Braking devices and safety gears for elevators are known in various forms. In most cases, such braking devices or safety gears are based on the wedge principle. Upon triggering, at least one braking element or a part thereof is driven into a gap narrowing in the relevant direction of travel and thus exerts a self-reinforcing braking force. In order to enable further travel, the braking element must be released from the gap and then brought back into its standby position.
The majority of the currently known braking devices and safety gears require manual intervention for this. The car is moved in the opposite direction, releasing the braking element. Then the braking element is manually returned to its standby position and correctly positioned there.
Braking devices and safety gears of current construction, however, are already designed in such a way that after braking or after catching a fully automatic return of the braking element to its standby position is possible. These braking devices and safety gears are usually designed in such a way that the movement which drives the braking element into the wedge gap is also used to prepare the subsequent return of the braking element to its standby position, i.e. to generate a corresponding relative movement. During the movement of the car in the opposite direction, which is necessary for releasing the braking element from the wedge gap, the braking element can then immediately be returned to its standby position.
With such currently known braking devices and safety gears, however, the problem arises that for resetting it is essential that the braking element has even been driven into the wedge gap. In all those cases in which the brake was activated, but there was no braking effect because the braking element has not been driven in, special measures must be taken to enable, nevertheless, an automatic reset.
In the case of the known braking devices and safety gears, the procedure is therefore such that, even if there is no braking effect after the brake has been activated, first of all, the braking effect is produced specifically for the purpose of resetting. For this purpose, the car is moved further so that the braking element is driven in and, in so doing, generates or drives each relative movement that prepares the subsequent return of the braking element to its standby position. The car is then moved in the opposite direction in order to release the braking element from its driven-in position again. Only then will the braking element be returned. The process is time-consuming and involves the risk of unnecessary wear and tear on the guide rails, since in fact unnecessary braking is carried out just to prepare the automatic release.
Against this background, the object of the invention is to provide a braking device which-if it has been activated, but has produced no braking effect or only a slight braking effect-can be reset easily, quickly and without the risk of unnecessary wear occurring on the guide rails.
The progressive safety gear according to the invention for an elevator with a rail-guided car has a basic body for (usually floating) mounting on the car or counterweight. When properly assembled, the basic body encompasses a rail. It holds a braking element on one side of the rail in a ready-to-brake position. It holds another braking element on the opposite side of the rail in a ready-to-brake position.
In this case, at least one of the braking elements is held at a distance from the rail in its standby position against the force of an automatic actuator by means of a switchable retaining magnet. The latter holding takes place in such a way that, when switching the retaining magnet, the braking element is pressed by the actuator against the rail, away from the retaining magnet. This leads to an air gap between the retaining magnet and the braking element or such an air gap becomes larger.
In all of this, the braking device is designed in such a way that the braking element is automatically driven in between the basic body and the rail, if the car moves more than insignificantly at the point of time at which the braking element abuts against the rail.
According to the invention, the retaining magnet is equipped with an air gap reducing agent, by means of which the air gap between the retaining magnet and the braking element which has not yet or only slightly been driven in between the rail and the basic body can be reduced or eliminated in such a way that the retaining magnet again holds the braking element magnetically trapped on it, as soon as it has been switched back to “hold”.
With the help of the air gap reducing agent, the brake can even be reset fully automatically without any problems if it has responded, but no significant braking effect has developed because the braking element or its component intended for this in the form of a brake wedge or a brake roller has not been driven into the gap between its basic body and the guide rail. The air gap between the retaining magnet and the braking element, which prevents the braking element or its corresponding component from being simply attracted again in this situation, is reduced or even eliminated by the air gap reducing agent to such an extent that the retaining magnet can again magnetically attract the braking element with sufficient strength-in order to bring it back to its standby position during this process or afterwards.
According to the invention, in a braking device working with a retaining magnet, the possibility now arises for the first time to switch the braking device (including the retaining magnet) to a completely currentless mode as soon as the elevator system is in stand-by mode, for example during the less frequented night hours. The fact that the braking element or a corresponding component of the braking element is brought to abut against the guide rail is no longer disadvantageous. This is because, according to the invention, a fully automatic return is also possible from this position without first having to trigger the brake, which is costly and subject to wear.
Preferably, the air gap reducing agent is implemented by a guide along which the retaining magnet can be moved in and opposite the direction of the braking element resting on the rail (in other words, mostly perpendicular to the direction of travel of the car) and by a drive causing such a displacement.
In this way, by bringing the retaining magnet close to the braking element or the part of the braking element to be attracted by the retaining magnet, the air gap can be reduced or eliminated in a particularly effective way. In addition, in this way the actuator can be returned very easily to the standby position. If the actuator is, for example, a compression spring, the latter can be tensioned again by reducing the air gap or by moving the retaining magnet, which in turn holds the braking element, back to its standby position and, in doing so, the compression spring is prepared for its next use.
Ideally, the drive comprises a motor-driven screw spindle. As a rule, there is also a rotary spindle motor which turns part of the screw spindle such that the screw spindle is lengthened or shortened, depending on the direction of rotation of the motor. In this way, a large transmission ratio can be achieved very easily. A very small motor is then sufficient to apply the comparatively large force that, for example, is necessary to tension the actuator again. Another reason for keeping the spindle motor very small is that, due to the comparatively short switch-on time per application, thermal aspects only have to be taken into account to a limited extent. In other words, it can be operated in a load range (overvoltage, overcurrent) that would have to be avoided in the event of longer periods of operation, since the spindle motor would then overheat.
It is particularly favourable, if the screw spindle is designed to be self-locking, in such a way that it does not begin to rotate in the direction of its longitudinal axis under the influence of pure forces. This contributes significantly to save energy. Because this means that the spindle motor can remain de-energized for most of the time and only needs to be energized briefly when it is to actively rotate.
It is particularly advantageous, if the drive and actuator are designed and configured in such a way that the drive also re-tensions the actuator when it eliminates the air gap of the retaining magnet, for example by pulling the retaining magnet together with the braking element away from the rail.
Together with what has already been claimed, protection is also claimed for an elevator which has a car moving along guide rails, preferably in the vertical direction along an elevator shaft, and a counterweight which are connected to one another via a supporting element. It can preferably, but not exclusively, be a traction elevator. The elevator is characterized in that its car has a braking device according to one of the claims mentioned.
A further, independent aspect of the invention is to provide a method for automatically deactivating a braking device of an elevator that has applied during standstill or during minimum travel, with the braking element of the braking device being held in regular operation by a retaining magnet in its standby position, at a distance from the rail, against the force of an actuator and said braking element having not yet been driven in between the rail and the basic body.
According to the invention, the object is achieved with the following steps:
Alternatively, this process could also be described and thus claimed with the following wording:
Method for automatically deactivating a braking device of an elevator that has applied during standstill or during minimal travel, with the braking element of the braking device being held in regular operation by a retaining magnet in its standby position, at a distance from the rail, against the force of an actuator and said braking element having not yet or only slightly been driven in between the rail and the basic body, comprising the following steps:
Another method that is also claimed is a method for energy-saving stand-by operation of an elevator with a braking device electromagnetically held in its standby position. The process consists of the following steps:
Then reactivation of the drive in the opposite direction and again lifting said part of the braking element from the rail and returning this part of the braking element to its standby position.
Particularly preferred embodiments for the method according to the invention are as follows:
The elimination of the air gap is carried out in such a way that the actuator is brought back into its standby mode, preferably by being tensioned with the application of force.
Ideally, one of the agents disclosed by this application is used as the air gap reducing agent.
Further embodiments, modes of operation and advantages result from the following description of an embodiment with reference to the figures.
For the purpose of explaining the basic, preferred functional principle,
For the purpose of explaining the basic, preferred functional principle,
For the purpose of explaining the basic, preferred functional principle,
For the purpose of explaining the basic, preferred functional principle,
Overview of the Construction
The best overview of an embodiment according to the invention is given by considering
The braking device 1 can be seen very clearly in
As can be seen, it comprises a basic body 2. In the ready-to-use state, the basic body 2 is preferably mounted in a floating manner on the car or the car frame of the elevator-in such a way that the basic body can move relative to the car and to the guide rail 3 in order to be able to center itself in relation to the guide rail without having to take the car with it. If necessary, it can also be attached to the counterweight, if the latter is exceptionally secured with its own braking device.
Typically, the car is guided on two parallel rails, so that two of the braking devices according to the invention are provided, in each case at least one per rail.
As illustrated in
As can best be seen from
As can best be seen when viewing
It can also be seen quite clearly on the basis of
It can also be seen from
It is worth mentioning at this point that the slotted link 9 optionally forms an additional sliding guide 21. If available, the sliding guide 21 interacts with the brake roller 8 as soon as it is driven in. The purpose and the more precise nature of this interaction are described in more detail in the context of the following explanations.
The basic, optional, but clearly preferred functioning of the braking device 1 according to the invention can best be explained on the basis of the illustrations offered by
First of all, the brake roller 8 should be explained with reference to
Then
It shows the principle of the braking device according to the invention as long as it is in its standby position, that is, it is not activated in regular operation.
The basic body 2, which is only hinted at here, can be clearly seen. Here, too, the basic body grasps over the guide rail 3 on two opposite sides. The brake lining 4 can also be seen clearly. It is held in position by the spring elements 6. The slotted link 9 is also clearly visible. It is held on the basic body 2 so as to be pivotable about the axis 10. The slotted gate 9 is held by the retaining magnet 14 by being magnetically attracted by the latter. In doing so, the retaining magnet 14 overcomes the force of the actuator 15, which has the tendency to pivot the slotted link 9 counterclockwise towards the guide rail 3. Finally, the sliding guide 21 can also be clearly seen, which here, in this basic embodiment, is incorporated into the slotted link 9 as a curved slot that is optionally closed all around.
The non-activated standby position shown in
In
As can be seen, a running surface 25 is incorporated into the basic body 2, see also
Next,
In this case the retaining magnet 14 has been switched. It then releases the slotted link 9. Under the influence of the force exerted by the actuator 15, which is also designed as a helical spring, the slotted link pivots counterclockwise in the direction of the guide rail 3. In doing so, it takes the brake roller 8 with it. The main section 22 of the brake roller 8 finally abuts against the guide rail 3. If, at this point in time, the car still has more than an insignificant speed, for example in a downward direction, the brake roller 8 is moved upward due to the friction between its main section 22 and the guide rail 3. As a result, it is driven into the gap between the guide rail 3 and the running surface 25-as shown in
In this respect the brake roller 8 is clamped between the points PH and PS. The point PH is the contact area between the shell of the main section 22 of the brake roller 8 and the guide rail 3. The point PS is the contact area between the shoulder 23 of the brake roller 8 and the running surface 25. On this side, the mostly knurled and possibly also hardened shell of the main section 22 of the brake roller protrudes into the groove-like recess 26 without touching its groove base. This means that there is a clearance between the aggressive, knurled surface of the shell of the main section 22 and the basic body 2. This protects the main body 2 from wear through aggressive knurling. Due to the clamping of the brake roller 8 between the guide rail 3 and the basic body 2, the basic body 2 moves relative to the guide rail 3. The basic body 2 is thereby moved in the direction along the arrows PB relative to the guide rail 3, preferably due to its floating mounting on the car or counterweight. As a result, the brake lining 4 is pressed against the surface of the guide rail 3. It develops correspondingly high frictional forces.
As can be seen in principle from
The braking device 1 is preferably designed to act bidirectionally, as shown here. Then, analogously, the same thing happens when the braking device 1 is triggered during upwards travel. In this case, the only difference is that the brake roller 8 is driven into the wedge gap between the basic body 2 and the guide rail 3 by a downward movement.
When comparing
In the case of a correctly designed sliding guide 21, the slotted link 9 is pushed away from the guide rail 3, in the direction of the retaining magnet 14, by at least one guide pin 24 of the brake roller 8, when the brake roller 8 is driven in between the basic body 2 and the guide rail 3. As a result, during braking or catching the air gap is reduced or eliminated, which has opened up between itself and the slotted link 9 since the slotted link 9 has fallen off the holding magnet.
In order to deactivate the braking device 1 again, for example when the car is restarted, said automatic reduction or elimination of the air gap makes it possible to re-energize the retaining magnets 14. Then the car or the counterweight can be moved again in the opposite direction of travel. In this way, the brake roller 8 is moved out of the wedge gap between the basic body 2 and the guide rail 3. As soon as that has happened and the brake roller 8 is free again, it is pulled back by the pendulum rod 11, which is tensioned by the return spring 12, into its standby position, as shown in
In order to activate the braking device 1, the electromagnet is switched, so that a holding force collapses.
As can be seen, the helical spring which represents the actuator 15 has pressed the plate section 28 of the slotted link 9 in the direction of the guide rail 3. As a result, the brake roller 8 abuts against the guide rail 3. At this point in time, the car may already be at a standstill or at least no longer move significantly. This is the case, for example, when the car is already at a stop and the brake roller 8 has only been placed prophylactically against the guide rail 3. Such a prophylactic placing can, for example, have the purpose of ensuring that the brake roller 8 is driven in and begins to brake, if an undesirable sneaking away of the car from its landing position takes place. If the feared sneaking away does not occur, however, the braking roller 8 is not driven in the gap between the basic body 2 and the guide rail 3. Instead, it then remains in the position shown in
If the car is to start again and drive to the next stop, the braking device 1 must be deactivated again. For this purpose, the brake roller 8 is to be returned to its standby position. However, this does not succeed simply by re-switching the retaining magnet 14. This is because the air gap LU between the plate section 28, which here forms the magnet armature, and the end face of the retaining magnet 14 is too large. It is not possible for the retaining magnet 14 to attract the plate section 28 again across the large air gap LU against the resistance of the helical spring or the actuator 15 formed by it.
In order to overcome this problem, the procedure shown in
The linear drive 17 is actuated so that it moves the retaining magnet 14 in the direction of the guide rail 3. The actuation takes place until the air gap LU between the retaining magnet 14 and the magnet armature, which is preferably formed by the slotted link 9 or its plate section 28, is so small that the retaining magnet 14 can magnetically and reliably attract the plate section 28 again and hold it.
In the specific case in which the linear drive 17 is preferably designed as a spindle drive, this means that the spindle motor 29 is set in rotation. As soon as its motor hollow shaft 30, which is equipped with an internal thread, begins to rotate in the corresponding direction, the screw spindle 18 is unscrewed from the motor hollow shaft 30. Since its other end is attached to the retaining magnet 14 or to its at least one skid 19, the retaining magnet 14 is moved, purely translationally as a precautionary measure, in the direction of the guide rail 3. In this case,-due to its movable fixation by the guide screw 20-the at least one skid 19 slides along the support and guide rail 16. The latter is firmly connected to the basic body 2 or is even an integral part of the basic body 2.
As soon as the retaining magnet 14 securely holds the magnet armature and thus the plate section 28 again, which can be seen, for example, on the basis of its corresponding, characteristic power consumption, the linear drive 17 is actuated in the opposite direction. It now pulls the retaining magnet 14, together with the plate section 18 which is magnetically attracted and held by it, in the direction of the guide rail 3. As a result, the linear drive 17 causes the slotted link 9 to pivot clockwise back into its standby position. In doing so, the slotted link 9 takes the brake roller 8 with it, back into its standby position. In the specific case, the slotted link 9 exerts the corresponding return force on the brake roller 8 via its bracket 13, the return spring 12 and the pendulum rod 11.
In general, in view of
It is also remarkable that the plate section 18 has a hole. A rod STA of the retaining magnet 14 extends through this hole, with the end of the rod holding a screw or a split pin or a clip that prevents the plate section 28 from gliding off the rod STA. The said hole is designed so generously that the rod STA of the retaining magnet 14 can pivot freely back and forth in this hole. In this way the spring forming the actuator 15 can be securely held between the retaining magnet 14 and the plate section 28.
It is particularly favourable, if the support and guide rail 16 is a component which is initially separate from the basic body 2 and which is screwed or riveted to it. In this way, it is possible to retrofit already existing braking devices of this type so that they can be deactivated again without having to be manually active or having to apply the brake or catch beforehand.
It is particularly advantageous if the triggering of the braking device takes place completely independently of the releasing of the braking device and therefore also functions when the linear drive has failed-as is the case, for example, in this embodiment.
In order to put a stop to possible attempts to circumvent the patent in advance, the following comment appears to be fundamentally appropriate:
On the basis of the abstract general functional drawing according to
From a purely physical point of view, it is also possible to reduce or eliminate the air gap by means of one or more movable pole pieces K1 and K2. Each of the pole pieces forms a flat, wedge-shaped tongue with a slight slope. The wedge-shaped tongues of the pole pieces K1 and K2 are oriented in opposite directions and together form a flat top and bottom side. The pole pieces K1 and K2 are made of magnetically conductive material (e.g. steel). They are inserted from both sides into the air gap LU, which is initially too large for the plate section 28 to be attracted again by the retaining magnet 14. They close the air gap completely or substantially, as shown in
The pole pieces are then laterally pulled out of the air gap LU by the tensile forces Z1 and Z2 in the opposite direction, preferably at the same speed, whereby they slide off the plate section 28 or the retaining magnet 14. In this way the plate section 28 and thus the magnet armature is continuously brought closer and closer to the retaining magnet 14, without a disruptive air gap occurring again. At the very end, when the pole pieces finally leave the area between the plate section 28 and the retaining magnet 14, the plate section 28 “jumps” onto the retaining magnet 14.
By the way,-regardless of the claims made up to now-independent protection for a braking device is claimed, which, for the purpose of deactivation, after the brake has fallen off without causing a braking effect, has a drive driven by external, preferably electrical energy.
The brake claimed in this way can additionally have one or more features disclosed in the above description and/or in the claims and/or in the associated figures.
Number | Date | Country | Kind |
---|---|---|---|
20 2019 103 423.8 | Jun 2019 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/066754 | 6/17/2020 | WO |