The present invention is directed to a brake system that includes a plurality of electromagnetic actuators having different properties and a method of operating such a brake system, and more specifically, toward a brake system having a first EMA having desirable response characteristics and a second EMA having desirable stall force characteristics and a method of operating such a brake system.
Braking systems using electromagnetic actuators to compress a brake stack are well known. An illustrative electrically actuated braking system is shown in U.S. Pat. No. 4,865,162 to Morris, the contents of which are hereby incorporated by reference, which teaches a plurality of annularly disposed electrically energizable torque motor and roller screw drive mechanisms, sometimes referred to as electromagnetic actuators, or “EMA's.” The EMA's include a piston that is movable against a pressure plate of a wheel and brake assembly to compress a disc brake stack and retard the motion of a vehicle. Such braking systems may be found on a variety of vehicles including aircraft.
One characteristic of such EMA's is the “stall force.” This is the maximum piston output or maximum force applied by the piston against the brake stack. High stall force is important for meeting static brake torque requirements and providing strong braking in emergency situations such as rejected take offs.
Another characteristic of EMA's is dynamic response time. The dynamic response of an EMA refers to the time required to change direction of the EMA piston. An EMA with a fast response can be used with antilock/antiskid brakes which require a rapid modulation of brake force to provide good braking without skidding. Too low a response will prevent an EMA from being used in antiskid operations. Unfortunately, levels of stall force and dynamic response in EMA's are normally inversely related, especially in systems that have size, weight and power consumption limitations.
EMA's that produce a stall force sufficient for emergency operation generally have a dynamic response that is too slow to be used for anti-skid brake operation. This is because the high gear ratio required to produce a high stall force amplifies the motor's reflected inertia and lowers the system's resonant frequency. For these same reasons, systems with a dynamic response suitable for antiskid brake operation generally cannot provide the stall force required in all situations. It would therefore be desirable to provide an electromagnetic braking system that produces a high stall force and has a fast dynamic response.
These and other difficulties are addressed by the present invention which comprises, in a first aspect, a brake system that includes a brake carrier, a first EMA mounted on the brake carrier having a first stall force and a first response speed, and a second EMA mounted on the brake carrier having a second stall force and a second response speed different from the first response speed.
Another aspect of the invention comprises a method of compressing a brake stack including stators supported by a torque tube mounted on a carrier. The method involves mounting a first EMA having a first piston having a free end on a first portion of the carrier and mounting a second EMA having a second piston on a second portion of the carrier. The first piston free end is moved against the brake stack and held in a first position to apply a first force to the brake stack. The second piston is moved against the brake stack, and the force of the second piston against the brake stack is modulated to perform an antiskid braking operation on the brake stack.
A further aspect of the invention comprises a brake system that includes a generally circular brake carrier, a first EMA mounted on the brake carrier having a first stall force and a first response speed, and a second EMA mounted on the brake carrier about 180 degrees from the first EMA and having a second stall force less than the first stall force and a second response speed greater than the first response speed, so that the second EMA can be modulated to perform an antiskid braking function. A torque tube is associated with the carrier and has a brake stack mounted thereon. The first and second EMA's each include a piston movable from a first position spaced from the brake stack to a second position contacting the brake stack. A mechanism is provided for maintaining contact between the first piston and the brake stack when the second piston shifts from the first position to the second position.
These and other aspects and features of the invention will be better understood after a reading of the following detailed description together with the following drawings wherein:
Referring now to the drawings, wherein the showings are for purposes of illustrating embodiments of the invention only and not for the purpose of limiting same,
A first EMA 40 is connected to first portion 14 of carrier 12 and a second EMA 50 is connected to second portion 16 of carrier 12. First EMA 40 includes a drive 42 for driving a piston 44 which piston has a free end 46; second EMA 50 includes a drive 52 for driving a piston 54 which has a free end 56. Controller 60, illustrated in
The first and second EMA's are not identical; rather, first EMA 40 comprises an EMA having a high stall force. This high stall force limits the dynamic response of EMA 40 and makes it less than optimal for antiskid braking uses, differential deceleration control, and other braking applications requiring a rapid response. Second EMA 50 has a dynamic response that makes it suitable for antiskid and other braking operations requiring a rapid response. However, in order to provide such dynamic response, and to keep the size and power consumption of the EMA within acceptable limits, EMA 50 must have a stall force that is lower than what is required in many situations. The present embodiment of the invention is described in terms of an antiskid braking system; however it should be understood that it could be used just as easily in other braking systems requiring both high stall force and rapid braking response.
In operation, therefore, when a braking command is sent to brake system 10, controller 60 causes first EMA 40 to shift from a first position with piston 44 spaced from pressure plate 28a to a second position wherein free end 46 of first piston 44 engages pressure plate 28a and compresses the brake stack 26 to slow a wheel to which it is attached. Under normal operating conditions, all force for compressing brake stack 26 may be provided by first EMA 40. Alternately, second EMA 50 may also be controlled to cause second piston 54 to engage pressure plate 28a and provide supplemental braking force. It is generally preferable to have both first EMA 40 and second EMA 50 provide a portion of braking force under normal operating conditions.
Many aircraft are now equipped with antiskid or antilock brakes which pulsate to modulate the pressure applied by an EMA against a brake stack. As discussed above, first EMA 40 does not have the dynamic response needed to be effectively used with such an antiskid braking system. Second EMA 50 can be modulated in this manner but cannot alone provide the high stall force necessary to slow and stop a wheel, especially when a high braking force is commanded. Therefore, according to an embodiment of the invention, the beginning of a skid may be detected at a time when first EMA 40 is applying significant braking pressure against pressure plate 28a and second EMA 50 is applying a smaller braking force against pressure plate 28a. When the beginning of the skid is detected, controller 60 modulates second EMA 50 to apply rapidly varying pressure against pressure plate 28a to slow the wheel without causing a skid.
Various methods of accomplishing such an antiskid function are known, and these generally comprises applying a braking force until the beginning of a skid is detected, briefly releasing the braking force, and then reapplying the braking force and repeating the above process until no further skid conditions are detected. Beneficially, using this method of an embodiment of the present invention, the antiskid function can be carried out by EMA's which would generally not be able, on their own, to provide the high stall force needed in certain braking situations. Therefore, this embodiment of the present invention provides an antiskid brake system and method that is also capable of providing high stall force.
This can be understood mathematically from
Using this model, one can derive the following mathematical relationship which describes the change in total force on the brake stack (Kt)×(Xt) resulting from a change in piston displacement of one EMA (EMA 50, for example) while the other EMA, EMA 40, remains at a fixed piston displacement.
Ideally, one would prefer that, when increasing the force output contribution from one EMA (while holding the other EMA at a fixed position), the entire increase in force would be seen by the brake stack. However, as illustrated above, the change in total force on the brake stack is always less than the change in force produced by one EMA if the other EMA remains at a fixed position. Thus, in order to maximize the change in brake stack force caused by a change in the position of EMA 50 (with the position of EMA 40 held constant) Kh must be minimized relative to Kt and Kl.
This issue is addressed by the brake system illustrated in
An alternate arrangement for decoupling the force applied by second EMA 50 from the constant force applied by EMA 40 is illustrated in
The present invention has been described in terms of several preferred embodiments; however, obvious changes and additions to these embodiments will become apparent to those skilled in the relevant arts upon a reading of the foregoing disclosure. It is intended that all such obvious modifications and additions form a part of the present invention to the extent that they fall within the scope of the several claims appended hereto.