The present invention relates to a brake system for a vehicle having a parking brake according to the preamble of claim 1.
A brake system of the general type under consideration is described in DE 10336611 A1. This known brake system is equipped not only with a service brake but also with a parking brake, in order that the vehicle can be parked with the brake engaged. Such a parking brake is also known as a handbrake.
Parking brakes are usually provided with spring-actuated brake cylinders, in which an actuator spring engages the brake, so that the vehicle is braked or can no longer be moved. This parking brake is released by pressurizing the spring-actuated brake cylinders with compressed air, so that the actuator spring is compressed and, thus, the parking brake is released.
Such spring-actuated brake cylinders are usually designed as combination service-brake and spring-actuated brake cylinders. They therefore have a spring-actuator part and a service-brake part. Service braking is conventionally actuated via a brake pedal.
The compressed-air supply of the spring-actuator part for releasing the parking brake is achieved by means of an air-flow-boosting valve device, especially a relay valve. At its output the air-flow-boosting valve device delivers the same pressure that is present at its control input, but with a boosted air flow, which is drawn from a compressed-air reservoir tank.
The control input of the air-flow-boosting valve device is supplied with the control pressure via at least one control valve. This control valve is designed as an electrically actuatable control valve, wherein the switched condition of this valve is determined by an electrical control device. The control device, in turn, is electrically connected to an actuating device for actuation of the parking brake. This actuating device may be actuated by the driver of the vehicle. The driver is able to release or engage the parking brake by means of this actuating device.
In the brake system described in DE 10336611 A1, the control device is integrated in a parking-brake module, as is a valve module, in which the valves of the parking brake are structurally integrated. As a result, a compact parking-brake module is realized that can be integrated easily into existing air-brake systems. However, this integration requires special housing parts and modules, which have to be specially developed.
It is, therefore, an object of the present invention to provide an improved brake system while reducing development time and effort.
The invention achieves this object by the features specified in claim 1.
Because of the stand-alone, separate design of the components, that is, the air-flow-boosting valve device, control valve or control valves, electrical control device and actuating device, and because of the spatially separated arrangement of these components, it is possible to use conventional series parts without the need for special additional modules or components. By eliminating integration of the components in a module, an inexpensive, dispersed structure of the parking-brake device is achieved. Not only are the manufacturing costs reduced by the use of already available components, but the approval process for new brake systems are shortened.
Advantageously, a pressure sensor is additionally provided, which is also designed as a stand-alone separate component, and which is electrically connected to the electrical control device and disposed in a manner spatially separated from the other components.
Preferably, the pressure sensor measures the pressure in a compressed-air reservoir tank for supplying the spring-actuated brake cylinder with compressed air, and, for this purpose, the control device is designed such that it compares the measured pressure value with an upper and/or lower pressure limit value. If the measured pressure is below the lower pressure limit value, the control valve is activated to control the air-flow-boosting valve device, such that the spring-actuated brake cylinder can be vented by the air-flow-boosting valve device. However, when the measured pressure does not exceed an upper pressure limit value, the control valve cannot be activated, and so air cannot be admitted to the spring-actuated brake cylinder by means of the air-flow-boosting valve device.
If the pressure in the compressed-air reservoir tank (or tanks) falls below a minimum value, automatic venting of the spring-actuated brake cylinder is advantageously effected, and the parking brake is applied. In contrast, when the upper limit value of the pressure is not yet reached in the compressed-air reservoir tank, it is possible to prevent the spring actuators from being released. In this way, it is ensured that a minimum pressure is always provided in the compressed-air reservoir tank before the parking brake can be released.
In another embodiment of the present invention, the electrical actuating device is provided with one or two electrical switches for selective setting of a released condition or engaged condition, respectively, of the parking brake. One switch is sufficient in vehicles operated without a trailer. In such cases, the parking brake can be engaged or released by means of the one switch. If the vehicle is a tractor of a vehicle train containing trailers, however, it is advantageous to provide a second switch, by means of which the parking brake of the trailer can be controlled.
In a further embodiment, the electrical actuating device is also provided with a further operator-control element for activating an anti-jackknifing brake function. When the anti-jackknifing brake is activated, it brakes the rear wheels, meaning, for example, the wheels of a trailer, especially a semi-trailer. This is advantageous when the vehicle or the vehicle train is traveling on a smooth roadway, since the anti-jackknifing brake keeps the vehicle train stretched out. By means of this additional operator-control element, the driver of the vehicle is also able to test whether a stationary trailer is actually being braked, by actuating this operator-control element and exerting a tractive force on the trailer by means of the tractor vehicle. Furthermore, by means of the anti-jackknifing brake, the driver is able to check secure closing of the connection between tractor and trailer, especially semitrailer, or, in other words, the articulated coupling.
In a still further embodiment of the present invention, the control device is connected to one or more sensors for detecting operating conditions of vehicle components. For this purpose, the control device is designed such that it can engage or release the parking brake depending on the detected operating conditions. In this way, the spring-actuated brake cylinders can be selectively engaged or released by means of the electrical actuating device and, therefore, manually, or by means of an automatic external controller. Advantageously, at least one sensor for detection of the condition of the service brake is provided and connected to the control device. The control device prevents release of the parking brake if the service brake is not actuated. This makes it compulsory for the service brake to be actuated before the parking brake can be released. This is advantageous in preventing the vehicle from rolling away due to release of the parking brake.
Furthermore, a sensor for detecting the position of a vehicle door can be provided and connected to the electrical control device. The control device engages the parking brake or prevents release of the parking brake when the vehicle door is open. Such a function is particularly advantageous in a bus, for example. This function ensures that the bus cannot be moved if one of the doors is open.
In another embodiment of the present invention, the control device is integrated into the control device of an anti-brake-lock system. In this way an additional control device can be dispensed with, leading to savings and to simplified assembly of the components of the parking brake. Alternatively, the control device can also be designed as a separate control device for the parking brake.
In yet another embodiment, an overload-protection valve is connected upstream from the control input of the air-flow-boosting valve device. The overload-protection valve has a first input, which is in communication with the control valve for control of the air-flow-boosting valve device. Also, the overload-protection valve has a second input, which is in communication with the brake pedal of the service brake, and an output, which is in communication with the control input of the air-flow-boosting valve device. By this overload-protection valve, it is possible to prevent mechanical overloading due to addition of the brake forces of the service brake and parking brake, since, if the service brake and the parking brake are actuated simultaneously, the pressure of the service brake raises the pressure of the parking brake and, in this way, also reduces the braking effect.
Advantageously, the overload-protection valve is integrated together with the air-flow-boosting valve device in a common unit.
Further objects and advantages of the present invention will become apparent from the exemplary embodiments explained in greater detail hereinafter on the basis of the accompanying drawing, in which:
Brake system 10 is provided with a brake-actuating device 16, which senses a braking intent of the driver. Brake-actuating device 16 comprises a pneumatic part and possibly an electrical part, only the pneumatic part being illustrated in
By actuation of a brake pedal 22, brake-actuating device 16 generates—possibly by electrical activation of electropneumatic devices or directly—a pneumatic manipulated variable, which is relayed via a compressed-air line 24, 26 to combination service and spring-actuated brake cylinder 14.
Combination service and spring-actuated brake cylinder 14 is designed as a combination spring-actuator/diaphragm cylinder. Apart from the function of a diaphragm cylinder, it additionally has a spring-actuator function. Brake cylinder 14 therefore comprises a diaphragm part 28, which is in communication pneumatically with the service-brake system and can be pressurized with the actual brake pressure, and a spring-actuator part 30, which is pneumatically separated from diaphragm part 28 and can be pressurized with compressed air via a separate compressed-air line 32. Spring-actuator part 30 forms part of the parking brake. It includes the spring-actuator function, which preloads an actuator spring upon pressurization of spring-actuator part 30 and, thus, prevents or diminishes braking action of the spring-actuator function, whereas the actuator spring relaxes upon venting of spring-actuator part 30 and, thus, in connection with the spring-actuator function, exerts a braking action on the brake in communication with the respective brake cylinder. In the present context, brake cylinders of this type will be referred to as “spring-actuated brake cylinders”.
By means of spring-actuated brake cylinder 14, a parking-brake function that also permits the vehicle to be braked or immobilized even in the absence of compressed air is achieved. The parking-brake function is active when the respective spring-actuator part 30 of spring-actuated brake cylinder 14 is vented below a minimum pressure value or is vented completely. Via compressed-air line 32, spring-actuator part 30 of brake cylinder 14 is pneumatically in communication with an air-flow-boosting valve device 34, which permits pressure control by way of electrical control means, especially, electrical control device 12.
A manually actuatable parking-brake signal transducer (not illustrated in
Air-flow-boosting valve device 34 is preferably designed as a relay valve, and comprises an inlet 42, which, via compressed-air lines 36, 38, 40, is in direct or indirect communication with compressed-air reservoir tanks 18, 20. Furthermore, air-flow-boosting valve device 34 has an outlet 44, which, via compressed-air line 32, is in communication with spring-actuator part 30 of brake cylinder 14. Air-flow-boosting valve device 34 also has a control input 46, which, via compressed-air lines 48, 50, is in communication with a control valve 52 for control of the parking brake of the tractor.
Control valve 52 is designed as a 3/2-way solenoid valve. This means that it has three ports and can assume two conditions. In the de-energized condition illustrated in
Control valve 52 further has an inlet 60, which, via compressed-air lines 62, 64 as well as compressed-air lines 36, 38 and 40, is in communication with compressed-air reservoir tanks 18 and 20. In the energized condition of control valve 52, inlet 60 is in communication with outlet 54, whereby the reservoir pressure, and, specifically,—by virtue of a double check valve or what is known as a select-high valve 66 between compressed-air reservoir tanks 18, 20 and inlet 60 of control valve 52—the higher of the two reservoir pressures of compressed-air reservoir tanks 18, 20, is transmitted via compressed-air lines 50, 48 to control input 46 of air-flow-boosting valve device 34. Thereupon, air-flow-boosting valve device 34 modulates, at its output 44, the same pressure as is present at its control input 46, such that air-flow-boosting valve device 34 delivers, at its outlet 44, an air flow boosted by a multiple compared with that needed at control input 46. For this purpose, inlet 42 of air-flow-boosting valve device 34 is placed in communication with compressed-air reservoir tanks 18, 20. This modulated pressure at outlet 44 of air-flow-boosting valve device 34 is supplied via compressed-air line 32 to spring-actuator part 30 of brake cylinder 14, thus causing air to be admitted to spring-actuator part 30 and the parking brake to be released.
A pressure sensor 68 is connected between double check valve 66 and inlet 42 of air-flow-boosting valve device 34 or inlet 60 of control valve 52 to ensure that the order of magnitude of the reservoir pressure momentarily available can be sensed. This pressure sensor transmits a correspondingly measured pressure value via an electrical line (not illustrated) to electrical control device 12.
Via further electrical lines (not illustrated), electrical control device 12 is further connected to control valve 52, so that control valve 52 can change its condition depending on corresponding electrical signals of electrical control device 12.
Overload-protection valve 56 has two inputs 70, 72 and one output 74. A first input 70 is in communication with outlet 54 of control valve 52. A second input 72 is in communication via compressed-air line 24 with brake pedal 22 or the pneumatic part thereof. Output 74 of overload-protection valve 56 is in communication via compressed-air line 48 with control input 46 of air-flow-boosting valve device 34. Overload-protection valve 56 selects the higher of the two pressures present at its inputs 70, 72 and supplies this to control input 46 of air-flow-boosting valve device 34. It is therefore also referred to as a “select-high valve”.
Overload-protection valve 56 prevents addition of the brake force supplied to brake cylinder 14 by the service brake, or, in other words, via the pneumatic part of brake pedal 16, and the brake force supplied to spring-actuator part 30 by the parking brake via compressed-air lines 32, 36, 38, 40, thus preventing mechanical overloading of the brake mechanism in the wheel brake associated with brake cylinder 14. By virtue of the illustrated structure, the brake force supplied via compressed-air lines 24, 26 to diaphragm part 28 of brake cylinder 34 is not increased by the brake force exerted by the actuator spring, since, in the case of actuation of the service brake, the brake force exerted by the actuator spring is reduced by a force corresponding to actuation of the service brake. In this way, critical overloading of the wheel brakes can be avoided.
The components discussed above relate to the brake device of the tractor. If a trailer can be coupled to the tractor, compressed-air brake system 10 is additionally provided with a second control valve 76, which, via a compressed air line 78, is also in communication with compressed-air reservoir tanks 18, 20. Control valve 76 is disposed in parallel with control valve 52. Otherwise, it is designed to be functionally identical to control valve 52, and, so, in this regard, the foregoing discussion of control valve 52 and of its ports and switched conditions can be consulted. Only the output of control valve 76 is in communication with one other component, namely a tractor-truck protection valve 80.
In the exemplary embodiment depicted in
By means of pressure sensor 68, the controller provided in the electrical control device senses the higher of the two reservoir pressures of compressed-air reservoir tanks 18, 20. The pressure sensed in this way as well as the switch condition or conditions of the actuating device (not illustrated) for the parking brake of the tractor and, possibly, of the trailer are read in and evaluated by electrical control device 12. Depending on the result of the logical combinations or of the programmed control, control valves 52, 76 for the parking brake of the tractor or of the trailer are then switched. If the control valves are switched, or, in other words, are, in particular, energized, air can be admitted to air-flow-boosting valve device 34 or a corresponding valve device 34 in the trailer and, thus, to spring-actuator part 30 or a corresponding spring-actuator part of a spring-actuated brake cylinder of the trailer, with the result that the parking brake of the tractor or of the trailer is released. In contrast, if control valves 52, 76 are switched to de-energized condition, air-flow-boosting valve device 34 or the corresponding valve device of the trailer switches to venting. The spring-actuator parts of the spring-actuated brake cylinders are then vented and, thus, the parking brake is engaged.
In the illustrated exemplary embodiment, brake-actuating device 16 is in communication by means of pneumatic lines, namely, compressed-air lines 112, 114, and then further via compressed-air lines 100, 102, with valves 86 for compressed-air brake cylinders 84 of the front axle, in order to provide a pneumatically operated service brake. Analogously, brake-actuating device 16 is in communication, via compressed-air lines 116, 118, 120, and as compressed-air lines 90, 92, with valves 86 of combination service and spring-actuated brake cylinders 14, in order that the rear axle can also be braked pneumatically.
The further components shown in
Electrical actuating device 122 is disposed in the driver's cab of the vehicle. Thus, there is no need to provide pneumatic switches for actuating a parking brake in the driver's cab, and tubing comprising compressed-air lines for the parking brake can be avoided in the driver's cab, but a parking brake can nonetheless be actuated.
The essential components of the parking brake, especially, air-flow-boosting valve device 34, control valves 52, 76, pressure sensor 68, electrical control device 12 and actuating device 122, are each designed as stand-alone, separate components that can be disposed in a manner spatially separated from one another. By virtue of this dispersed structure without integration of these components in one module, it is possible according to the present invention to use already available series parts. This simplifies not only the engineering design but also the approval procedures for such brake systems.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 041 009.2 | Aug 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/005909 | 7/4/2007 | WO | 00 | 2/24/2009 |