be angled upward (with respect to the orientation of FIGS. 3 and 4), and a second blade 44 may be angled downward. The first and second blades 42, 44 may be rectangular in shape, and may have planar surfaces. The first and second blades 42, 44 may be angled opposite to each other, and may be oriented at an acute angle with respect to a planar top and bottom surface of the intermediate member or portion 14. In one embodiment, during use, the first and second blades 42, 44 may cause airflow to pass through the opening(s) 38 by drawing-in air as the brake rotor 10 rotates to help cool the intermediate member or portion 14. In other embodiments, each of the opening(s) 38 need not necessarily have a blade, only a single blade may extend from a single opening, the blades may have different shapes, and the blades may be oriented and angled differently than shown, to name but a few examples.


In select embodiments, the intermediate member 14 is made out of a second material which may include a steel such as a stainless steel, aluminum, titanium, or another suitable material. In some cases, the second material may be different than the first material. The intermediate member 14 may be made by any one of, or a combination of, a number of metalworking processes including casting processes such as a cast-in-place process or a pressure casting process, a forging process, a machining process, or another suitable process. Furthermore, in select embodiments, the intermediate member 14 may have various dimensions including, but not limited to, different radial lengths of the first and second flange(s) 26, 28, different radial lengths of the exposed section 30, and the axial height of the intermediate member may differ at different radial points therealong.


Referring to FIG. 2, the hub member 16 may be used to mount the brake rotor 10 to the associated automobile. The hub member 16 may have a central aperture 46 and a number of bolt holes 48.


In select embodiments, the hub member 16 is made out of a third material which may include aluminum such as an aluminum alloy 356, magnesium such as a magnesium alloy, titanium, or another suitable material. The third material may be a lighter material than the first material. The hub member 16 may be made by any one of, or a combination of, a number of metalworking processes including casting processes such as pressure casting, a forging process, a machining process, or another suitable process. In one example, a portion of the hub member 16, such as an upper portion 50 and a lower portion 52, may be cast-over the second flange(s) 28.


One exemplary embodiment of a method of making the brake rotor 10 may include a cast-in-place process whereby the intermediate member or portion 14 is cast-over by the cheek member 12 and/or by the hub member 16. The intermediate member 14 may be initially produced by one of the earlier-mentioned processes. The first and second flange(s) 26, 28, or select portions thereof, may be coated with a ceramic, or other suitable material, to help prevent a metallurgical bonding between the materials of the flange(s) and the materials of the cheek and hub members 12, 16 or to enhance frictional damping as will be subsequently described. The intermediate member 14 may then be placed, manually or automatically, in a cavity of a molding machine, and held therein. Once placed, opposing halves of the molding machine may be brought together under force and may be sealed together. One section of the resulting cavity may resemble the cheek member 12, and another section may resemble the hub member 16. The one section for the cheek member 12 may then be filled, such as by injection, with a molten material such as a molten iron, and the other section may be filled with a molten material such as a molten aluminum. Once solidified, the upper and lower portions 21, 23 of the cheek member 12 may envelop the first flange 26, and the upper and lower portions 50, 52 may envelop the second flanges 28.


In use, the brake rotor 10 may become heated. The heat generated by friction to the cheek member 12 may be conducted to the intermediate member or portion 14. Airflow passing through the opening(s) 38 may help dissipate the heat to cool the intermediate member or portion 14 and, in turn, the cheek member 12. In some cases, the heat dissipation resulting from the airflow through the opening(s) 38 may permit use of the solid-type cheek member 12, as opposed to the vane-type cheek member. The solid-type cheek member 12 may have a relatively light weight and a relatively reduced overall axial height as may be required for packaging of a hybrid or an electric automobile. The reduced overall axial height may also permit an increased overall radial length of the brake rotor 10, as may be desired in some cases.


Also when heated, the cheek member 12, the intermediate member or portion 14, and the hub member 16 may thermally expand. Though the cheek member 12 may become hotter in some cases, the material of the intermediate member or portion 14 and hub member 16 (e.g., aluminum, magnesium) may have a greater coefficient of thermal expansion and thus may expand to a similar extent or more than the cheek member 12. Conversely, after use and in cold weather, the cheek member 12, intermediate member or portion 14, and hub member 16 may become cooled and may thermally contract. In each instance, in one embodiment the geometry of the second flange(s) 28 may accommodate the expansion and contraction. Namely, the variously described tapers and associated imaginary lines crossing at the common reference point R0 may permit expansion and contraction therealong. Moreover, depending on the materials selected for the members and/or portions, the respective thermal expansion and contraction amount may be minimized as compared to a brake rotor without the intermediate member or portion 14. In one example, the intermediate member 14 of stainless steel will expand and contract less than the hub member 16 of aluminum. Accordingly, the resulting variations in size at the joint between the intermediate member 14 and the cheek member 12 is less than may otherwise occur between the hub member 16 and the cheek member.


Furthermore, in some cases, the use of the intermediate member 14 may reduce or altogether eliminate galvanic corrosion that may otherwise be produced in brake rotors without the intermediate member 14 and with certain differing materials of the check and hub members 12, 16.


In select embodiments, the intermediate member or portion 14 may also help damp or otherwise dissipate vibrations and other oscillations that may occur in the brake rotor 10. This may help suppress sound and noise that may otherwise be emitted by the brake rotor 10 when the brake rotor is vibrated. When vibrated, relative sliding, movement, and other contact at an interface boundary formed respectively between the first flange(s) 26 and the cheek member 12, and the second flange(s) 28 and the hub member 16, or between particles of the coating and/or such particles and surfaces of the cheek, intermediate, or hub members, may generate friction and may absorb energy such as vibrations to consequently damp the vibrations.


In the example shown, the first flange(s) 26, the second flange(s) 28, or the opposing surfaces of the cheek member 12 and the hub member 16 may be coated to form a layer that facilities energy absorption between the intermediate member or portion 14 and the cheek and hub members, and thus helps damp vibrations. Suitable coatings may include, but are not limited to, a plurality of particles which may be bonded to each other and/or to the particular surface by an inorganic binder, an organic binder, or another suitable bonding material. Suitable binders may include, but are not limited to, epoxy resins, phosphoric acid binding agents, calcium aluminates, sodium silicates, wood flour, or clays. In one embodiment, the coating may be deposited on the particular surface as a liquid dispersed mixture of alumina-silicate-based, organically bonded refractory mix. In other embodiments, the coating may include at least one of alumina or silica particles, mixed with a lignosulfonate binder, cristobalite (SiO2), quartz, or calcium lignosulfonate. The calcium lignosulfonate may serve as a binder. In one embodiment, the coating may include any type of coating used in coating casting ladles or vessels, such as IronKote or Ladlekote type coatings. In one embodiment, a liquid coating may be deposited on a portion of the particular surface, and may include high temperature Ladlekote 310B. In another embodiment, the coating may include at least one of clay, Al2O3, SiO2, a graphite and clay mixture, silicon carbide, silicon nitride, cordierite (magnesium-iron-aluminum silicate), mullite (aluminum silicate), zirconia (zirconium oxide), or phyllosilicates. In one embodiment, the coating may comprise a fiber such as ceramic or mineral fibers.


Interface boundaries that may absorb energy and thus help damp vibrations may be formed with the coating and may include, but is not limited to: the inner surface of the slot 24 against the layer formed, the outer surface of the first flange(s) 26 against the layer formed, the inner surface of a slot formed in the hub member 16 against the layer formed, the outer surface of the second flange(s) 28 against the layer formed, the inner surface of the slot 24 against the particles or fibers, the outer surface of the first flange(s) 26 against the particles or fibers, the inner surface of the slot formed in the hub member 16 against the particles or fibers, the outer surface of the second flange(s) 28 against the particles or fibers, and movement of the particles or fibers against one another.


The exact thickness of the coating may vary and may be dictated by, among other things, the materials used for the intermediate member or portion 14 and the cheek and hub members 12, 16, and the desired degree of vibration damping. Examples of thicknesses may range from about 1 μm-400 μm, 10 μm-400 μm, 30 μm-300 μm, 30 μm-40 μm, 40 μm-100 μm, 100 μm-120 μm, 120 μm-200 μm, 200 μm-300 μm, 200 μm-550 μm, or variations of these ranges.


Some examples of suitable particles or fibers that may be a part of a particular coating may include, but is not limited to, silica, alumina, graphite with clay, silicon carbide, silicon nitride, cordierite(magnesium-iron-aluminum silicate), mullite(aluminum silicate), zirconia(zirconium oxide), phyllosilicates, or other particles that are stable at high temperatures. In one example, the particles may have a length as defined by the longest dimension in a range of about 1 μm-350 μm, or 10 μm-250 μm.


In an embodiment having a coating with particles, fibers, or both, the particles may have an irregular shape (e.g., not smooth) to augment vibration damping. The particles, fibers, or both, may be bonded to one another or to the opposing surfaces of the first flange(s) 26 and the cheek member 12, and that of the second flange(s) 28 and the hub member 16 because of, among other things, the inherent bonding properties of the particles or fibers. For example, the bonding properties of the particles or fibers may be such that the particles or fibers may bind to the immediately-above-mentioned surfaces under compression. In an example, the particles, fibers, or both, may be treated to provide a coating on the particles or fibers themselves, or to provide functional groups attached thereto to bind the particles together or attach the particles to at least one of the above-mentioned-surfaces. In another example, the particles, fibers, or both may be embedded in at least one of the above-mentioned-surfaces to augment vibration damping.


In another embodiment, the particles, the fibers, or both, may be temporarily held together, held to the above-mentioned-surfaces, or held to both, by a fully or partially sacrificial coating. The sacrificial coating may be consumed by molten metal or burnt off when material is cast-over the first and second flange(s) 26, 28. The particles, fibers, or both are left behind and trapped between the intermediate member or portion 14 and the cheek and hub members 12, 16 to provide a layer consisting of the particles, the fibers, or both.


In another embodiment, one or more of the above-mentioned-surfaces may include a relatively rough surface including a plurality of peaks and valleys to augment the frictional damping thereat. In this example, the above-mentioned-surfaces may be abraded by sandblasting, glass bead blasting, water jet blasting, chemical etching, machining, or any other suitable process that may produce relatively rough surfaces.


In an embodiment where the first and second flange(s) 26, 28 are cast-over by the respective cheek and hub members 12, 16, and the particles, fibers, or both may be exposed to the temperature of a molten material, the particles, the fibers, or all, may be made from materials that can resist flow and significant erosion during the casting process. For example, the particles, the fibers, or all, may be composed of refractory materials that can resist flow and erosion at temperatures above 1100° F., above 2400° F., or above 2700° F. In an example casting process, when molten material is poured, the particles, the fibers, or all, should not be wet by the molten material so that the molten material does not bond where an interface boundary would otherwise be formed. In another embodiment, the intermediate member or portion 14 may be cast into the cheek and/or hub member 12, 16.


In an embodiment where the brake rotor 10 is made using a process that subjects the intermediate member or portion 14, the particles, the fibers, or all, to relatively high temperatures associated with molten materials, the particles, the fibers, or all, may be made from a variety of materials including, but not limited to, non-refractory polymeric materials, ceramics, composites, wood, or other materials suitable for frictional damping.


In another embodiment, a wettable surface may be provided that does not include a layer with particles or fibers, or a wettable material such as graphite is provided over a section of the above-mentioned-surfaces, so that the cast material is bonded to the wettable surface in order to attach the above-mentioned-surfaces to one another while still permitting frictional damping on the non-bonded surfaces.


The above description of embodiments of the invention is merely exemplary in nature and, thus, variations thereof are not to be regarded as a departure from the spirit and scope of the invention.

Claims
  • 1. A product comprising: a brake rotor comprising: a cheek member;a hub member joined to the cheek member; andan intermediate portion located between the cheek member and the hub member, the intermediate portion having an exposed section with a plurality of openings located therein, the plurality of openings being formed entirely by inner surfaces of the intermediate portion, and the intermediate portion having a plurality of blades extending from the inner surfaces of at least some of the openings to cause airflow to pass through the openings to cool the intermediate portion.
  • 2. A product as set forth in claim 1 further comprising an intermediate member having the intermediate portion located thereon.
  • 3. A product as set forth in claim 2 wherein the cheek member comprises a first material, the intermediate member comprises a second material which is different than the first material, and the hub member comprises a third material which is different than the first material.
  • 4. A product as set forth claim 3 wherein the first material comprises a cast iron or a steel, the second material comprises a stainless steel, an aluminum, or a titanium, and the third material comprises an aluminum, a titanium, or a magnesium.
  • 5. A product as set forth in claim 2 wherein the intermediate member has at least one first flange and at least one second flange, the cheek member being joined to the at least one first flange, and the hub member being joined to the at least one second flange.
  • 6. A product as set forth in claim 5 wherein the cheek member has a portion being cast-over the at least one first flange to join the cheek member and intermediate member, the hub member has a portion being cast-over the at least one second flange to join the hub member and intermediate member, and wherein relative movement between the cheek, intermediate, and hub members damps vibrations in the brake rotor when the brake rotor is vibrated.
  • 7. A product as set forth in claim 2 wherein the exposed section is located between an inner diameter of the cheek member and an outer diameter of the hub member.
  • 8. A product as set forth in claim 1 wherein each opening has a pair of oppositely positioned blades of the plurality of blades, with one blade of the pair of oppositely positioned blades being angled upward and the other blade of the pair of oppositely positioned blades being angled downward.
  • 9. A product as set forth in claim 1 wherein the cheek member is of the solid-type with no vanes.
  • 10. A product as set forth in claim 1 wherein the cheek member has a first cheek face and a second cheek face contacting a brake pad during a braking event, the first and second cheek faces being treated by a ferritic nitrocarburizing process.
  • 11. A product as set forth in claim 5 wherein each of the at least one second flange is tapered in axial height toward an axis of rotation of the brake rotor, and each of the at least one second flange is tapered in circumferential thickness toward the axis of rotation, and wherein thermal expansion and contraction between the intermediate member and the hub member during use of the brake rotor is accommodated by the at least one second flange.
  • 12. A product comprising: a brake rotor comprising: a check member;an intermediate member having at least one first flange joined to a portion of the cheek member and having a plurality of second flanges being circumferentially spaced apart from one another, at least some of the plurality of second flanges being tapered in axial height toward an axis of rotation of the brake rotor, at least some of the plurality of second flanges being taped in circumferential thickness toward the axis of rotation, the intermediate member also having an exposed section located between the at least one first flange and the plurality of second flanges, the exposed section having a plurality of openings located therein so that, in use, airflow passes through the openings to cool the intermediate member; anda hub member having a portion joined to the plurality of second flanges;wherein thermal expansion and contraction between the intermediate member and the hub member during use of the brake rotor is accommodated by the plurality of second flanges.
  • 13. A product as set forth in claim 12 wherein the cheek member comprises a first material comprising a cast iron or a steel, the intermediate member comprises a second material comprising a stainless steel, an aluminum, or a titanium, and the hub member comprises a third material comprising an aluminum, a titanium, or a magnesium.
  • 14. A product as set forth in claim 13 wherein the intermediate member has a plurality of blades extending from inner surfaces of at least some of the openings to cause airflow to pass through the openings to cool the intermediate member.
  • 15. A product as set forth in claim 14 wherein each opening has a pair of oppositely positioned blades of the plurality of blades, with one blade of the pair of oppositely positioned blades being angled upward and the other blade of the pair of oppositely positioned blades being angled downward.
  • 16. A product as set forth in claim 15 wherein the cheek member has a first cheek face and a second cheek face contacting a brake pad during a braking event, the first and second cheek faces being treated by a ferritic nitrocarburizing process.
  • 17. The product of claim 12 wherein the first flange is in the radial direction.
  • 18. A method of making a product, the method comprising: providing an intermediate member of a brake rotor, the intermediate member comprising a first material and having at least one first flange and at least one second flange located opposite the first flange, the intermediate member also having an exposed section located between the at least one first flange and second flange, the exposed section having a plurality of openings located therein so that, in use, airflow passes through the plurality of openings to cool the intermediate member, the plurality of openings being formed entirely by inner surfaces of the intermediate member;joining a portion of a cheek member of the brake rotor to the at least one first flange, the cheek member comprising a second material which is different than the first material; andjoining a portion of a hub member of the brake rotor to the at least one second flange.
  • 19. A method as set forth in claim 18 wherein the intermediate member has a plurality of blades extending from the inner surfaces of at least some of the plurality of openings to cause airflow to pass through the plurality of openings to cool the intermediate member.
  • 20. A method as set forth in claim 19 wherein the first material comprises a material selected to prevent galvanic corrosion between the hub member and the cheek member.
US Referenced Citations (113)
Number Name Date Kind
1989211 Norton Jan 1935 A
2410195 Baselt et al. Oct 1946 A
2411067 Tack Nov 1946 A
2603316 Pierce Jul 1952 A
2800982 Cottrell Jul 1957 A
3085391 Hatfield et al. Apr 1963 A
3147828 Hunsaker Sep 1964 A
3292746 Robinette Dec 1966 A
3378115 Stephens, III Apr 1968 A
3425523 Robinette Feb 1969 A
3475634 Bogdanov et al. Oct 1969 A
3509973 Kimata May 1970 A
3575270 Wagenfuhrer et al. Apr 1971 A
3774472 Mitchell Nov 1973 A
3841448 Norton, Jr. Oct 1974 A
3975894 Suzuki Aug 1976 A
4049085 Blunier Sep 1977 A
4072219 Hahm et al. Feb 1978 A
4250950 Buxmann et al. Feb 1981 A
4281745 Wirth Aug 1981 A
4379501 Hagiwara et al. Apr 1983 A
4523666 Murray Jun 1985 A
4905299 Ferraiuolo et al. Feb 1990 A
5004078 Oono et al. Apr 1991 A
5005676 Gassiat Apr 1991 A
5025547 Sheu et al. Jun 1991 A
5083643 Hummel et al. Jan 1992 A
5115891 Raitzer et al. May 1992 A
5139117 Melinat Aug 1992 A
5143184 Snyder et al. Sep 1992 A
5183632 Kiuchi et al. Feb 1993 A
5259486 Deane Nov 1993 A
5310025 Anderson May 1994 A
5416962 Passarella May 1995 A
5417313 Matsuzaki et al. May 1995 A
5509510 Ihm Apr 1996 A
5539213 Meeks et al. Jul 1996 A
5582231 Siak et al. Dec 1996 A
5620042 Ihm Apr 1997 A
5660251 Nishizawa et al. Aug 1997 A
5789066 De Mare et al. Aug 1998 A
5819882 Reynolds et al. Oct 1998 A
5855257 Wickert et al. Jan 1999 A
5862892 Conley Jan 1999 A
5878843 Saum Mar 1999 A
5927447 Dickerson Jul 1999 A
6047794 Nishizawa Apr 2000 A
6073735 Botsch et al. Jun 2000 A
6206150 Hill Mar 2001 B1
6216827 Ichiba et al. Apr 2001 B1
6223866 Giacomazza May 2001 B1
6241055 Daudi Jun 2001 B1
6241056 Cullen et al. Jun 2001 B1
6283258 Chen et al. Sep 2001 B1
6302246 Naumann et al. Oct 2001 B1
6357557 Di Ponio Mar 2002 B1
6367598 Sporzynski Apr 2002 B1
6405839 Ballinger et al. Jun 2002 B1
6465110 Boss et al. Oct 2002 B1
6481545 Yano et al. Nov 2002 B1
6505716 Daudi et al. Jan 2003 B1
6507716 Nomura et al. Jan 2003 B2
6543518 Bend et al. Apr 2003 B1
6604613 Burgoon et al. Aug 2003 B2
6799664 Connolly Oct 2004 B1
6880681 Koizumi et al. Apr 2005 B2
6880683 Miles Apr 2005 B1
6890218 Patwardhan et al. May 2005 B2
6899158 Matuura et al. May 2005 B2
6913124 Tanaka et al. Jul 2005 B2
6932917 Golden et al. Aug 2005 B2
7066235 Huang Jun 2006 B2
7112749 DiPaola et al. Sep 2006 B2
7178795 Huprikar et al. Feb 2007 B2
7219777 Lin May 2007 B2
7293755 Miyahara et al. Nov 2007 B2
7380645 Ruiz Jun 2008 B1
7568560 Lin Aug 2009 B2
7594568 Hanna et al. Sep 2009 B2
7644750 Schroth et al. Jan 2010 B2
7775332 Hanna et al. Aug 2010 B2
7823763 Sachdev et al. Nov 2010 B2
7836938 Agarwal et al. Nov 2010 B2
7937819 Hanna et al. May 2011 B2
7938378 Hanna et al. May 2011 B2
20020007928 Guetlbauer et al. Jan 2002 A1
20020084156 Ballinger et al. Jul 2002 A1
20020104721 Schaus et al. Aug 2002 A1
20030037999 Tanaka et al. Feb 2003 A1
20030127297 Smith et al. Jul 2003 A1
20030141154 Rancourt et al. Jul 2003 A1
20030213658 Baba Nov 2003 A1
20040031581 Herreid et al. Feb 2004 A1
20040045692 Redemske Mar 2004 A1
20040074712 Quaglia et al. Apr 2004 A1
20040084260 Hoyte et al. May 2004 A1
20040242363 Kohno et al. Dec 2004 A1
20050011628 Frait et al. Jan 2005 A1
20050150222 Kalish et al. Jul 2005 A1
20050183909 Rau, III et al. Aug 2005 A1
20050193976 Suzuki et al. Sep 2005 A1
20050263358 Zahdeh Dec 2005 A1
20060076200 Dessouki et al. Apr 2006 A1
20060243547 Keller Nov 2006 A1
20070056815 Hanna et al. Mar 2007 A1
20070062664 Schroth et al. Mar 2007 A1
20070062768 Hanna et al. Mar 2007 A1
20070119667 Hanna et al. May 2007 A1
20070142149 Kleber Jun 2007 A1
20070166425 Utsugi Jul 2007 A1
20070181390 Korm Aug 2007 A1
20090056134 Kleber et al. Mar 2009 A1
20100206674 Monsere et al. Aug 2010 A1
Foreign Referenced Citations (9)
Number Date Country
1757948 Apr 2006 CN
1230274 Dec 1966 DE
19948009 Mar 2001 DE
102005048258 Apr 2006 DE
2328952 Mar 1999 GB
54052576 Apr 1979 JP
57140929 Aug 1982 JP
57154533 Sep 1982 JP
0136836 May 2001 WO
Non-Patent Literature Citations (38)
Entry
PCT/US2006/029687 Search Report and Written Opinion; PCT/ISA/210 & PCT/ISA/237; Mailed Apr. 2, 2007; 6 pages.
U.S. Appl. No. 11/554,234, filed Oct. 30, 2006; Inventor: Michael D. Hanna.
U.S. Appl. No. 11/680,179, filed Feb. 28, 2007; Inventor: Jon T. Carter.
U.S. Appl. No. 11/780,679, filed Jul. 20, 2007; Inventor: Michael D. Hanna.
U.S. Appl. No. 11/858,596, filed Sep. 20, 2007; Inventor: Houchin Xia.
U.S. Appl. No. 11/926,798, filed Oct. 29, 2007; Inventor; Michael J. Walker.
U.S. Appl. No. 11/969,259, filed Jan. 4, 2008; Inventor: Jan H. Aase.
U.S. Appl. No. 12/025,967, filed Feb. 5, 2008; Inventor: James G. Schroth.
U.S. Appl. No. 12/105,411, filed Apr. 18, 2008; Inventor: Mark A. Golden.
U.S. Appl. No. 12/105,438, filed Apr. 18, 2008; Inventor: John C. Ulicny.
U.S. Appl. No. 12/165,729, filed Jul. 1, 2008; Inventor: Michael D. Hanna.
U.S. Appl. No. 12/165,731, filed Jul. 1, 2008; Inventor: Michael D. Hanna.
U.S. Appl. No. 12/174,163, filed Jul. 16, 2008; Inventor: Michael D. Hanna.
U.S. Appl. No. 12/174,223, filed Jul. 16, 2008; Inventor: Michael D. Hanna.
U.S. Appl. No. 12/174,320, filed Jul. 16, 2008; Inventor: Brent D. Lowe.
U.S. Appl. No. 12/183,104, filed Jul. 31, 2008; Inventor: Michael D. Hanna.
U.S. Appl. No. 12/187,872, filed Aug. 7, 2008; Inventor: Kenichi Kimura.
U.S. Appl. No. 12/272,164, filed Nov. 17, 2008; Inventor: Michael D. Hanna.
Anyalebechi, P.N.; Ungrooved Mold Surface Topography Effects on Cast Subsurface Microstructure, Material Processing Fundamentals, TMS, 2007, pp. 49-66.
Anayalebechi, P.N.; Undulatory Solid Shell Growth of Aluminum Alloy 3003 as a Function of the Wavelength of a Grooved Mold Surface Topography; Material Processing Fundamentals, TMS, 2007, pp. 31-45.
Chinese Patent Office First Office Action, Patent Application No. 200510113784.x, Date of Issue of OA: May 18, 2007; 41 pages.
Chinese Patent Office Second Office Action, Patent Application No. 200510113784.x, Date of Issue of OA: Feb. 15, 2008; 13 pages.
German Examination of Patent Application No. 10 2005 048 258.9; Dated Oct. 22, 2007, 8 pages.
Hector et al., Focused Engery Beam Work Roll Surface Texturing Science and Technology; Journal of Material Processing & Manufacturing Science, vol. 2—Jul. 1993 pp. 63-119.
Lee et al., Titanium Dioxide Nanotube Arrays Fabricated by Anodizing Processes, Journal of the Electrochemical Society, 153, (11) B499-B505 (2006).
Dessouki et al., Disc Break Squeal; Diagnosis and Prevention; Society of Automotive Engineers. Copyright (2007), 7 pages.
Sieber et al., Porous Tantalum Oxide Prepared by Electrochemical Anodic Oxidation; Journal of the Electrochemical Society, 152 (9) C639-C644 (2005).
Tanaka et al., In situ Measurement of the Diameter of Nanopores in Silicon During Anodization in Hydrofluoric Acid Solution; Journal of the Electrochemical Society, 151 (6) C439-C445 (2004).
Wu et al., A Study of Anodization Process During Pore Formation in Nanoporous Alumina Tempaltes; Journal of the Electrochemical Society, 154 (1) E8-E-12 (2007).
Yigit et al., Critical Wavelengths for Gap Nucleation in Solidification—Part 1: Theoretical Methodology; American Society of Mechanical Engineers; vol. 67, Mar. 2000, pp. 66-77.
Magnetorheological fluid/ Wikipedia article; http://en.wikipedia.org/wiki/Magnetorheological—fluid; 9 pages.
U.S. Appl. No. 10/961,813; Coulomb Friction Damped Disc Brake Rotor; filed Oct. 8, 2004; Inventor: Omar S. DessoukiS.
U.S. Appl. No. 11/440,893; Rotor Assembly and Method; filed May 25, 2006; Inventor: Michael D. Hanna.
U.S. Appl. No. 11/832,401; Damped Product With Insert and Method of Making the Same; filed Aug. 1, 2007; Inventor: Michael D. Hanna.
U.S. Appl. No. 11/848,732; Cast-In-Place Torsion Joint; filed Aug. 31, 2007; Inventor: Richard M. Kleber.
U.S. Appl. No. 12/183,104; Low Mass Multi-Piece Sound Dampened Article; filed Jul. 31, 2008; Inventor: Michael D. Hanna.
U.S. Appl. No. 12/209,457; Thermally Accommodating Interconnection for Cast-In-Place Components; filed Sep. 12, 2008; Inventor: Richard M. Kleber.
U.S. Appl. No. 12/789,841; Interconnection for Cast-In-Place Components; filed May 28, 2010; Inventor: Richard M. Kleber.
Related Publications (1)
Number Date Country
20100258394 A1 Oct 2010 US