BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings illustrating embodiments of the present invention:
FIG. 1 is an embodiment of a prior shifter mechanism including BTSI, shown in the park position;
FIG. 2 is a longitudinal section of the solenoid and shift inhibitor of the BTSI shown in FIG. 1;
FIG. 3 is a first embodiment of a BTSI in accordance with the present invention, with the shifter in park position, and the BTSI solenoid is unpowered;
FIG. 4 is the BTSI of FIG. 3 shown inhibiting movement of the shifter from the park position, when the brake is not applied and/or the BTSI solenoid is unpowered;
FIG. 5 is the BTSI of FIG. 3 shown not inhibiting movement of the shifter from the park position, when the brake is applied and the BTSI solenoid is powered;
FIG. 6 is the BTSI of FIG. 3 shown during movement of the shifter from the park position to the reverse position, when the transmission switch opens and the BTSI solenoid is consequently unpowered;
FIG. 7 is the BTSI of FIG. 3 shown during movement of the shifter from the reverse position to the park position, when the brake is not applied and/or the BTSI solenoid is unpowered;
FIG. 8 is a second embodiment of a BTSI in accordance with the present invention, with the shifter in park position, and the BTSI solenoid is unpowered;
FIG. 9 is a third embodiment of a BTSI in accordance with the present invention, with the shifter in park position, and the BTSI solenoid is unpowered;
FIG. 10 is the BTSI embodiment of FIG. 3, modified to incorporate an integrated park position switch, shown with the pawl in the park position (switch closed);
FIG. 11 is the BTSI/park switch of FIG. 10, shown with pawl movement from the park position being blocked by the BTSI inhibitor (switch closed); and
FIG. 12 is the BTSI/park switch of FIG. 10, shown with pawl movement from the park position being permitted by the BTSI inhibitor (switch open).
DETAILED DESCRIPTION
The following describes various embodiments of a sub-assembly for a brake transmission shift interlock system. Generally, the sub-assembly includes an inhibitor for preventing shifting of a vehicle transmission from a park position in the absence of application of a brake by a vehicle occupant, and a movable solenoid armature. A linkage is also provided coupling the inhibitor to the armature such that movement of the armature produces a corresponding movement of the inhibitor. In addition, the linkage also couples the inhibitor to the armature so as to permit movement of at least a portion of the inhibitor independent of the armature.
Referring to FIGS. 3-7, a first embodiment BTSI employs a flexible cable linkage between the inhibitor and armature to decouple the inhibitor from the main armature. The inhibitor may be metal or a plastic material suitable for withstanding the compression between the pawl and the structural travel stop. FIG. 3 shows the shifter mechanism in the park position, with the pawl seated in the park detent of the shifter gate. The solenoid is unpowered, and its armature is biased by a spring (not shown) into its naturally extending position, in which attempted movement of the shifter from the park position is met with removal of the pawl from the park detent being blocked by the inhibitor, which is disposed between the pawl and the travel stop, as shown in FIG. 4. Such inhibited movement of the pawl occurs when the solenoid is unpowered. As seen in FIG. 4, while movement of the armature along axis “A” produces a corresponding movement of the inhibitor along the axis, the linkage couples the inhibitor to the armature so as to permit movement of at the least a portion of the inhibitor in a direction away from the axis (responsive to a force exerted by the pawl). Notably, the lateral forces exerted on the inhibitor are not transmitted to the armature through the cable linkage. Thus, damage to the solenoid from excessive side loading is prevented. The solenoid may be unpowered when the ignition key is not in the on position or the brake is not applied. Also, as seen in FIGS. 3 and 4, a chamfer or clearance 21 may be formed on the metal container 32 if needed, to permit pivoting or rotation of the linkage 19 and a portion of inhibitor 12. Portions of container 32 may also be formed so as to provide guide surfaces (such as surfaces 35) and/or travel stops (such as end surface 15) to restrict the motion of the armature.
In FIG. 5, the vehicle brake (not shown) is applied and the solenoid (not shown) is powered, thereby retracting the solenoid armature 14 along axis “A,” drawing the inhibitor 12 along axis “A” and out of the path of the pawl 10 as the pawl 10 is moved out of the park detent 11. Once the pawl 10 is removed from the detent 11, it can be moved through the shifter gate (not shown) as the operator selects transmission positions other than park. As mentioned previously, the solenoid 14 is provided with guide and alignment features 21, 35 that facilitate proper movement of the inhibitor 12 and armature 14.
In FIG. 6, the shifter (not shown) is moved from the park position towards the reverse position. Once out of the park position, the park position switch (not shown) is opened to de-energize the solenoid and the armature 14 is returned under spring bias to its normal extended position with the inhibitor 12 positioned over the opening of the park detent 11. In the depicted embodiment, the park position switch is not shown and may be located in any of several locations, and may be engageable with the transmission shift linkage (not shown) or be internal to the transmission. The movements of the solenoid armature 14 and park switch (not shown) may also be coupled or decoupled.
In FIG. 7, the shifter (not shown) is moved from reverse (the position adjacent to the park position) towards the park position. This movement causes the shift lever pawl 10 to move in the direction of arrow B to abut the inhibitor, initially positioned over the park detent 11 under the influence of the armature-biasing spring (not shown), and further movement of the pawl 10 towards a position over the detent forces the inhibitor 12 and unenergized armature against the force of the biasing spring. Joint axial movement of the inhibitor 12 and armature 14 is through the flexible cable 19, which bears the resulting compressive load without kinking or birdcaging (separation of cable strands). Once the pawl 10 is placed in the park detent 11, the biasing spring forces the unenergized armature 14 into its normally extended position with the inhibitor 12 disposed between the pawl 10 and the structural travel stop 16 (see FIG. 3).
FIG. 8 shown a second embodiment of a sub-assembly in accordance with the present invention. In FIG. 8, elements similar to those shown in FIGS. 3-7 have been given similar element numbers. Referring to FIG. 8, the second embodiment BTSI provides a linkage between the inhibitor and the armature that includes a ball stud connection or snap-on ball and socket 160 that allows the inhibitor 112 to pivot in the directions indicated by arrow C relative to the armature 114 as the pawl 110 is blocked from being removed from the park detent 111. The function and operation of the second embodiment BTSI is substantially identical to the first embodiment, although the structure of the linkage 160 between the inhibitor 112 and armature 114 differs. The linkage decouples pivoting motion of the inhibitor 112 from the solenoid armature 114, thereby eliminating side loading on the armature. In the embodiment shown in FIG. 8, a ball portion 158 of the ball-and-socket connection is coupled to the armature 114 and a socket portion of the connection is coupled to (or formed on) the inhibitor 112. Alternatively, the ball portion of the connection may be coupled to the armature and the socket portion of the connection may be coupled to the inhibitor.
Referring to FIG. 9, a third embodiment BTSI provides a linkage 360 between the inhibitor 312 and the armature 314 that includes a pinned hinge between the inhibitor 312 and armature 314. Pivot pin 370 allows the inhibitor 312 to pivot in the directions indicated by arrow D relative to the armature 314 as the pawl is blocked from being removed from the park detent 311. The function and operation of the third embodiment BTSI is substantially identical to the first and second embodiments, although the structure of the linkage between the inhibitor and armature differs. The linkage 360 decouples pivoting motion of the inhibitor 312 from the solenoid, thereby eliminating side loading on the armature 314.
In another aspect of the invention, a brake transmission shift interlock system sub-assembly as described above is incorporated into a switch assembly (generally designated 400). The switch assembly 400 includes a brake transmission shift interlock assembly 490 for preventing shifting of a vehicle transmission from a park position in the absence of application of a brake by a vehicle occupant. The shift interlock assembly includes an interlock sub-assembly as described in one of the previous embodiments. The switch assembly 400 also includes a movable solenoid armature 414. In addition, a vehicle transmission park position switch 494 is provided for detecting the park position of the vehicle transmission. The park position switch 494 includes a movable contact element 496 for opening and closing the park position switch. The contact element 496 is movable independent of the solenoid armature 414.
FIGS. 10-12 show a switch assembly having a park switch 494 integral with the solenoid assembly. Although the switch assembly 400 is shown adapted to the first embodiment BTSI described above, those of ordinary skill in the art will readily appreciate that the above-described second and third embodiments may likewise be modified to incorporate the integral switch assembly 400. The motions of the solenoid armature 414 and park switch plunger 496 are decoupled-movement of one does not necessitate movement of the other.
The park switch plunger 496 is disposed in the park detent 411, and is engaged by the shift lever pawl 411. The plunger is movable within the switch housing in the directions indicated by arrow G. When the pawl 410 is seated in the detent 411, the plunger 496 is fully depressed, and the park switch 494 is closed, thereby preventing the solenoid from being powered. The solenoid armature 414, (which is movable in the directions indicated by arrow E) as discussed above, is unpowered in such circumstances and biased by a spring (not shown) into its normally extended position, the inhibitor 412 being disposed between the pawl 410 and the structural travel stop 416, as shown in FIG. 10.
Referring to FIG. 11, attempted shifting from the park position is blocked by the inhibitor 412. Movement of the pawl 410 from its seated position within the detent 411 permits extending movement of the switch plunger 496, which is biased by a spring (not shown) into its extended position, but even full engagement of the pawl 410 against the inhibitor 412 (wherein the shifter remains locked in the park position) maintains a closed switch position. Only upon application of the brake and the closing a brake switch (not shown) allows the solenoid to become energized and the inhibitor 412 to be moved out of the path of the pawl 410. Only once the pawl 410 is then removed from the park detent 411 (FIG. 12) does the park switch open.
Notably, the park position switch 494 may be used for purposes of verifying to the driver (for example by illuminating a lamp) that the shifter is locked in its park position. Alternatively, those of ordinary skill in the art will appreciate that the park position switch 494 may instead, or also, be used for purposes of controlling activation/deactivation of the BTSI solenoid in conjunction with a brake switch (not shown).
Those of ordinary skill in the art will also recognize that the switch open and closed states described above are merely examples, and the present invention is intended to also encompass embodiments having converse switch open and closed states for carrying out the switch functions. The present invention should therefore not be construed as being limited by the particular switch open and closed states herein described.
The BTSI sub-assembly and assembly of the present invention offer several advantages over existing designs. The decoupled inhibitor can be optimized independently of the BTSI solenoid for size and material. Embodiments of the inhibitor-armature linkage that employ a flexible cable can be optimized for stiffness and compressive strength. The solenoid and inhibitor's guidance/alignment features can be tuned for different deflection requirements. The decoupled BTSI components/features remain on the same integrated solenoid, resulting in lower costs and minimized labor. The decoupled inhibitor does not compromise existing solenoid noise dampening components. The outside diameter of the armature does not need to increased to accommodate higher shear load requirements, thereby facilitating smaller BTSI package sizes. Solenoid durability life is improved due to decoupling armature from side loading. The decoupled inhibitor provides opportunity for increasing tolerances, resulting in less expensive manufacturing and less stringent design parameters.
In addition, the integrated, switch assembly including a decoupled BTSI solenoid and park switch as described herein offer the following advantages: The decoupled park switch motion can be biased by a spring force independent of the spring force that biases the solenoid armature. The guidance/alignment features of the solenoid can be tuned independently of park switch considerations. The decoupled switch and solenoid are integrated into a common component, thereby reducing costs and labor. Reliability is improved through lessened reliance on tolerances required with coupled switches and solenoids of prior BTSI.
It will be understood that the foregoing descriptions of embodiments of the present invention are for illustrative purposes only. As such, the various structural and operational features herein disclosed are susceptible to a number of modifications commensurate with the abilities of one of ordinary skill in the art, none of which departs from the scope of the present invention as defined in the appended claims.