Braking control system for vehicle

Information

  • Patent Grant
  • 9090234
  • Patent Number
    9,090,234
  • Date Filed
    Monday, November 18, 2013
    11 years ago
  • Date Issued
    Tuesday, July 28, 2015
    9 years ago
Abstract
A braking control system for a vehicle includes at least one sensor having a field of view exterior of the vehicle. A control, after actuation of the vehicle brake system, determines the speed of the vehicle and relative speed of the vehicle to another vehicle or object, and, responsive to the speed of the vehicle and the relative speed, the control controls the vehicle brake system. Responsive to a determination that at least one of (i) a collision has occurred, (ii) the vehicle speed is greater than a threshold amount and (iii) the relative speed is greater than a threshold amount, the system determines if the vehicle driver is impaired, and, responsive to a determination that the driver is impaired, the control controls braking of the subject vehicle, and responsive to a determination that the driver is not impaired, the control allows the driver to override the system.
Description
FIELD OF THE INVENTION

The present invention relates to automatic emergency braking systems for vehicles.


BACKGROUND OF THE INVENTION

Automatic emergency braking systems are known. Examples of such known systems are described in U.S. Publication No. US2012-0218412 and/or U.S. Pat. Nos. 6,850,156; 7,123,168; 6,534,884; 5,949,331; 5,670,935; and/or 5,550,677, which are hereby incorporated herein by reference in their entireties.


SUMMARY OF THE INVENTION

The present invention provides a braking control system for resolving automatic braking events that, responsive to a determination that a collision is likely or imminent and actuation of the brake system of a vehicle by the automatic emergency braking system of the vehicle, controls the brake system of the vehicle. After the initial determination of a likely or imminent collision, and after the brake system has initially been applied by the automatic braking system, the braking control system of the present invention (which may be a separate system or part of the automatic braking system) further determines or monitors the vehicle speed and approach rate to the other vehicle or object, and continues to control the brakes or apply the brakes or release the brakes based on various relationships between the speed of the subject vehicle and the relative speed or location of the target vehicle or object and the status of the driver of the subject vehicle. The braking control system may allow for the driver to override the system only when the braking control system determines that the driver's driving abilities are not impaired or compromised or that the driver is not inattentive or unresponsive (such as due to a collision or near collision or airbag deployment or the like).


These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a vehicle with a braking system in accordance with the present invention; and



FIG. 2 is a logic flowchart of the braking control system in accordance with the present invention.





DETAILED DESCRIPTION OF THE INVENTION

A vehicle vision system and/or driver assist system and/or object detection system and/or alert system operates to capture images exterior of the vehicle and may process the captured image data to display images and to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a forward or rearward direction. The vision system includes an image processor or image processing system that is operable to receive image data from one or more cameras and provide an output to a display device for displaying images representative of the captured image data. The vision system may capture image data that may be processed by an image processor for use in association with various vehicle systems or driver assistance systems or display systems or the like.


Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 is equipped with an automatic emergency braking (AEB) system and/or dynamic brake support (DBS) system or braking control system 12 (or collision avoidance system or collision mitigation system or system for resolving automatic braking events) that includes at least one exterior facing imaging sensor or camera, such as a forwardly facing camera 14 (and optionally the system may include multiple exterior facing imaging sensors or cameras, such as a rearwardly facing camera at the rear of the vehicle, and a sidewardly/rearwardly facing camera at respective sides of the vehicle), which captures images exterior of the vehicle, with the camera having a lens for focusing images at or onto an imaging array or imaging plane or imager of the camera (FIG. 1). The braking control system 12 includes a control or electronic control unit (ECU) or processor 16 that is operable to process image data captured by the camera or that is operable to process controls or other signals provided by the camera. The data transfer or signal communication from the camera to the ECU may comprise any suitable data or communication link, such as a vehicle network bus or the like of the equipped vehicle.


The control 16 (which may comprise a single control unit of the vehicle or camera or two or more controls or processors of the vehicle and/or camera) of the braking control system 12 of the vehicle 10 is operable to actuate or apply the vehicle brakes 18, 19 of the vehicle, as discussed in detail below. The braking control system of the present invention may include or may be responsive to a steering wheel sensor 20 and/or vehicle speed sensor 22. The forward facing camera 14 may be disposed at a forward portion of the vehicle or may be disposed at or behind the windshield of the vehicle, such as at the interior rearview mirror assembly of the vehicle (such as shown in FIG. 1).


The performance expectations of autonomous emergency braking or AEB systems (where the vehicle system applies braking automatically when it determines that a collision is imminent) and/or dynamic brake support or DBS systems (where the system applies additional braking after the driver has pressed the brake pedal) have been under development for years. The focus of development has been on determining when the system should be triggered in order to prevent or mitigate a collision. However, once the system is activated, the system must also be deactivated at the appropriate time if the driver does not take control (referred to as a driver override) to prevent further collisions following the initial impact or immediate event or to reduce or limit or minimize the chance or severity of further collisions following the initial impact or immediate event. As proposed, EuroNCAP and NHTSA regulations only require mitigation, not prevention, of impact at high speed.


The AEB/DBS logic of the braking control system of the present invention can determine that a collision has occurred based on one or more inputs, such as (i) an input from one or more ranging sensors (which may include image based sensors, such as one or more cameras disposed at the vehicle and having an exterior field of view, and/or non-image-based sensors, such as a radar sensor, a laser sensor and/or an ultrasonic sensor and/or the like disposed at the vehicle), (ii) an input indicative of a triggering of a pre-crash sensor, (iii) an input indicative of an airbag deployment, (iv) an input indicative of a longitudinal acceleration (such as sudden deceleration and a spike in jerk or the like), (v) an input indicative of a drop in vehicle speed (such as a decrease in vehicle speed of more than a threshold amount), (vi) an input indicative of a threshold time-to-collision or TTC (time to collision between the subject vehicle and other vehicle, such as may be measured or determined or estimated by a ranging sensor, such as by image processing of image data captured by a camera or the like), and/or (vii) an input indicative of a threshold closing rate or relative velocity between the detected or approaching vehicle and the subject or equipped vehicle (note that, in this disclosure, the relative velocity between the target vehicle and subject vehicle is considered positive when the vehicles are closing or approaching one another and is considered negative when the vehicles are moving away from one another or when a gap between the vehicles is increasing).


In all cases, the potential latencies and errors of the sensors may be taken into account. One of the benefits of determining that a collision has occurred is that it allows the AEB/DBS logic to better handle input sensors that become noisy, damaged or destroyed due to the collision.


A moving vehicle is less likely to get in a rear end collision and less likely to result in injury, as evidenced 1990 NHTSA data. However, a moving vehicle is more likely to cause a severe injury as it could depart the lane and roll over, strike a wall, hit pedestrians and/or the like.


The ability of an AEB/DBS system to slow the subject vehicle is dependent on the physical capabilities of the vehicle brake system.


This influences the timing calibrations. A fully autonomous emergency braking (AEB) system can release the vehicle brakes when the Principle Other Vehicle (POV) or target vehicle or detected vehicle or approaching vehicle or closing vehicle is no longer closing in on the subject vehicle or SV (such as when the relative velocity is less than a threshold level or X calibration). The determination of whether or not the vehicle is closing (such as by determining the relative velocity of the POV to the SV) may be indirectly or directly determined by the sensor. Thresholds for calibrations may be determined by calculations or reference tables.


A flow chart of a braking control system (and its high-level logic) of the present invention is shown in FIG. 2. The braking control system is operable to control the braking of the subject vehicle after an autonomous emergency braking system or the like (which may be a separate system from the braking control system or may be part of an overall braking control system of the vehicle) is triggered and after the brakes are initially applied. The braking control system is then operable to determine movement of the subject vehicle and to determine whether or not a collision occurs and to determine the vehicle speed and to determine an approach rate or relative velocity between the subject vehicle and POV, and may apply and/or release the vehicle brakes responsive to such determinations. Optionally, the braking control system may have various driver overrides, where the control or system stops applying the vehicle brakes when it is determined that the driver has taken over control of the vehicle (such as when it is determined that the driver is applying the brakes and/or evasively maneuvering the vehicle to avoid the collision or the like). The braking control system is also responsive to a determination of driver impairment or the like, where the driver may not be fully aware of the situation or fully capable of responding to the situation and controlling the vehicle, and, responsive to such a determination, the system may or may not allow the driver to override the braking system.


Thus, the present invention provides an automatic emergency braking system or braking control system for a vehicle that controls or modulates the automatic braking and non-braking of the vehicle after the brakes are initially applied by an automatic emergency braking system (such as after the AEB/DBS system has triggered the automatic braking of the vehicle, such as responsive to a detection that a collision is likely or imminent). The braking control system, responsive at least in part to the vehicle speed and closing rate or rate of approach of the vehicle to a target vehicle, may modulate the vehicle brakes, such as by holding or applying the vehicle brakes until the vehicle is fully or substantially stopped or releasing the brakes after the initial application (such as where the subject vehicle speed is above a threshold speed but the approach rate is below a threshold rate).


For example, and with reference to FIG. 2, a system or process 110 of the braking control system of the present invention starts at 112, where the AEB/DBS automatic braking or event is triggered. If the subject vehicle (SV) speed is determined to be still or not moving at 114 (or moving at a reduced rate that is below a threshold speed) for a threshold period of time or calibratable amount of time, then the braking control system releases the vehicle brakes at 116. However, if the vehicle is determined at 114 to be moving, then the braking control system determines if a collision is detected at 118. If no collision is detected, then it is determined at 120 whether the SV speed is greater than a threshold speed level. If the SV speed is not greater than the threshold speed level, then it is determined at 122 if the target vehicle or POV is closing on the SV. If the target vehicle is not closing on the SV (in other words, the relative velocity is less than the threshold value or X calibration value), then the braking control system releases the vehicle brakes at 116 (and the system may release the brakes after a holding period).


If a collision is detected at 118, then the braking control system determines at 124 whether or not the driver is impaired (such as via determination of an airbag deployment or via a camera or monitoring system or eyesight tracking system that captures images of the driver's face and eyes to determine attentiveness and the like to determine if the driver is aware enough to override the system and properly control the vehicle), whereby an override function may only be allowed if the ability check is passed by the driver. Likewise, if no collision is detected at 118, but the SV speed is determined at 120 to be greater than a threshold speed level, then the braking control system determines if the driver is impaired at 124. Also, if no collision is detected at 118, and the SV speed is determined to be less than the threshold level at 120, but the target is determined at 122 to be closing (i.e., the relative velocity is greater than the threshold value or X calibration value), then the braking control system determines if the driver is impaired at 124.


The braking control system may determine if the driver of the subject vehicle is impaired or compromised or non-responsive via any suitable means. For example, a cabin monitoring system or driver head monitoring system (or any system that has a camera or image sensor that is operable to capture images of the driver's face or the like) may detect the driver's face and eyes to determine whether or not the driver is alert. Optionally, if a driver side or front airbag is deployed, the braking control system (which may receive a signal indicative of such airbag deployment) may determine that the driver is impaired or compromised. Optionally, if the driver behavior is highly erratic or unsafe (which the system may determine responsive to a brake pedal sensor and/or accelerator pedal sensor and/or steering wheel sensor or the like), the braking control system may determine that the driver is impaired or injured and not functioning or driving properly. Other means for determining that the driver is impaired or compromised and thus not fit to override the braking system may be implemented by the braking control system of the present invention.


If the braking control system determines that the driver is impaired or compromised or the like at 124, then the braking control system maintains braking of the vehicle at 126 until the vehicle is stopped, whereby the braking may be released. If the braking control system determines at 124 that the driver is not impaired, then the braking control system may allow the driver to override the vehicle braking system. Thus, if the driver is not impaired, then the braking control system determines at 128 whether or not there is a driver override (such as whether or not the unimpaired driver is manually applying the SV brakes or accelerator and/or evasively maneuvering the vehicle to avoid the collision or the like). If there is a driver override determined at 128, then the braking control system releases the brakes at 116, and if there is not a driver override determined at 128, then the braking control system maintains braking at 126 until the vehicle is stopped (such as determined at 114), whereby the vehicle braking may be released. Optionally, the braking control system may maintain application of the vehicle brakes even when it is determined that the driver is not impaired and is manually applying the vehicle brakes.


Thus, if a collision is not detected, the braking control system may continue to apply or release the vehicle braking based on the subject vehicle speed and the approach rate or relative velocity to the target vehicle. If a collision is detected, the braking control system then may determine whether the subject vehicle speed is greater than a threshold speed and whether the subject vehicle is still closing on the target vehicle. If the subject vehicle speed is greater than a threshold speed and/or the subject vehicle is approaching or closing on the target vehicle (in other words, the relative velocity is positive and greater than a threshold level), then the braking control system maintains the braking of the subject vehicle. However, if the subject vehicle speed is not greater than the threshold speed and the subject vehicle is no longer closing on the target vehicle, then the braking control system releases the brakes of the subject vehicle.


When the AEB system has been triggered (and thus starts applying the vehicle brakes) and when the braking control system of the present invention then determines that either a collision has occurred or that the subject vehicle speed is greater than a threshold speed or that the subject vehicle is closing on the target vehicle, the braking control system may then further determine whether or not the driver's ability to drive or control the vehicle has been impaired or compromised. If the braking control system determines that the driver is impaired or compromised, then the braking control system may maintain braking of the vehicle, regardless of whether or not the driver is attempting (or appears to be attempting) to override the automatic braking system (such as when the impaired driver may unintentionally be applying the brakes or accelerator or turning the steering wheel in a manner that may otherwise be indicative of the driver attempting to control the vehicle). However, if the braking control system determines that the driver is not impaired or compromised, then any such attempts by the driver to steer or drive or control the vehicle may be allowed to override the system, whereby the vehicle brakes may be released and the driver can control or drive the vehicle.


As an example, in a situation where the SV may collide with a stationary or non-moving or moving POV, the braking control system may continue to hold or apply the vehicle brakes until the subject vehicle becomes stationary (and optionally for an additional amount of time after the vehicle stops), unless the braking control system determines that the driver is not impaired and is overriding the system. If no collision is detected and the SV speed is less than X and the POV is not closing, then the braking control system may release the vehicle brakes.


Thus, the automatic emergency braking system or braking control system of the present invention provides enhanced control of the vehicle brake system following the initial determination that the brakes should be applied (such as when an automatic emergency braking system determines that a collision with a detected target vehicle is likely or imminent). The braking control system of the present invention preferably includes a forward facing (and/or rearward facing) machine vision camera and a forward facing (and/or rearward facing) radar device or sensor (preferably such as described in U.S. Pat. No. 8,013,780, which is hereby incorporated herein by reference in its entirety). As described in U.S. Pat. No. 8,013,780, image data captured by the camera and as processed by an image processor may be fused with radar data for the overall processing and in making the determination of whether to apply the vehicle brakes and/or how much to apply the vehicle brakes.


The camera or sensor may comprise any suitable camera or sensor. Optionally, the camera may comprise a “smart camera” that includes the imaging sensor array and associated circuitry and image processing circuitry and electrical connectors and the like as part of a camera module, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2013/081984 and/or WO 2013/081985, which are hereby incorporated herein by reference in their entireties.


The system includes an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an EyeQ2 or EyeQ3 image processing chip available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580; and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.


The vehicle system may include any type of vision sensor or sensors or ranging sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ladar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, an array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (preferably a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.


For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or International Publication Nos. WO 2011/028686; WO 2010/099416; WO 2012/061567; WO 2012/068331; WO 2012/075250; WO 2012/103193; WO 2012/0116043; WO 2012/0145313; WO 2012/0145501; WO 2012/145818; WO 2012/145822; WO 2012/158167; WO 2012/075250; WO 2012/103193; WO 2012/0116043; WO 2012/0145501; WO 2012/0145343; WO 2012/154919; WO 2013/019707; WO 2013/016409; WO 2012/145822; WO 2013/067083; WO 2013/070539; WO 2013/043661; WO 2013/048994; WO 2013/063014, WO 2013/081984; WO 2013/081985; WO 2013/074604; WO 2013/086249; WO 2013/103548; WO 2013/109869; WO 2013/123161; WO 2013/126715; WO 2013/043661 and/or WO 2013/158592 and/or U.S. patent application Ser. No. 14/052,945, filed Oct. 14, 2013; Ser. No. 14/046,174, filed Oct. 4, 2013; Ser. No. 14/016,790, filed Oct. 3, 2013; Ser. No. 14/036,723, filed Sep. 25, 2013; Ser. No. 14/016,790, filed Sep. 3, 2013; Ser. No. 14/001,272, filed Aug. 23, 2013; Ser. No. 13/970,868, filed Aug. 20, 2013; Ser. No. 13/964,134, filed Aug. 12, 2013; Ser. No. 13/942,758, filed Jul. 16, 2013; Ser. No. 13/942,753, filed Jul. 16, 2013; Ser. No. 13/927,680, filed Jun. 26, 2013; Ser. No. 13/916,051, filed Jun. 12, 2013; Ser. No. 13/894,870, filed May 15, 2013; Ser. No. 13/887,724, filed May 6, 2013; Ser. No. 13/852,190, filed Mar. 28, 2013; Ser. No. 13/851,378, filed Mar. 27, 2013; Ser. No. 13/848,796, filed Mar. 22, 2012; Ser. No. 13/847,815, filed Mar. 20, 2013; Ser. No. 13/800,697, filed Mar. 13, 2013; Ser. No. 13/785,099, filed Mar. 5, 2013; Ser. No. 13/779,881, filed Feb. 28, 2013; Ser. No. 13/774,317, filed Feb. 22, 2013; Ser. No. 13/774,315, filed Feb. 22, 2013; Ser. No. 13/681,963, filed Nov. 20, 2012; Ser. No. 13/660,306, filed Oct. 25, 2012; Ser. No. 13/653,577, filed Oct. 17, 2012; and/or Ser. No. 13/534,657, filed Jun. 27, 2012, and/or U.S. provisional applications, Ser. No. 61/895,610, filed Oct. 25, 2013; Ser. No. 61/895,609, filed Oct. 25, 2013; Ser. No. 61/893,489, filed Oct. 21, 2013; Ser. No. 61/886,883, filed Oct. 4, 2013; Ser. No. 61/879,837, filed Sep. 19, 2013; Ser. No. 61/879,835, filed Sep. 19, 2013; Ser. No. 61/878,877, filed Sep. 17, 2013; Ser. No. 61/875,351, filed Sep. 9, 2013; Ser. No. 61/869,195, filed. Aug. 23, 2013; Ser. No. 61/864,835, filed Aug. 12, 2013; Ser. No. 61/864,836, filed Aug. 12, 2013; Ser. No. 61/864,837, filed Aug. 12, 2013; Ser. No. 61/864,838, filed Aug. 12, 2013; Ser. No. 61/856,843, filed Jul. 22, 2013, Ser. No. 61/845,061, filed Jul. 11, 2013; Ser. No. 61/844,630, filed Jul. 10, 2013; Ser. No. 61/844,173, filed Jul. 9, 2013; Ser. No. 61/844,171, filed Jul. 9, 2013; Ser. No. 61/842,644, filed Jul. 3, 2013; Ser. No. 61/840,542, filed Jun. 28, 2013; Ser. No. 61/838,619, filed Jun. 24, 2013; Ser. No. 61/838,621, filed Jun. 24, 2013; Ser. No. 61/837,955, filed Jun. 21, 2013; Ser. No. 61/836,900, filed Jun. 19, 2013; Ser. No. 61/836,380, filed Jun. 18, 2013; Ser. No. 61/834,129, filed Jun. 12, 2013; Ser. No. 61/833,080, filed Jun. 10, 2013; Ser. No. 61/830,375, filed Jun. 3, 2013; Ser. No. 61/830,377, filed Jun. 3, 2013; Ser. No. 61/825,752, filed May 21, 2013; Ser. No. 61/825,753, filed May 21, 2013; Ser. No. 61/823,648, filed May 15, 2013; Ser. No. 61/823,644, filed May 15, 2013; Ser. No. 61/821,922, filed May 10, 2013; Ser. No. 61/819,835, filed May 6, 2013; Ser. No. 61/819,033, filed May 3, 2013; Ser. No. 61/816,956, filed Apr. 29, 2013; Ser. No. 61/815,044, filed Apr. 23, 2013; Ser. No. 61/814,533, filed Apr. 22, 2013; Ser. No. 61/813,361, filed Apr. 18, 2013; Ser. No. 61/810,407, filed Apr. 10, 2013; Ser. No. 61/808,930, filed Apr. 5, 2013; Ser. No. 61/807,050, filed Apr. 1, 2013; Ser. No. 61/806,674, filed Mar. 29, 2013; Ser. No. 61/793,592, filed Mar. 15, 2013; Ser. No. 61/772,015, filed Mar. 4, 2013; Ser. No. 61/772,014, filed Mar. 4, 2013; Ser. No. 61/770,051, filed Feb. 27, 2013; Ser. No. 61/770,048, filed Feb. 27, 2013; Ser. No. 61/766,883, filed Feb. 20, 2013; Ser. No. 61/760,366, filed Feb. 4, 2013; Ser. No. 61/760,364, filed Feb. 4, 2013; Ser. No. 61/756,832, filed Jan. 25, 2013; Ser. No. 61/754,804, filed Jan. 21, 2013; Ser. No. 61/736,104, filed Dec. 12, 2012; Ser. No. 61/736,103, filed Dec. 12, 2012; Ser. No. 61/734,457, filed Dec. 7, 2012; Ser. No. 61/733,598, filed Dec. 5, 2012; Ser. No. 61/733,093, filed Dec. 4, 2012; Ser. No. 61/727,912, filed Nov. 19, 2012; and/or Ser. No. 61/727,911, filed Nov. 19, 2012, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in International Publication Nos. WO/2010/144900; WO 2013/043661 and/or WO 2013/081985, and/or U.S. patent application Ser. No. 13/202,005, filed Aug. 17, 2011, which are hereby incorporated herein by reference in their entireties.


The imaging device and control and image processor and any associated illumination source, if applicable, may comprise any suitable components, and may utilize aspects of the cameras and vision systems described in U.S. Pat. Nos. 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454; and 6,824,281, and/or International Publication No. WO 2010/099416, published Sep. 2, 2010, and/or PCT Application No. PCT/US10/47256, filed Aug. 31, 2010 and published Mar. 10, 2011 as International Publication No. WO 2011/028686, and/or U.S. patent application Ser. No. 12/508,840, filed Jul. 24, 2009, and published Jan. 28, 2010 as U.S. Pat. Publication No. US 2010-0020170, and/or PCT Application No. PCT/US2012/048110, filed Jul. 25, 2012, and/or U.S. patent application Ser. No. 13/534,657, filed Jun. 27, 2012, which are all hereby incorporated herein by reference in their entireties. The camera or cameras may comprise any suitable cameras or imaging sensors or camera modules, and may utilize aspects of the cameras or sensors described in U.S. patent application Ser. No. 12/091,359, filed Apr. 24, 2008 and published Oct. 1, 2009 as U.S. Publication No. US-2009-0244361, and/or Ser. No. 13/260,400, filed Sep. 26, 2011, and/or U.S. Pat. Nos. 7,965,336 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties. The imaging array sensor may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,715,093; 5,877,897; 6,922,292; 6,757,109; 6,717,610; 6,590,719; 6,201,642; 6,498,620; 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,806,452; 6,396,397; 6,822,563; 6,946,978; 7,339,149; 7,038,577; 7,004,606; and/or 7,720,580, and/or U.S. patent application Ser. No. 10/534,632, filed May 11, 2005, now U.S. Pat. No. 7,965,336; and/or PCT Application No. PCT/US2008/076022, filed Sep. 11, 2008 and published Mar. 19, 2009 as International Publication No. WO/2009/036176, and/or PCT Application No. PCT/US2008/078700, filed Oct. 3, 2008 and published Apr. 9, 2009 as International Publication No. WO/2009/046268, which are all hereby incorporated herein by reference in their entireties.


The camera module and circuit chip or board and imaging sensor may be implemented and operated in connection with various vehicular vision-based systems, and/or may be operable utilizing the principles of such other vehicular systems, such as a vehicle headlamp control system, such as the type disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 7,004,606; 7,339,149; and/or 7,526,103, which are all hereby incorporated herein by reference in their entireties, a rain sensor, such as the types disclosed in commonly assigned U.S. Pat. Nos. 6,353,392; 6,313,454; 6,320,176; and/or 7,480,149, which are hereby incorporated herein by reference in their entireties, a vehicle vision system, such as a forwardly, sidewardly or rearwardly directed vehicle vision system utilizing principles disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,877,897; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; and/or 7,859,565, which are all hereby incorporated herein by reference in their entireties, a trailer hitching aid or tow check system, such as the type disclosed in U.S. Pat. No. 7,005,974, which is hereby incorporated herein by reference in its entirety, a reverse or sideward imaging system, such as for a lane change assistance system or lane departure warning system or for a blind spot or object detection system, such as imaging or detection systems of the types disclosed in U.S. Pat. Nos. 7,720,580; 7,038,577; 5,929,786 and/or 5,786,772, and/or U.S. patent application Ser. No. 11/239,980, filed Sep. 30, 2005, now U.S. Pat. No. 7,881,496, and/or U.S. provisional applications, Ser. No. 60/628,709, filed Nov. 17, 2004; Ser. No. 60/614,644, filed Sep. 30, 2004; Ser. No. 60/618,686, filed Oct. 14, 2004; Ser. No. 60/638,687, filed Dec. 23, 2004, which are hereby incorporated herein by reference in their entireties, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962; 5,877,897; 6,690,268; and/or 7,370,983, and/or U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties, a traffic sign recognition system, a system for determining a distance to a leading or trailing vehicle or object, such as a system utilizing the principles disclosed in U.S. Pat. Nos. 6,396,397 and/or 7,123,168, which are hereby incorporated herein by reference in their entireties, and/or the like.


Optionally, the circuit board or chip may include circuitry for the imaging array sensor and or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. No. 7,255,451 and/or U.S. Pat. No. 7,480,149; and/or U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008, and/or Ser. No. 12/578,732, filed Oct. 14, 2009, which are hereby incorporated herein by reference in their entireties.


Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device disposed at or in the interior rearview mirror assembly of the vehicle, such as by utilizing aspects of the video mirror display systems described in U.S. Pat. No. 6,690,268 and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, which are hereby incorporated herein by reference in their entireties. The video mirror display may comprise any suitable devices and systems and optionally may utilize aspects of the compass display systems described in U.S. Pat. Nos. 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252; and/or 6,642,851, and/or European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, and/or U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008, which are all hereby incorporated herein by reference in their entireties. Optionally, the video mirror display screen or device may be operable to display images captured by a rearward viewing camera of the vehicle during a reversing maneuver of the vehicle (such as responsive to the vehicle gear actuator being placed in a reverse gear position or the like) to assist the driver in backing up the vehicle, and optionally may be operable to display the compass heading or directional heading character or icon when the vehicle is not undertaking a reversing maneuver, such as when the vehicle is being driven in a forward direction along a road (such as by utilizing aspects of the display system described in PCT Application No. PCT/US2011/056295, filed Oct. 14, 2011 and published Apr. 19, 2012 as International Publication No. WO 2012/051500, which is hereby incorporated herein by reference in its entirety).


Optionally, the vision system (utilizing the forward facing camera and a rearward facing camera and other cameras disposed at the vehicle with exterior fields of view) may be part of or may provide a display of a top-down view or birds-eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described in PCT Application No. PCT/US10/25545, filed Feb. 26, 2010 and published on Sep. 2, 2010 as International Publication No. WO 2010/099416, and/or PCT Application No. PCT/US10/47256, filed Aug. 31, 2010 and published Mar. 10, 2011 as International Publication No. WO 2011/028686, and/or PCT Application No. PCT/US2011/062834, filed Dec. 1, 2011 and published Jun. 7, 2012 as International Publication No. WO2012/075250, and/or PCT Application No. PCT/US2012/048993, filed Jul. 31, 2012, and/or PCT Application No. PCT/US11/62755, filed Dec. 1, 2011 and published Jun. 7, 2012 as International Publication No. WO 2012-075250, and/or PCT Application No. PCT/CA2012/000378, filed Apr. 25, 2012, and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, and/or U.S. provisional applications, Ser. No. 61/615,410, filed Mar. 26, 2012; Ser. No. 61/588,833, filed Jan. 20, 2012; Ser. No. 61/570,017, filed Dec. 13, 2011; and/or Ser. No. 61/568,791, filed Dec. 9, 2011, which are hereby incorporated herein by reference in their entireties.


Optionally, a video mirror display may be disposed rearward of and behind the reflective element assembly and may comprise a display such as the types disclosed in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,370,983; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187 and/or 6,690,268, and/or in U.S. patent application Ser. No. 12/091,525, filed Apr. 25, 2008, now U.S. Pat. No. 7,855,755; Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008; and/or Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are all hereby incorporated herein by reference in their entireties. The display is viewable through the reflective element when the display is activated to display information. The display element may be any type of display element, such as a vacuum fluorescent (VF) display element, a light emitting diode (LED) display element, such as an organic light emitting diode (OLED) or an inorganic light emitting diode, an electroluminescent (EL) display element, a liquid crystal display (LCD) element, a video screen display element or backlit thin film transistor (TFT) display element or the like, and may be operable to display various information (as discrete characters, icons or the like, or in a multi-pixel manner) to the driver of the vehicle, such as passenger side inflatable restraint (PSIR) information, tire pressure status, and/or the like. The mirror assembly and/or display may utilize aspects described in U.S. Pat. Nos. 7,184,190; 7,255,451; 7,446,924 and/or 7,338,177, which are all hereby incorporated herein by reference in their entireties. The thicknesses and materials of the coatings on the substrates of the reflective element may be selected to provide a desired color or tint to the mirror reflective element, such as a blue colored reflector, such as is known in the art and such as described in U.S. Pat. Nos. 5,910,854; 6,420,036; and/or 7,274,501, which are hereby incorporated herein by reference in their entireties.


Optionally, the display or displays and any associated user inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 7,289,037; 6,877,888; 6,824,281; 6,690,268; 6,672,744; 6,386,742; and 6,124,886, and/or U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties.


While the above description constitutes a plurality of embodiments of the present invention, it will be appreciated that the present invention is susceptible to further modification and change without departing from the fair meaning of the accompanying claims.

Claims
  • 1. A braking control system for a vehicle, said braking control system comprising: at least one sensor disposed at a subject vehicle and having a field of view exterior of the vehicle;a control operable to control a brake system of the subject vehicle;wherein, after actuation of the brake system by an automatic emergency braking system of the subject vehicle, said control, at least in part responsive to said at least one sensor, determines the speed of the subject vehicle and relative speed of the subject vehicle to another vehicle or object, and, responsive to the determined speed of the subject vehicle and the determined relative speed, said control controls the brake system of the subject vehicle;wherein, after actuation of the brake system of the subject vehicle, and responsive to a determination that at least one of (i) a collision has occurred, (ii) the speed of the subject vehicle is greater than a threshold speed and (iii) the relative speed is greater than a threshold value, said braking control system is operable to determine if the driver of the subject vehicle is impaired; andwherein, responsive to a determination that the driver is impaired, said control controls the brake system of the subject vehicle and does not allow the driver to override said braking control system, and wherein, responsive to a determination that the driver is not impaired, said control allows the driver to override said braking control system.
  • 2. The braking control system of claim 1, wherein said control controls the brake system of the subject vehicle by at least one of (i) applying the brakes of the brake system and (ii) releasing the brakes of the brake system.
  • 3. The braking control system of claim 1, wherein, after actuation of the brake system of the subject vehicle, said control releases the brakes of the brake system of the subject vehicle responsive to a determination that the subject vehicle is not moving.
  • 4. The braking control system of claim 1, wherein, after actuation of the brake system of the subject vehicle, said control releases the brakes of the brake system of the subject vehicle responsive to (i) a determination that no collision occurred, (ii) a determination that the speed of the subject vehicle is less than a threshold speed and (iii) a determination that the relative speed is less than a threshold value.
  • 5. The braking control system of claim 1, wherein (i) responsive to a determination that a collision has occurred, said control determines if the driver is impaired, and (ii) responsive to a determination that a collision has not occurred, said control determines if the speed of the subject vehicle is greater than a threshold speed.
  • 6. The braking control system of claim 5, wherein (i) responsive to a determination that the speed of the subject vehicle is greater than the threshold speed, said control determines if the driver is impaired, and (ii) responsive to a determination that the speed of the subject vehicle is not greater than the threshold speed, said control determines if the relative speed is greater than a threshold value.
  • 7. The braking control system of claim 6, wherein (i) responsive to a determination that the relative speed is greater than the threshold value, said control determines if the driver is impaired, and (ii) responsive to a determination that the relative speed is not greater than the threshold value, said control releases the brakes of the brake system of the subject vehicle.
  • 8. The braking control system of claim 1, wherein said control is operable to determine whether the driver is impaired in response to at least one of (i) an interior cabin monitoring system, (ii) an image sensor operable to capture images of the driver's face, (iii) a brake pedal sensor, (iv) an accelerator pedal sensor, (v) a steering wheel sensor and (vi) a signal indicative of deployment of an airbag of the subject vehicle.
  • 9. The braking control system of claim 1, wherein said at least one sensor comprises at least one camera disposed at the subject vehicle.
  • 10. The braking control system of claim 9, wherein said camera comprises a forward viewing camera having a field of view forward of the subject vehicle.
  • 11. A braking control system for a vehicle, said braking control system comprising: at least one sensor disposed at a subject vehicle and having a field of view exterior of the vehicle;a control operable to control a brake system of the subject vehicle;wherein, after actuation of the brake system by an automatic emergency braking system of the subject vehicle, said control, at least in part responsive to said at least one sensor, determines the speed of the subject vehicle and relative speed of the subject vehicle to another vehicle or object, and, responsive to the determined speed of the subject vehicle and the determined relative speed, said control controls the brake system of the subject vehicle;wherein, after actuation of the brake system of the subject vehicle, said control releases the brakes of the brake system of the subject vehicle responsive to (i) a determination that no collision occurred, (ii) a determination that the speed of the subject vehicle is less than a threshold speed and (iii) a determination that the relative speed is less than a threshold value;wherein, after actuation of the brake system of the subject vehicle, and responsive to a determination that at least one of (i) a collision has occurred, (ii) the speed of the subject vehicle is greater than the threshold speed and (iii) the relative speed is greater than the threshold value, said braking control system is operable to determine if the driver of the subject vehicle is impaired;wherein, responsive to a determination that the driver is impaired, said control controls the brake system of the subject vehicle and does not allow the driver to override said braking control system, and wherein, responsive to a determination that the driver is not impaired, said control allows the driver to override said braking control system; andwherein said control is operable to determine whether the driver is impaired in response to at least one of (i) an interior cabin monitoring system, (ii) an image sensor operable to capture images of the driver's face, (iii) a brake pedal sensor, (iv) an accelerator pedal sensor, (v) a steering wheel sensor and (vi) a signal indicative of deployment of an airbag of the subject vehicle.
  • 12. The braking control system of claim 11, wherein said control controls the brake system of the subject vehicle by at least one of (i) applying the brakes of the brake system and (ii) releasing the brakes of the brake system.
  • 13. The braking control system of claim 11, wherein (i) responsive to a determination that a collision has occurred, said control determines if the driver is impaired, and (ii) responsive to a determination that a collision has not occurred, said control determines if the speed of the subject vehicle is greater than the threshold speed.
  • 14. The braking control system of claim 13, wherein (i) responsive to a determination that the speed of the subject vehicle is greater than the threshold speed, said control determines if the driver is impaired, and (ii) responsive to a determination that the speed of the subject vehicle is not greater than the threshold speed, said control determines if the relative speed is greater than the threshold value.
  • 15. The braking control system of claim 14, wherein (i) responsive to a determination that the relative speed is greater than the threshold value, said control determines if the driver is impaired, and (ii) responsive to a determination that the relative speed is not greater than the threshold value, said control releases the brakes of the brake system of the subject vehicle.
  • 16. The braking control system of claim 11, wherein said at least one sensor comprises at least one forward viewing camera disposed at the subject vehicle and having a field of view forward of the subject vehicle.
  • 17. A braking control system for a vehicle, said braking control system comprising: at least one forward viewing camera disposed at a subject vehicle and having a field of view forward of the vehicle;a control operable to control a brake system of the subject vehicle;wherein, after actuation of the brake system by an automatic emergency braking system of the subject vehicle, said control, at least in part responsive to said at least one sensor, determines the speed of the subject vehicle and relative speed of the subject vehicle to another vehicle or object, and, responsive to the determined speed of the subject vehicle and the determined relative speed, said control controls the brake system of the subject vehicle;wherein, after actuation of the brake system of the subject vehicle, said control releases the brakes of the brake system of the subject vehicle responsive to (i) a determination that no collision occurred, (ii) a determination that the speed of the subject vehicle is less than a threshold speed and (iii) a determination that the relative speed is less than a threshold value;wherein, after actuation of the brake system of the subject vehicle, and responsive to a determination that at least one of (i) a collision has occurred, (ii) the speed of the subject vehicle is greater than the threshold speed and (iii) the relative speed is greater than the threshold value, said braking control system is operable to determine if the driver of the subject vehicle is impaired; andwherein, responsive to a determination that the driver is impaired, said control controls the brake system of the subject vehicle and does not allow the driver to override said braking control system, and wherein, responsive to a determination that the driver is not impaired, said control allows the driver to override said braking control system.
  • 18. The braking control system of claim 17, wherein (i) responsive to a determination that a collision has occurred, said control determines if the driver is impaired, and (ii) responsive to a determination that a collision has not occurred, said control determines if the speed of the subject vehicle is greater than the threshold speed.
  • 19. The braking control system of claim 18, wherein (i) responsive to a determination that the speed of the subject vehicle is greater than the threshold speed, said control determines if the driver is impaired, and (ii) responsive to a determination that the speed of the subject vehicle is not greater than the threshold speed, said control determines if the relative speed is greater than the threshold value.
  • 20. The braking control system of claim 19, wherein, (i) responsive to a determination that the relative speed is greater than the threshold value, said control determines if the driver is impaired, and (ii) responsive to a determination that the relative speed is not greater than the threshold value, said control releases the brakes of the brake system of the subject vehicle.
CROSS REFERENCE TO RELATED APPLICATION

The present application claims the filing benefits of U.S. provisional application Ser. No. 61/727,910, filed Nov. 19, 2012, which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (373)
Number Name Date Kind
4720790 Miki et al. Jan 1988 A
4987357 Masaki Jan 1991 A
4991054 Walters Feb 1991 A
5001558 Burley et al. Mar 1991 A
5003288 Wilhelm Mar 1991 A
5012082 Watanabe Apr 1991 A
5016977 Baude et al. May 1991 A
5027001 Torbert Jun 1991 A
5027200 Petrossian et al. Jun 1991 A
5044706 Chen Sep 1991 A
5055668 French Oct 1991 A
5059877 Teder Oct 1991 A
5064274 Alten Nov 1991 A
5072154 Chen Dec 1991 A
5073012 Lynam Dec 1991 A
5076673 Lynam et al. Dec 1991 A
5086253 Lawler Feb 1992 A
5096287 Kakinami et al. Mar 1992 A
5097362 Lynas Mar 1992 A
5115346 Lynam May 1992 A
5121200 Choi Jun 1992 A
5124549 Michaels et al. Jun 1992 A
5130709 Toyama et al. Jul 1992 A
5148014 Lynam Sep 1992 A
5151816 Varaprasad et al. Sep 1992 A
5168378 Black Dec 1992 A
5170374 Shimohigashi et al. Dec 1992 A
5172235 Wilm et al. Dec 1992 A
5177685 Davis et al. Jan 1993 A
5182502 Slotkowski et al. Jan 1993 A
5184956 Langlais et al. Feb 1993 A
5189561 Hong Feb 1993 A
5193000 Lipton et al. Mar 1993 A
5193029 Schofield Mar 1993 A
5204778 Bechtel Apr 1993 A
5208701 Maeda May 1993 A
5245422 Borcherts et al. Sep 1993 A
5253109 O'Farrell Oct 1993 A
5255442 Schierbeek et al. Oct 1993 A
5276389 Levers Jan 1994 A
5285060 Larson et al. Feb 1994 A
5289182 Brillard et al. Feb 1994 A
5289321 Secor Feb 1994 A
5305012 Faris Apr 1994 A
5307136 Saneyoshi Apr 1994 A
5309137 Kajiwara May 1994 A
5313072 Vachss May 1994 A
5325096 Pakett Jun 1994 A
5325386 Jewell et al. Jun 1994 A
5329206 Slotkowski et al. Jul 1994 A
5331312 Kudoh Jul 1994 A
5336980 Levers Aug 1994 A
5341437 Nakayama Aug 1994 A
5351044 Mathur et al. Sep 1994 A
5355118 Fukuhara Oct 1994 A
5374852 Parkes Dec 1994 A
5386285 Asayama Jan 1995 A
5394333 Kao Feb 1995 A
5406395 Wilson et al. Apr 1995 A
5406414 O'Farrell et al. Apr 1995 A
5410346 Saneyoshi et al. Apr 1995 A
5414257 Stanton May 1995 A
5414461 Kishi et al. May 1995 A
5416313 Larson et al. May 1995 A
5416318 Hegyi May 1995 A
5416478 Morinaga May 1995 A
5424952 Asayama Jun 1995 A
5426294 Kobayashi et al. Jun 1995 A
5430431 Nelson Jul 1995 A
5434407 Bauer et al. Jul 1995 A
5440428 Hegg et al. Aug 1995 A
5444478 Lelong et al. Aug 1995 A
5451822 Bechtel et al. Sep 1995 A
5457493 Leddy et al. Oct 1995 A
5461357 Yoshioka et al. Oct 1995 A
5461361 Moore Oct 1995 A
5469298 Suman et al. Nov 1995 A
5471515 Fossum et al. Nov 1995 A
5475494 Nishida et al. Dec 1995 A
5497306 Pastrick Mar 1996 A
5498866 Bendicks et al. Mar 1996 A
5500766 Stonecypher Mar 1996 A
5510983 Iino Apr 1996 A
5515448 Nishitani May 1996 A
5521633 Nakajima et al. May 1996 A
5528698 Kamei et al. Jun 1996 A
5529138 Shaw et al. Jun 1996 A
5530240 Larson et al. Jun 1996 A
5530420 Tsuchiya et al. Jun 1996 A
5535314 Alves et al. Jul 1996 A
5537003 Bechtel et al. Jul 1996 A
5539397 Asanuma et al. Jul 1996 A
5541590 Nishio Jul 1996 A
5550677 Schofield et al. Aug 1996 A
5555555 Sato et al. Sep 1996 A
5568027 Teder Oct 1996 A
5574443 Hsieh Nov 1996 A
5581464 Woll et al. Dec 1996 A
5594222 Caldwell Jan 1997 A
5610756 Lynam et al. Mar 1997 A
5614788 Mullins Mar 1997 A
5619370 Guinosso Apr 1997 A
5632092 Blank et al. May 1997 A
5634709 Iwama Jun 1997 A
5642299 Hardin et al. Jun 1997 A
5648835 Uzawa Jul 1997 A
5650944 Kise Jul 1997 A
5660454 Mori et al. Aug 1997 A
5661303 Teder Aug 1997 A
5666028 Bechtel et al. Sep 1997 A
5670935 Schofield et al. Sep 1997 A
5677851 Kingdon et al. Oct 1997 A
5699044 Van Lente et al. Dec 1997 A
5724316 Brunts Mar 1998 A
5732379 Eckert et al. Mar 1998 A
5737226 Olson et al. Apr 1998 A
5760828 Cortes Jun 1998 A
5760931 Saburi et al. Jun 1998 A
5760962 Schofield et al. Jun 1998 A
5761094 Olson et al. Jun 1998 A
5765116 Wilson-Jones et al. Jun 1998 A
5765118 Fukatani Jun 1998 A
5781437 Wiemer et al. Jul 1998 A
5786772 Schofield et al. Jul 1998 A
5790403 Nakayama Aug 1998 A
5790973 Blaker et al. Aug 1998 A
5793308 Rosinski et al. Aug 1998 A
5793420 Schmidt Aug 1998 A
5796094 Schofield et al. Aug 1998 A
5835255 Miles Nov 1998 A
5837994 Stam et al. Nov 1998 A
5844505 Van Ryzin Dec 1998 A
5844682 Kiyomoto et al. Dec 1998 A
5845000 Breed et al. Dec 1998 A
5848802 Breed et al. Dec 1998 A
5850176 Kinoshita et al. Dec 1998 A
5850254 Takano et al. Dec 1998 A
5867591 Onda Feb 1999 A
5877707 Kowalick Mar 1999 A
5877897 Schofield et al. Mar 1999 A
5878357 Sivashankar et al. Mar 1999 A
5878370 Olson Mar 1999 A
5883739 Ashihara et al. Mar 1999 A
5884212 Lion Mar 1999 A
5890021 Onoda Mar 1999 A
5896085 Mori et al. Apr 1999 A
5899956 Chan May 1999 A
5915800 Hiwatashi et al. Jun 1999 A
5923027 Stam et al. Jul 1999 A
5924212 Domanski Jul 1999 A
5929786 Schofield et al. Jul 1999 A
5949331 Schofield et al. Sep 1999 A
5959555 Furuta Sep 1999 A
5963247 Banitt Oct 1999 A
5986796 Miles Nov 1999 A
5990469 Bechtel et al. Nov 1999 A
5990649 Nagao et al. Nov 1999 A
6020704 Buschur Feb 2000 A
6049171 Stam et al. Apr 2000 A
6066933 Ponziana May 2000 A
6084519 Coulling et al. Jul 2000 A
6097023 Schofield et al. Aug 2000 A
6097024 Stam et al. Aug 2000 A
6144022 Tenenbaum et al. Nov 2000 A
6175300 Kendrick Jan 2001 B1
6178034 Allemand et al. Jan 2001 B1
6198409 Schofield et al. Mar 2001 B1
6201642 Bos et al. Mar 2001 B1
6222447 Schofield et al. Apr 2001 B1
6223114 Boros et al. Apr 2001 B1
6227689 Miller May 2001 B1
6250148 Lynam Jun 2001 B1
6266082 Yonezawa et al. Jul 2001 B1
6266442 Laumeyer et al. Jul 2001 B1
6285393 Shimoura et al. Sep 2001 B1
6294989 Schofield et al. Sep 2001 B1
6297781 Turnbull et al. Oct 2001 B1
6302545 Schofield et al. Oct 2001 B1
6310611 Caldwell Oct 2001 B1
6313454 Bos et al. Nov 2001 B1
6317057 Lee Nov 2001 B1
6320176 Schofield et al. Nov 2001 B1
6320282 Caldwell Nov 2001 B1
6333759 Mazzilli Dec 2001 B1
6341523 Lynam Jan 2002 B2
6353392 Schofield et al. Mar 2002 B1
6370329 Teuchert Apr 2002 B1
6392315 Jones et al. May 2002 B1
6396397 Bos et al. May 2002 B1
6420975 DeLine et al. Jul 2002 B1
6424273 Gutta et al. Jul 2002 B1
6430303 Naoi et al. Aug 2002 B1
6442465 Breed et al. Aug 2002 B2
6477464 McCarthy et al. Nov 2002 B2
6497503 Dassanayake et al. Dec 2002 B1
6498620 Schofield et al. Dec 2002 B2
6516664 Lynam Feb 2003 B2
6523964 Schofield et al. Feb 2003 B2
6534884 Marcus et al. Mar 2003 B2
6539306 Turnbull Mar 2003 B2
6547133 DeVries, Jr. et al. Apr 2003 B1
6553130 Lemelson et al. Apr 2003 B1
6559435 Schofield et al. May 2003 B2
6574033 Chui et al. Jun 2003 B1
6589625 Kothari et al. Jul 2003 B1
6594583 Ogura et al. Jul 2003 B2
6611202 Schofield et al. Aug 2003 B2
6611610 Stam et al. Aug 2003 B1
6636258 Strumolo Oct 2003 B2
6650455 Miles Nov 2003 B2
6672731 Schnell et al. Jan 2004 B2
6674562 Miles Jan 2004 B1
6678614 McCarthy et al. Jan 2004 B2
6680792 Miles Jan 2004 B2
6690268 Schofield et al. Feb 2004 B2
6700605 Toyoda et al. Mar 2004 B1
6704621 Stein et al. Mar 2004 B1
6710908 Miles et al. Mar 2004 B2
6711474 Treyz et al. Mar 2004 B1
6714331 Lewis et al. Mar 2004 B2
6717610 Bos et al. Apr 2004 B1
6735506 Breed et al. May 2004 B2
6741377 Miles May 2004 B2
6744353 Sjönell Jun 2004 B2
6757109 Bos Jun 2004 B2
6762867 Lippert et al. Jul 2004 B2
6794119 Miles Sep 2004 B2
6795221 Urey Sep 2004 B1
6802617 Schofield et al. Oct 2004 B2
6806452 Bos et al. Oct 2004 B2
6819231 Berberich et al. Nov 2004 B2
6822563 Bos et al. Nov 2004 B2
6823241 Shirato et al. Nov 2004 B2
6824281 Schofield et al. Nov 2004 B2
6831261 Schofield et al. Dec 2004 B2
6850156 Bloomfield et al. Feb 2005 B2
6882287 Schofield Apr 2005 B2
6889161 Winner et al. May 2005 B2
6891563 Schofield et al. May 2005 B2
6909753 Meehan et al. Jun 2005 B2
6946978 Schofield Sep 2005 B2
6953253 Schofield et al. Oct 2005 B2
6968736 Lynam Nov 2005 B2
6975775 Rykowski et al. Dec 2005 B2
6989736 Berberich et al. Jan 2006 B2
7004606 Schofield Feb 2006 B2
7005974 McMahon et al. Feb 2006 B2
7038577 Pawlicki et al. May 2006 B2
7062300 Kim Jun 2006 B1
7065432 Moisel et al. Jun 2006 B2
7079017 Lang et al. Jul 2006 B2
7085637 Breed et al. Aug 2006 B2
7092548 Laumeyer et al. Aug 2006 B2
7111968 Bauer et al. Sep 2006 B2
7116246 Winter et al. Oct 2006 B2
7123168 Schofield Oct 2006 B2
7145519 Takahashi et al. Dec 2006 B2
7149613 Stam et al. Dec 2006 B2
7161616 Okamoto et al. Jan 2007 B1
7167796 Taylor et al. Jan 2007 B2
7195381 Lynam et al. Mar 2007 B2
7202776 Breed Apr 2007 B2
7205904 Schofield Apr 2007 B2
7227459 Bos et al. Jun 2007 B2
7227611 Hull et al. Jun 2007 B2
7311406 Schofield et al. Dec 2007 B2
7325934 Schofield et al. Feb 2008 B2
7325935 Schofield et al. Feb 2008 B2
7338177 Lynam Mar 2008 B2
7339149 Schofield et al. Mar 2008 B1
7344261 Schofield et al. Mar 2008 B2
7355524 Schofield Apr 2008 B2
7370983 De Wind et al. May 2008 B2
7380948 Schofield et al. Jun 2008 B2
7388182 Schofield et al. Jun 2008 B2
7402786 Schofield et al. Jul 2008 B2
7423248 Schofield et al. Sep 2008 B2
7425076 Schofield et al. Sep 2008 B2
7446650 Schofield et al. Nov 2008 B2
7459664 Schofield et al. Dec 2008 B2
7460951 Altan Dec 2008 B2
7480149 DeWard et al. Jan 2009 B2
7490007 Taylor et al. Feb 2009 B2
7492281 Lynam et al. Feb 2009 B2
7526103 Schofield et al. Apr 2009 B2
7561181 Schofield et al. Jul 2009 B2
7581859 Lynam Sep 2009 B2
7592928 Chinomi et al. Sep 2009 B2
7616781 Schofield et al. Nov 2009 B2
7619508 Lynam et al. Nov 2009 B2
7639149 Katoh Dec 2009 B2
7681960 Wanke et al. Mar 2010 B2
7720580 Higgins-Luthman May 2010 B2
7777611 Desai Aug 2010 B2
7855755 Weller et al. Dec 2010 B2
7859565 Schofield et al. Dec 2010 B2
7881496 Camilleri et al. Feb 2011 B2
7914187 Higgins-Luthman et al. Mar 2011 B2
7965336 Bingle et al. Jun 2011 B2
7983811 Basir et al. Jul 2011 B2
8013780 Lynam et al. Sep 2011 B2
8027029 Lu et al. Sep 2011 B2
8058977 Lynam Nov 2011 B2
8340866 Hanzawa et al. Dec 2012 B2
8694224 Chundrlik, Jr. et al. Apr 2014 B2
8849495 Chundrlik, Jr. et al. Sep 2014 B2
20020015153 Downs Feb 2002 A1
20020044065 Quist et al. Apr 2002 A1
20020113873 Williams Aug 2002 A1
20020159270 Lynam et al. Oct 2002 A1
20030132666 Bond et al. Jul 2003 A1
20030137586 Lewellen Jul 2003 A1
20030222982 Hamdan et al. Dec 2003 A1
20030227777 Schofield Dec 2003 A1
20040012488 Schofield Jan 2004 A1
20040016870 Pawlicki et al. Jan 2004 A1
20040032321 McMahon et al. Feb 2004 A1
20040051634 Schofield et al. Mar 2004 A1
20040114381 Salmeen et al. Jun 2004 A1
20040128065 Taylor et al. Jul 2004 A1
20040200948 Bos et al. Oct 2004 A1
20050078389 Kulas et al. Apr 2005 A1
20050134966 Burgner Jun 2005 A1
20050134983 Lynam Jun 2005 A1
20050146792 Schofield et al. Jul 2005 A1
20050169003 Lindahl et al. Aug 2005 A1
20050195488 McCabe et al. Sep 2005 A1
20050200700 Schofield et al. Sep 2005 A1
20050232469 Schofield et al. Oct 2005 A1
20050264891 Uken et al. Dec 2005 A1
20060018511 Stam et al. Jan 2006 A1
20060018512 Stam et al. Jan 2006 A1
20060028731 Schofield et al. Feb 2006 A1
20060050018 Hutzel et al. Mar 2006 A1
20060061008 Karner et al. Mar 2006 A1
20060091813 Stam et al. May 2006 A1
20060103727 Tseng May 2006 A1
20060164230 DeWind et al. Jul 2006 A1
20060250501 Wildmann et al. Nov 2006 A1
20060290479 Akatsuka et al. Dec 2006 A1
20070023613 Schofield et al. Feb 2007 A1
20070032929 Yoshioka et al. Feb 2007 A1
20070104476 Yasutomi et al. May 2007 A1
20070109406 Schofield et al. May 2007 A1
20070109651 Schofield et al. May 2007 A1
20070109652 Schofield et al. May 2007 A1
20070109653 Schofield et al. May 2007 A1
20070109654 Schofield et al. May 2007 A1
20070120657 Schofield et al. May 2007 A1
20070176080 Schofield et al. Aug 2007 A1
20080161986 Breed Jul 2008 A1
20080180529 Taylor et al. Jul 2008 A1
20090113509 Tseng et al. Apr 2009 A1
20090177347 Breuer et al. Jul 2009 A1
20090243824 Peterson et al. Oct 2009 A1
20090244361 Gebauer et al. Oct 2009 A1
20090295181 Lawlor et al. Dec 2009 A1
20100020170 Higgins-Luthman et al. Jan 2010 A1
20100045797 Schofield et al. Feb 2010 A1
20100097469 Blank et al. Apr 2010 A1
20100228437 Hanzawa et al. Sep 2010 A1
20110125372 Ito May 2011 A1
20110224875 Cuddihy et al. Sep 2011 A1
20120062743 Lynam et al. Mar 2012 A1
20120209505 Breed et al. Aug 2012 A1
20120218412 Dellantoni et al. Aug 2012 A1
20120245817 Cooprider et al. Sep 2012 A1
20120262340 Hassan et al. Oct 2012 A1
20120303222 Cooprider et al. Nov 2012 A1
20130124052 Hahne May 2013 A1
20130131918 Hahne May 2013 A1
20130231825 Chundrlik, Jr. Sep 2013 A1
20140067206 Pflug Mar 2014 A1
Foreign Referenced Citations (1)
Number Date Country
WO2013081984 Jun 2013 WO
Related Publications (1)
Number Date Country
20140156157 A1 Jun 2014 US
Provisional Applications (1)
Number Date Country
61727910 Nov 2012 US