The disclosure generally relates to microwave couplers, and more particularly to branch-line couplers.
It is well-known that directional couplers are usually used to solve the problems relating to power splitting in many microwave circuits. With the development of mobile communication technology and satellite communication technology, for convenient carrying and moving, the miniaturization of communication devices becomes more and more important. However, the conventional 3 dB branch-line coupler occupies a large area of the printed circuit board (PCB). Therefore, a reduction in the area of the branch coupler and maintaining its performance is needed.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures, wherein:
It should be understood that the detailed description and specific examples, while indicating exemplary embodiments, are intended for purposes of illustration only and are not intended to limit the scope of the claims.
The first transmission line T1 is electrically connected between the input port P1 and the first port P2, and the second transmission line T2 is electrically connected between the second port P3 and the isolated port P4. In addition, the first transmission line T1 carries a first open branch St1 and a second open branch St2, and the first open branch St1 and the second open branch St2 are symmetrical around the axis Ax1. The second transmission line T2 carries a third open branch St3 and a fourth open branch St4, and the third open branch St3 and the fourth open branch St4 are also symmetrical around the axis Ax1. The first transmission line T1 and the second transmission line T2 are symmetrical based on the axis Ax2, and the first open branch St1, the second open branch St2, the third open branch St3, and the fourth open branch St4 are all arranged between the first transmission line T1 and the second transmission line T2.
The third bent branch line T3 is electrically connected between the input port P1 and the isolated port P4, and the fourth bent branch line T4 is electrically connected between the first port P3 and the second port P4. The third bent branch line T3 has a first section S1, a second section S2 and a first U-shaped section S10, and the fourth bent branch line T4 has a third section S3, a fourth section S3 and a second U-shaped section S20. The third bent branch line T3 and the fourth bent branch line T4 are symmetrical based on the axis Ax1. In addition, both of the openings of the first U-shaped section S10 of the third bent branch line T3 and the second U-shaped section S20 of the fourth bent branch line T4 face outward. In other words, the opening directions of the first U-shaped section S10 and the second U-shaped section S20 are opposite. The shapes constituted by the third bent branch line T3 and the fourth bent branch line T4 are not to be considered as limited in the disclosure. In addition, according to an embodiment, the first transmission line T1 and the second transmission line T2 can be microstrip lines or other transmission lines.
According to an embodiment, the first transmission line T1 and the second transmission line T2 are equivalent to 35.35 ohm transmission lines, and the third bent branch line T3 and the fourth bent branch line T4 are equivalent to 50 ohm transmission lines. However, it should be noted that the selection of the transmission line parameters as described above can be adaptively selected based on impedance matching, it is not limited thereto.
The length D1 between the input port P1 and the first output port P2 is preferably 4.48 mm, and the length D2 between the input port P1 and the isolated port P4 is preferably 5.32 mm. The line width between the first open branch St1 and the first port and the line width between the second open branch St2 and the first output port are both 0.46 mm. The total length D7 of the first open branch St1, the second open branch St2, the third open branch St3 and the fourth open branch St4 is 1.67 mm, the line width D8 of the main backbone is 0.2 mm, and the length D6 of the four branches is 1.2 mm. The line width D10 of the branch connected to the end of the main backbone is 0.47 mm, and the line width D9 of the remaining three branches is 0.2 mm. In addition, the line width D4 of the first open branch St1 and the second open branch St2 on the first transmission line T1 is 0.25 mm for both, and the distance D5 between the two is 1.42 mm. The inner width D11 of the opening of the first U-shaped section S10 is 0.2 mm, and the outer width D12 is 0.7 mm. It should be noted that the structure of the second transmission line T2 is identical and symmetrical to the first transmission line T1, and the structure of the second bent branch line T4 is also identical and symmetrical to the first bent branch line T3. Thus, the structural size of the second transmission line T2 is the same as the structural size of the first transmission line T1, and the structural size of the second bent branch line T4 is the same as the structural size of the first bent branch line T3, and it is not described herein to simplify the description. In addition, in the embodiment of
In summary, the branch-line coupler formed by bent branch lines decreases the size by 58.7% compared with a conventional branch-line coupler. In addition, the coupler has good performance at the frequency band 4.6 GHz to 6.4 GHz, and the S11 parameter is below −10 dB at the aforesaid frequency band. The magnitude of output and output phase of the two output ports have little difference and the two ports of the branch-line coupler have a high degree of isolation. The present coupler not only overcomes the disadvantage of occupying a large PCB area, but also has good performance, and is very suitable for mobile communication products.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosure without departing from the scope or spirit of the claims. In view of the foregoing, it is intended that the present disclosure covers modifications and variations, provided they fall within the scope of the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5132645 | Mayer | Jul 1992 | A |
10644375 | Chueh | May 2020 | B1 |
Number | Date | Country |
---|---|---|
104393390 | Mar 2015 | CN |
206134906 | Apr 2017 | CN |
107565198 | Jan 2018 | CN |
109524755 | Mar 2019 | CN |
202019011 | May 2020 | TW |
Entry |
---|
Chu et al., “Fish-bone resonator with new coupling structure and its applications to wideband bandpass filters”, Jun. 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) (Year: 2013). |
Title of the article :A Novel Structure of Compact Microstrip Branch-line Directional Coupler; Name of the author:Shengquan Ma&Shaozhou Zhang; Book title:Electronic Technology; Publication date:Apr. 26, 2010. |
Title of the article :Miniaturization of microstrip branch-line coupler; Name of the author:Jia Chen&Shaozhou Zhang; Book title:Electronic Design Engineering; Publication date:Apr. 21, 2012. |
Number | Date | Country | |
---|---|---|---|
20220368001 A1 | Nov 2022 | US |